using Hurlbut's single-crystal data: space group $I 4/mmm$, $a=13.8 \, \text{Å}$, and $c=9.8 \, \text{Å}$. The results are shown in Table 1. The weak line at $d=2.96$ is probably due to a small amount of magnetite.

The writer is indebted to Professor Hurlbut for providing the aminoflite specimen.

Reference

ERRATA

1) $\text{Ca}_{3.66}\text{Na}_{2.11}\text{K}_{0.90}(\text{Al}_{7.66}\text{Mg}_{0.05}\text{Fe}_{0.95}\text{Si}_{6.35})\text{O}_{46} \cdot 16.39$

H_2O If calculated on the basis of 28 total cations, the formula is:

2) $(\text{Ca}_{3.98}\text{Na}_{0.32}\text{K}_{0.0})(\text{Al}_{7.96}\text{Fe}_{0.06}\text{Mg}_{0.06}\text{Si}_{6.58})\text{O}_{46} \cdot 16.91$

H_2O If calculated on the basis of 48 oxygens with no charge imbalance, the formula is:

3) $(\text{Ca}_{4.80}\text{Na}_{0.22}\text{K}_{0.0}) (\text{Al}_{7.88}\text{Fe}_{0.50}\text{Mg}_{0.06}\text{Si}_{6.58})\text{O}_{48} \cdot 17.05$

H_2O

Formula 1) treated H^+ as a cation site and is probably incorrect.

Formula 2) implies a charge imbalance and tetrahedral deficiency.

Formula 3) based on charge balance is preferred. The author is grateful to Douglas Coombs for correcting the original calculation to formula 3).