THE AMERICAN MINERALOGIST, VOL. 44, JULY-AUGUST, 1959

STUDIES OF BORATE MINERALS (V): REINVESTIGATION OF THE X-RAY CRYSTALLOGRAPHY OF ULEXITE AND PROBERTITE*

JOAN R. CLARK AND C. L. CHRIST, U. S. Geological Survey, Washington 25, D. C.

Abstract

Ulexite and probertite crystals have been examined by x-ray precession methods and earlier findings confirmed. Revised data for the crystallographic elements are as follows: ulexite, NaCaB₅O₉·8H₂O, triclinic $P\bar{1}-C_{i^1}$, $a=8.80_9\pm0.02$, $b=12.86\pm0.04$, $c=6.67_8\pm0.02$ Å, $\alpha=90^{\circ}15'$, $\beta=109^{\circ}07'$, $\gamma=105^{\circ}06'$ (all $\pm05'$); probertite, NaCaB₅O₉·5H₂O, monoclinic $P2_1/a-C_{2h}^{5}$, $a=13.43\pm0.04$, $b=12.57\pm0.04$, $c=6.58_9\pm0.02$ Å, $\beta=100^{\circ}15'$, $\pm05'$. X-ray powder patterns of both minerals have been indexed, and all calculated interplanar spacings are given for $d\geq 2.5$ Å.

INTRODUCTION, EXPERIMENTAL TECHNIQUES, AND ACKNOWLEDGMENTS

In connection with current crystal structure studies of sodium calcium borates, the x-ray crystallography of ulexite and probertite have been re-examined and x-ray powder patterns of these minerals have been indexed.

Single crystal studies were made on a quartz-calibrated precession camera with both Mo/Zr and Cu/Ni radiations. Film measurements were corrected for horizontal and vertical film shrinkage. A 114.59 mm. diameter powder camera was used with Cu/Ni radiation for the powder films and the measurements were corrected for film shrinkage.

We are grateful to several colleagues at the U. S. Geological Survey for their collaboration during these studies: W. T. Schaller supplied crystals of ulexite and probertite, Mary E. Mrose prepared the x-ray powder patterns, H. T. Evans, Jr. contributed helpful discussion, and D. E. Appleman carried out the calculations for d-spacings.

SINGLE CRYSTAL STUDY OF ULEXITE

The crystallography of ulexite, NaCaB₅O₉·8H₂O, was the subject of a comprehensive study by Murdoch (1940), who summarized earlier findings and compiled crystallographic data based on his own goniometric measurements of terminated crystals and on his measurements from x-ray oscillation photographs. Ulexite crystals used in the present study originated at the Baker mine, Boron, California. X-ray examination of these crystals shows that ulexite is triclinic and the space group is therefore either P1 or P1. Piezoelectric tests were made of the crystals, using an apparatus of the Giebe-Scheibe type. The negative results of these

* Publication authorized by the Director, U. S. Geological Survey.

tests, considered together with the crystal morphology found by Murdoch (1940), confirm his selection of space group $P\overline{1}$ with cell contents $2[\text{NaCaB}_5\text{O}_9\cdot 8\text{H}_2\text{O}]$. Values of the direct crystallographic elements obtained in the present study are compared in Table 1 with those found by Murdoch (1940); the agreement is excellent.

Table 2 contains a complete set of data for direct and reciprocal cell elements of ulexite, including the direct and reciprocal Cartesian matrices together with the components v_1 and v_2 of the *b*-axis on the *x*- and *y*-axes, respectively, of Cartesian coordinates (Evans, 1948). The six reciprocal cell elements listed in Table 2 were chosen from among all available data as the best measurements, the three reciprocal lengths being those obtained from the present precession *x*-ray studies and the three reciprocal angles, those found by Murdoch (1940) from goniometric measurements. The six direct cell elements in Table 2 were calculated from the given six reciprocal cell elements. The present calculated density is in much better agreement with the observed density of Murdoch (1940) than was the earlier calculated value.

SINGLE CRYSTAL STUDY OF PROBERTITE

Barnes (1949) examined probertite crystals with precession x-ray techniques using Cu/Ni radiation. He makes no statement regarding

	Present Study*	Murdoch (1940)†
a	8.80 ₉ ±0.02 Å	8.73 Å
b	12.86 ± 0.04	12.75
C	$6.67_8 \pm 0.02$	6.70
α	90°15′±05′	90°16′
ø	$109^{\circ}10' \pm 05'$	109°08′
γ	$105^\circ 05 \pm 05'$	105°07′
a:b:c	$0.685_0:1:0.519_3$	0.6855:1:0.5191
Cell Volume	687.0 Å ³	676.9 Å ³
Density (calc.)	1.959 g.cm. ⁻³	1.988 g.cm3

TABLE 1. COMPARISON OF DIRECT C	Cell Elements for Ulexite
---------------------------------	---------------------------

* Values of a, b, c, and α were calculated from the reciprocal elements given in Table 2; values for β and γ are readings obtained from the precession camera dial settings.

[†] Values of a, b, and c were calculated by Murdoch "from the x-ray data using the morphologic axial angles." The axial ratio a:b:c is from goniometric measurements, not from the given axial lengths. Conversion from kX to Ångstrom units has been carried out by the present authors.

J. R. CLARK AND C. L. CHRIST

calibration of camera or correction for film shrinkage. The direct cell elements which he found are listed in Table 3, column 1; these elements define a direct cell corresponding to the crystal description given by Schaller (1930) as modified by Palache, Berman, and Frondel (1951). The space group assigned by Barnes (1949) is $P2_1/n - C_{2h}^5$. Standard settings for C_{2h}^5 are given in International Tables (1952) as $P2_1/c$ or $P2_1/a$. If the crystal form taken by Schaller (1930) as $\{\overline{101}\}$ is trans-

Triclinic, space	$group PI - C_i^{1}, Z = 2[NaCaB_5O_9 \cdot 8H_2O]$
Direct Cell Elements	:†
$a = 8.80_9 \pm 0.02$ Å	$\alpha = 90^{\circ}15' \pm 05'$
$b = 12.86 \pm 0.04$	$\beta = 109^{\circ}07' \pm 05'$
$c = 6.67_8 \pm 0.02$	$\gamma = 105^{\circ}06' \pm 05'$
	$a:b:c=0.685_0:1:0.519_3$
Volume = 687.0 Å ³	Density (g.cm. ⁻³), calc. 1.959
	obs. (Murdoch, 1940) 1.955 ± 0.001
Reciprocal Cell Elen	nents:t
$a^*=0.1250_6$ Å ⁻¹	$\alpha^* = 84^{\circ}20.5'$
$b^* = 0.0809_1$	$\beta^* = 70^{\circ}05.5'$
$c^* = 0.1592_6$	$\gamma^* = 73^{\circ}53.5'$
	$p_0:q_0:r_0=0.785_3:0.508_0:1$
Projection Elements	.§
$x_0' = 0.3467$	$\phi_0' = 0.8352$
$y_0' = 0.1049$	$q_0' = 0.5403$
	$\nu = 73^{\circ}53.5'$
Cartesian Matrices:	\$
$\mathbf{v}_1 = -0.2774_5$	$v_2 = 0.9607_3$
	8.323 -3.569 0
Direct Matrix:	$ \begin{vmatrix} 8.323 & -3.569 & 0 \\ 0 & 12.360 & 0 \\ -2.886 & -0.059 & 6.678 \end{vmatrix} $ (in Å)
	$\ -2.886 - 0.059 6.678\ $
	0.12015 0 0.05192
Reciprocal Matrix:	$ \left \begin{array}{cccc} 0.12015 & 0 & 0.05192 \\ 0.03470 & 0.08091 & 0.01570 \\ \end{array} \right \ (in \ \tilde{A}^{-i}) $
Construction of Manager	0 0 0.14974

TABLE 2.	DIRECT AND	RECH	ROCAL	CRYSTALLOGRAPHIC
	DATA	FOR	ULEXI	TE

[†] Direct cell elements were calculated from the six reciprocal cell elements.

‡ Values for a^* , b^* , and c^* are from precession x-ray measurements; values for α^* , β^* , and γ^* are from goniometric measurements by Murdoch (1940). Reciprocal angles obtained from precession film measurements were within $\pm 2.5'$ of Murdoch's values.

§ Values calculated from direct and reciprocal cell elements using equations given by Evans (1948). Projection element values listed by Murdoch (1940) agree with these to ± 0.0001 .

ULEXITE AND PROBERTITE

formed to $\{001\}$, the transformation matrix being $\overline{101}/010/001$, the direct cell thus obtained is in the $P2_1/a$ orientation. In both descriptions of the cell the cleavage plane is (110). Table 3, column 2, gives the measurements of Barnes (1949) as transformed to the $P2_1/a$ setting. In the present study probertite crystals from the California mine, Boron, California, were examined and the values of the crystallographic elements found are given in Table 3, column 3, for the $P2_1/a$ setting. A slight improvement in the agreement of calculated with observed density has resulted.

	Barnes (19	Present Study		
	(1)	(2)*	(3)	
	$P2_1/n$	$P2_1/a$	$P2_{1}/a$	
a	13.88 Å	13.44	13.43±0.04 Å	
b	12.56	12.56	12.57 ± 0.04	
С	6.609	6.609	$6.58_9 \pm 0.02$	
β	107°40′	100°17′	$100^\circ15^\prime\pm05^\prime$	
a:b:c†	1.1053:1:0.5263	1.070:1:0.526	1.068:1:0.524	
Volume	1097.2 Å ³		1095 Å ³	
Density (calc.)	2.126 g.cm. ⁻³		2.131 g.cm3	
(obs.)	2.141 (Schaller, 1930)			

TABLE 3. CRYSTALLOGRAPHIC DATA FOR PROBERTITE Monoclinic, space group $P2_1/a - C_{2h}^5$, $Z=4[NaCaB_5O_9 \cdot 5H_2O]$

* Transformed from original values in column (1) with the matrix $\overline{101}/010/001$. † Schaller (1930) from morphologic measurements found 1.1051:1:0.5237; for the transformed cell, using his average of 99°53' for β , the ratio becomes 1.0683:1:0.5237.

POWDER DIFFRACTION STUDY

A pattern of ulexite was prepared from crystals originating at the Jenifer shaft, Boron, California; a probertite pattern, from type locality crystals found at the Baker mine, Boron, California. A complete set of interplanar spacings for each mineral was calculated down to values of 1.5 Å on the Datatron computer using a program developed by D. E. Appleman. For ulexite, the reciprocal matrix given in Table 2 was used for the calculations, and for probertite, a reciprocal matrix prepared from the data in Table 3, column 3, was used. Table 4 lists observed and calculated interplanar spacings for ulexite and Table 5, those for probertite. Indexing for probertite is given for both the original cell $(P2_1/n)$ and the transformed cell $(P2_1/a)$. Observed spacings found in the present

Mea	sured*	Calc	ulated [†]	Mea	sured*	Calcula	ited†
I	d_{hkl}	d_{hkl}	hkl	I	d_{hkl}	d_{hkl}	hkl
100 15 80	12.2 8.03 7.75	12.36 8.00 7.77 6.28 6.18	010 100 110 001 020	15	2.914	$\begin{cases} 2.918 \\ 2.915 \\ 2.888 \\ 2.887 \\ 2.859 \end{cases}$	$\begin{array}{r} 0\overline{2}2\\ \overline{3}11\\ \overline{1}41\\ 0\overline{4}1\\ 240 \end{array}$
30	6.00	{6.04 {6.00	T01 110			2.858 2.851	$\frac{1}{212}$ $\frac{1}{321}$
7	5.83	5.835	$\begin{array}{c} 0\overline{1}1\\ \overline{1}20 \end{array}$	15	2.844	$2.844 \\ 2.824$	$\frac{222}{301}$
	5.66 5.42	5.688 5.388	T11 011	10	2.767	2.809	141 310
$\frac{4}{7}$	5.19 4.60	5.195 4.639 4.590	$ \begin{array}{r} 111 \\ 021 \\ \overline{1}21 \end{array} $			12.765 2.746 2.739	241 231 320
15	4.33	$ \begin{array}{c} 4.345 \\ 4.341 \\ 4.281 \end{array} $	$111 \\ 111 \\ 120 \\ 101$	15	2.692	2.718 $\{2.694$ $\{2.692$	211 022 131
30	4.16	$\begin{array}{c c} 4.202 \\ \{4.163 \\ 4.157 \\ 4.129 \\ 4.120 \end{array}$	$\begin{array}{c} 021 \\ 130 \\ 210 \\ 211 \\ 030 \end{array}$	15	2.661	2.672 2.670 (2.665) (2.659)	112 041 300 331
4	3.98	4.090 4.056 3.998	121 201 200			2.646 2.633 2.631	140 102 14
3	3.89	3.939 3.884	$\frac{1\overline{2}1}{\overline{2}20}$			$2.625 \\ 2.619$	$\frac{03}{23}$
3	3.79	$ \begin{array}{c} \{3.799\\3.791\\3.627\end{array} $	$\frac{111}{221}$ $\frac{111}{211}$	10	2.597	2.615 (2.606) (2.597)	$\frac{31}{13}$ $\frac{22}{22}$
7b	3.59	{3.612 (3.601 3.528	$ \begin{array}{r} 0\overline{3}1 \\ \overline{1}31 \\ 210 \end{array} $			2.590 2.589 2.580	$122 \\ 330 \\ 232 \\ 232 \\ 330 \\ 330 \\ 232 \\ 330 $
		3.375 3.352 3.334 (3.308	$ \frac{\overline{230}}{131} \overline{102} 130 $	10	2.572	2.578 2.572 2.539 2.535	13: 15(23(31)
6	3.29	(3.299 3.268 3.235	$ \begin{array}{r} 031 \\ \overline{231} \\ \overline{131} \end{array} $	5d 3 3	2.415 2.381 2.350	2.000	01.
10b	3.20	$\begin{array}{c} 3.228 \\ \{3.210 \\ 3.196 \\ 3.140 \end{array}$	$121, \frac{\overline{112}}{140}\\002$	3 3 3 3 7 6	$\begin{array}{c} 2.313 \\ 2.282 \\ 2.232 \\ 2.198 \end{array}$		
15b	3,10	$\begin{array}{c} 3.117 \\ (3.096 \\ 3.090 \\ 3.045 \end{array}$	012 221 040 211	6 3 4 3	2.173 2.129 2.090 2.063		
15	3.01	$\begin{cases} 3.019 \\ 3.013 \\ 2.999 \end{cases}$		4b 15	2.023 1.933		
		$\begin{array}{c} 2.974 \\ 2.966 \\ 2.948 \\ 2.921 \end{array}$	$\begin{array}{r} 012\\ \underline{221}\\ 201, \underline{122}\\ \underline{122}\\ 122\end{array}$	plus add all with I	itional lines, ≤ 7		

TABLE 4. X-RAY POWDER DATA FOR ULEXITE, NaCaB₅O₉·8H₂O Triclinic $P\overline{1}$: $a=8.80_9\pm0.02$, $b=12.86\pm0.04$, $c=6.67_8\pm0.02$ Å; $\alpha=90^{\circ}15'$, $\beta=109^{\circ}07'$, $\gamma=105^{\circ}06'$ (all $\pm05'$)

* Corrected for shrinkage; b=broad, d=diffuse. Radiation: Cu/Ni, λ CuK α =1.5418 Å. Lower limit of 2 θ measurable: approximately 7° (13 Å). † All calculated lines listed for $d_{hkl} \ge 2.5$ Å.

Measured*		Calculated [†]			
Pre	esent Study	Present	Study	$- For P2_1/n (Barnes, 1949)$	
I	d _{hkl}	d_{hkl}	hkl	- (Barnes, 1949) <i>hkl</i>	
100	9.12	9.108	110	110	
20	6.62	6.608	200	200	
		6.484	001	101	
		6.285	020	020	
		5.849	210	210	
10	5.74	$5.849 \\ 5.762$	011	Ī11	
		5.676	120	120	
		5.618	T11	011	
		5.104	201	101	
9	5.02	5.000	111	211	
9	4.73	4.729	$\overline{2}11$	111	
10	4.53	(4.554	220	220 121	
		(4.513	021	121	
10	4.44	4.442	T21	021	
		4.264	201	301	
2	4.16	4.157	310	310	
		4.118	121	221	
10	4.05	4.038	211	311	
10	4.00	3.994 3.962	$\frac{130}{221}$	130	
		3.962	221	121	
6	3.80	3.802	311	211	
		3.607	320	320	
20	2 50	(3.539	230	230	
20	3.52	3.529	221	321	
		3.519	031 131	T31	
0	2 25	3.485	131	031	
2	3.37	3.368	321	221	
3	3.31	{3.322	131	231	
		3.304	400	400	
		3.260 ∫3.242	311	$\frac{\overline{4}11}{202}$	
9	3.24	3.239	$\frac{002}{231}$	131	
		3.239	410	410	
2	3.18	3.195 3.182	$\frac{410}{401}$	301	
-	5.10	3.180	112	I12	
		3 143	040	040	
2	3.14	$ 3.143 \\ 3.140 $	202	002	
	0111	3.139	012	212	
		3.084	411	311	
10b	2 09 4 - 2 04	3.057	140	140	
TOD	3.08 to 3.04	3.046	212	012	
	1	3.036	330	330	
	0	2.989	231	331	
		2.974	321	421	
20	2.935	(2.942	112	312	
20	2.933	2.924	420	420	
		2.913 ∫2.889	$\frac{122}{331}$	122	
20	2.884	∫2.889	331	231	
	2.001	12.881	022	222	
		2.839	421	321	
4	2.837	{2.838	240	240	
		2.828	041	T41	
0.5	0.005	2.810	T41	041	
35	2.807	2.809	222	022	
		2.794	312	112	

TABLE 5. X-RAY POWDER DATA FOR PROBERTITE, NaCaB₅O₉· 5H₂O Monoclinic $P2_1/a; a = 13.43 \pm 0.04, b = 12.57 \pm 0.04, c = 6.58_9 \pm 0.02$ Å; $\beta = 100^{\circ}15' \pm 05'$

(continued on next page)

Measured* Present Study		Calculated [†]			
		Prese	For $P2_1/n$ (Barnes, 1949)		
I	d _{hkl}	d_{hkl}	hkl	(Darnes, 1949) hkl	
6 2 2 9 6 4 7 5 1 1 20 6 6 6	2.731 2.697 2.666 2.591 2.558 2.558 2.558 2.378 to 2.327 2.241 2.217 2.172 2.138 2.120	$\begin{array}{c} 2.752\\ (2.727\\ 2.725\\ 2.722\\ 2.689\\ (2.676\\ 2.663\\ 2.628\\ 2.608\\ (2.594\\ 2.586\\ (2.594\\ 2.586\\ (2.594\\ 2.586\\ (2.552\\ 2.534\\ 2.552\\ 2.534\\ 2.552\\ 2.534\\ 2.552\\ 2.534\\ 2.552\\ 2.530\\ 2.521\\ 2.501\\ 2.500\end{array}$	$\begin{array}{c} 401\\ 122\\ 202\\ 141\\ 411\\ 241\\ 212\\ 331\\ 322\\ 430\\ 132, 510\\ 032\\ 511\\ 340\\ 402\\ 431\\ 241\\ 421\\ 232\\ 412\\ 222\\ \end{array}$	$\begin{array}{c} 501\\ 322\\ 402\\ 241\\ 511\\ 141\\ 412\\ 431\\ 122\\ 430\\ 132, 510\\ 232\\ 411\\ 340\\ 202\\ 331\\ 341\\ 521\\ 032\\ 212\\ 422\\ \end{array}$	
9 9 20 1 6 10 6 plus additiona	$\begin{array}{c} 2.080\\ 2.020\\ 1.993\\ 1.938\\ 1.860\\ 1.824\\ 1.805\\ 1.777\\ 1 \text{ lines, all with } I \leq 4 \end{array}$				

TABLE 5.—(continued)

* Corrected for shrinkage; b=broad. Radiation: Cu/Ni, λ CuK α =1.5418 Å. Lower limit of 2 θ measurable: approximately 7° (13 Å). † All calculated lines listed for $d_{hkl} \ge 2.5$ Å.

study are in good agreement with those given in previously published powder data. Observed spacings for ulexite are given on ASTM card 2-0914 and in a paper by Baur and Sand (1957). Powder data for probertite are listed on ASTM card 4-0107. No indexed patterns for these minerals have previously been available.

References

BARNES, WILLIAM H. (1949), The unit cell and space group of probertite: Am. Mineral. 34, 19-25.

- BAUR, GRETTA S., AND SAND, L. B. (1957), X-ray powder data for ulexite and halotrichite: Am. Mineral., 42, 676-678.
- EVANS, HOWARD T., JR. (1948), Relations among crystallographic elements: Am. Mineral., 33, 60-63.
- International Tables for X-Ray Crystallography, Vol. I (1952): Birmingham, The Kynoch Press.

MURDOCH, JOSEPH (1940), Crystallography of ulexite: Am. Mineral., 25, 754–762.

PALACHE, C., BERMAN, H., AND FRONDEL, C. (1951), The System of Mineralogy, 7th ed., vol. 2: New York, John Wiley and Sons, Inc.

SCHALLER, WALDEMAR T. (1930), Borate minerals from the Kramer district, Mohave Desert, California: U. S. Geol. Survey Prof. Paper 158-I, 137-173.

Manuscript received October 16, 1958.