Two crystals were measured. These showed the forms $c=$ $0(001), b=0 \infty(010), u=\infty 2(120), e=01(011), o=02(021)$, $x=1(111), s=12(121), d=0 \frac{1}{3}(013)$, and $A^{*}=04(041)$. The element was determined afresh. This determination, from nine faces, gave an average value for $p_{0}=c=1.0883$, which is in close agreement with that of the Monteponi crystals, which show $p_{0}=c=1.0889 .{ }^{1}$

Crystal 1 is represented in Fig. 26, as closely as possible in its natural development, in plan and perspective. The dimensions of this crystal are $10 \times 10 \times 45 \mathrm{~mm}$. Crystal 2 has the dimensions $5 \times 10 \times 15 \mathrm{~mm}$. Both crystals show the same combination of faces, as well as the same arrangement of the faces in the order of magnitude. The forms b, c, x, and o are the most prominent ones, while d and A are subordinate.

The form $A=04(041)$ is a new form. It was found on crystal 1 and shows two faces on that crystal, which yielded the following angles:

The form is thus verified.
LISTS OF THE TETRAGONAL MINERALS INCLUDED IN GOLDSCHMIDT'S WINKELTABELLEN. Edgar T. Wherry. Washington, D. C.-The tetragonal minerals included in the Winkeltabellen are here arranged in the order of increasing value of $p_{0}(=c)$. This arrangement may be useful for determinative purposes:-measurement of p_{0} on an unknown crystal will enable it to be placed in a certain position in the series, and its identity with one of the minerals falling near that position can usually be readily established, In case the form taken as first order in measuring the unknown happens to have been taken as second order in calculating the angle-table, however, the value of p_{0} obtained will have to be divided (or multiplied) by $\frac{1}{2} \sqrt{2}$ in order to place the unknown. For instance, suppose an unknown crystal, actually chalcopyrite, were measured in Dana's orientation, it would show $\mathrm{p}_{0}=0.98 \pm$; search in the table would show near this value only edingtonite and arksutite, with neither of which the unknown would agree in physical features. On dividing the value obtained by 0.7071 , however, the result would be $1.38 \pm$; and on looking at the corresponding portion of the table, chalcopyrite would soon be located.

Supplementary lists give the tetragonal minerals which have been found to show diminished symmetry.
${ }^{1}$ V. Goldschmidt. Z. Kryst. Min., 21, 327, 1893; 23, 147, 1894; Winkeltabellen, 265, 1897.

TETRAGONAL MINERALS

REPRESENTATIVES OF CLASSES WITH DIMINISHED SYMMETRY

Class Pyramtaal	Class Trapezohedral
Wernerite. 0.44	Phosgenite.................. . 1.09
Sarcolite 0.89 -	
Pinnoite. 1.08	Class Sphenoidal
(Sipylite)..... 1.45	Chalcopyrite.................1.39
Fergusonite.................1.46+	Class Tetartohedral
Scheelite.................. 1.54-	$\text { Meliphanite.................... . } 0.66 \text { - }$
Powellite................... $1.54+$	
Stolzite...................... 1.56	Erroneously Classed as Tetragonal
Class Pyramidal-Hemtmorphic	Edingtonite Orthorhombic
Vulfenite.................. 1.58 -	Romeite............ Isometric

