JOURNAL MINERALOGICAL SOCIETY OF AMERICA 159

For domes: If x = 0, $\tan \varphi = 0$, $\varphi = 0$; $\tan \rho = qq_0$.

If y = 0, $\tan \varphi = \infty$, $\varphi = 90^{\circ}$; $\tan \rho = pp_0$. For prisms:

$$\frac{\mathrm{p}}{\mathrm{q}} \infty$$
, $\tan \varphi = \frac{\mathrm{p}\mathrm{p}_0}{\mathrm{q}\mathrm{q}_0}$; $\tan \rho = \infty, \rho = 90^{\circ}$.

ILLUSTRATION OF THE ORTHORHOMBIC SYSTEM. MEASUREMENTS AND CALCULATIONS ON HIGGINSITE

CHARLES PALACHE

Harvard University

As an illustration of the application of the formulas given in the preceding article, the following discussion of a crystal of the new mineral higginsite, described above, may well serve. The measurements of one crystal are given in full in Table 1, the form of calculation being that used thruout in Goldschmidt's work. In this table, columns 1, 2, 5, and 6 contain the record of actual observation on the goniometer. The numbers of col. 1 are those used to mark the faces in the note-book sketch of the crystal; the letters of col. 2 stand for good, fair and poor, depending on the quality of the reflected signals; col. 5 contains the angles read on the vertical circle, V, col. 6 those on the horizontal circle, H, of the goniometer.

These angles were plotted in gnomonic projection yielding a diagram similar to figure 33. The next step was the choice of the unit form. Either of the pyramids, o and p, might have been taken for this and its coördinates would then have been the elements, p_0 and q_0 . The choice fell upon o because this form is more prominently developed on the crystals; the zonal relations with other forms are at least as good; and its selection brings to expression the isomorphism of the new species with descloizite, as will be shown below.

The unit form chosen, the Goldschmidt symbols could be read at once from the projection; they are entered in col. 3. The letters of col. 4 follow the usage for the mineral descloizite.

Determination of the value v_0 was next in order. The projection showed that the face 1 will have $\varphi = 0$, and therefore v_0 would be close to 77°28', the V reading of face 1. Each of the pairs of faces: 2 and 3; 4 and 5; 8 and 9; are symmetrically dis-

THE AMERICAN MINERALOGIST

Fig. 33

posed to 1, and the half-sums of the V readings of each pair gave independent values for v_0 . Faces 6 and 7 should be 90° from face 1 in φ , and the prism faces also yielded, either directly or by taking the half-sum of symmetrical readings, other values of v_0 . The average of all is 77°29' which, subtracted from each angle in col. 5, gives the values of φ entered in col. 7.

Col. 8 contains the values of ρ obtained from col. 6 by subtracting each from $h_0 = 260^\circ$, a constant for the instrument.

The calculation of p_0 and q_0 followed. In col. 9 was written first, lg tan ρ for each face (except prisms); then lg sin φ and lg cos φ respectively above and below the first. Col. 10 contains the sums of these logarithms, above the upper two, below the lower two, the logarithms respectively of x and y. This addition proceeds most rapidly if done beginning at the left hand side of the numbers to be added, the sum being then written in col. 10 in order from left to right, a trick of addition (or subtraction)

TABLE 1, on following page and half of page 162, gives the measurements on the higginsite and the calculations therefrom.

160

13	đe	.7879	7904	.7902	.7933	.7878			8010	.7925	.7304
12	4Do		.6343	.6346	,6320	.6245	,6341	.6358	.6326	.6356	.6056
11	$\mathbf{x} = \mathbf{p}\mathbf{p}_0$.7879	.6343	.6346 .7902	1.264.7933	1.249 .7878	.6341	.6358	1.898 1.602	1.907	.7568 .1826
10	lg x lg y	989645	980233 989784	980249 989774	010196 989943	009669 989641	980217	980333	027824 020642	028026 019997	987896 926153
6		$\frac{\infty}{989645}$ 0	979652 000581 989203	979668 000581 989193	$992795 \\ 017401 \\ 972542$	992731 016938 972703	999994 980223 ∞	999998 980335 ∞	988319 039505 980957	988594 039432 980565	998771 989125 937028
00	$h_0 = 260^\circ$	38°14'	45 23	45 23	56 11	55 54	32 23	32 27	68 04	68 02	37 54
L	$v_0 = 77^{\circ} 29'$,10000	-38 45	38 46	-57 54	57 46	-89 04	89 31	49 50	-50 16	76 26
0	ч	221°46′	214 37	214 37	203 49	204 06	227 37	227 33	191 56	191 58	222 06
Q	A	77°28′	38 44	116 15	19 35	135 15	348 25	167 00	127 19	27 13	153 55
4	Letter	n	р	p	0	0	e	e	r	L	82
0	Symbol	01	<u>1</u> 1	51 1	т	Т.	<u>3</u> 0	05	2 ⁰⁰⁰	sipa 5	10,00 144
4	Qual.	Ċ	Ċ	Å	д	F4	е,	IJ	řц	Ē.	Ц
•	No.	г	67	60	4	Ω	9	2	00	6	10

JOURNAL MINERALOGICAL SOCIETY OF AMERICA 161

	Qual.	Symbol	Letter	Δ	щ	9	¢,	$\lg \tan \varphi = \lg \frac{p D 0}{q q 0}$	0dd	418
	A P	0 %	8	347°13'	,00-021	-89°16'	,00-06	020618	1.608	1.608
	40	6.8	1	200	22	- 38 31	33	190066	.7954	1.5908
_	56	3 8	۰ ۰ ۵۰	55 54	22	-21 35	22	959725	.3956	1.5814
	μP	8 8 7 4		00 32	22	22.06	33	960859	.4061	1.6244
	- F	HC S S	-, 2	115 56	22	38 97	33	989983	.7940	1.588
	4 🖂	3 8	£ م	135 40	33	58 11	11	020731	1.612	1.612
~	, A	0 %	1 -3	167 27	22	89 58	11	8	1	1

THE AMERICAN MINERALOGIST

soon learned with a little practice. All the logarithms of col. 10 having been obtained, the numbers corresponding to each were found from the table, and entered in col. 11 opposite each. The upper number of each horizontal line in col. 11 is a value of $x = pp_0$; the lower a value of $y = qq_0$, p and q having been determined graphically (symbol, col. 3) the numbers of col. 11 yielded a series of values for p_0 (1/2 p_0 in col. 12) and q_0 (col. 13) the average of which gave the elements of the crystal. The prisms yielded the ratio of p_0 to q_0 by a simple calculation as shown. The result of the calculation of this crystal were as follows:

 $p_0 = 1.2654; q_0 = 0.7919;$

 $\frac{p_0}{q_0} = 1.597 \text{ (from prisms} \frac{p_0}{q_0} = 1.599 \text{)}.$

A similar calculation may be made for each crystal measured and the results averaged. Possibly a simpler method is to average the angles for each form, make one calculation from these angles, and, weighting the resulting element values according to the number and quality of the readings for each form, find a final average. Table 2 shows the observed forms and angles (averaged) measured on eight crystals of higginsite together with the range of variation of each angle. The values of the elements po and qo there given are the basis for the calculation of the φ and ρ angles of the same table. Table 3 shows the meth-

162

JOURNAL MINERALOGICAL SOCIETY OF AMERICA 163

od of this calculation. The columns are numbered and the nature of the content of each is indicated by the heading. The lowest group of figures in each heading indicates the operation by which the values of the column were obtained. For example in col. 3, $(1 + \lg, p)$ means that \lg, p is added to each logarithm of col. 1; in col. 5, (3-4) means that the logarithm of col. 4 is to be subtracted from that of col. 3; in col. 9 (3-6 = 4-7) means that the result of subtracting each logarithm of col. 6 from that of col. 3 should equal the result of subtracting each logarithm of col. 7 from that of col. 4. Incidentally this identity is a check on the calculation of each set of angles. After the values of $\lg, \tan \varphi$ are obtained in col. 5, the angle is found from the table, entered in col. 8 and at the same time the \lg, \sin and \lg, \cos entered in cols. 6 and 7. ρ is obtained from $\lg, \tan \rho$ of col. 9.

Each operation is thus a horizontal addition or subtraction or the result of adding a common value to a vertical series of numbers. All operations are supposed to be done mentally or with the aid of a slip of paper on which a commonly used value may be written. With comparatively little practice they become very easy and rapid.

In the Introduction to Goldschmidt's *Winkeltabellen* will be found forms similar to this for the calculation of crystals of each system. It was in this way that the enormous labor of calculating all the angles contained in that work was accomplished.

TABLE 2	FABLE 2	
---------	----------------	--

HIGGINSITE. ANGLE TABLE OF CALCULATED AND OBSERVED VALUES. $p_0 = 1.272$ $q_0 = 7940$

	Symbol		Calculated		Mea	sured	of	LII	nits
	Mill.	Gđt.	φ	ρ	φ	ρ	No. Fa	φ	p
8	100	∞0	90°00′	90°00′	90°00′	90°00′	12		a 1.5
B	210	2∞	72 40	Sec.	72 40	"	2	72°08′-73°12′	
C	320	2 00	67 24		68 03	"	4	67 20 - 68 48	
m	110	00	$58\ 02$	65	58 03	66	7	57 48 - 58 15	
g	120	$\infty 2$	$38 \ 42$	66	$38 \ 32$	66	5	38 17 - 38 47	
j	140	∞4	21 50	66	21 52	66	9	2059 - 2233	
u	011	01	00 00	38 27	00 00	38 24	6		38°06'-38°47'
e	102	$\frac{1}{2}0$	90 00	32 27	90 00	32 28	6		32 18 -32 50
z	101	10	66	50 51	66	52 11	1		02 10 02 00
y	302	30	66	62 20	66	62 20	3		62 04 -62 39
ŏ .	111	1	58 02	56 18	58.02	56 09	7	57 39 -58 18	55 54 -56 30
p	122	+1	38 42	45 30	38 38	45 38	7	38 00 - 39 40	44 50 -46 00
r	342	32	50 14	68 04	50 15	68 06	7	50 00 -50 39	67 10 -68 35
8	528	51	75 59	39 20	76 41	39 25	2	00 00 00 00	01 10 00 00
A	746	12	70 22	57 36	70 00	50 34	2		
x	326	11	67 24	34 34	67 53	34 33	2		

THE AMERICAN MINERALOGIST

TABLE 3

Mineral Higginsite		1	2	3	4
$p_0 = 1.272$ $lg p_0 = 0.10449$ $q_0 = .7940$ $lg q_0 = 989982$	Let. Symb. pq	lg p	lg q	$\begin{array}{c} \lg x = \lg pp_0 \\ 1 + \lg p \end{array}$	lg y = lg qqq $2 + lg q$
	[01]	0	0	010449	989982
	$p_{2}^{1}1$	969897	0	980346	989982
	$r_{\frac{3}{2}2}$	017609	030103	028058	020085
ō	6	7	8	9	10
$\lg \frac{pp_0}{qq_0} = \lg \tan \varphi$ $3 - 4$	lgsin φ from 8	lg cos φ from 8	φ from 5	$lg \frac{pp_0}{\sin \varphi} = lg \frac{qq_0}{\cos \varphi}$ $= lg \tan \rho$ $3 - 6 = 4 - 7$	p from 9
020467	992858	972381	58°02′	017591	56°18'
990364	979605	989233	38 42	000741	45 30
007973	988573	980595	$50 \ 14$	039485 039490	68 04

TABLE TO SHOW METHOD OF CALCULATION OF ANGLES (See Winkeltabellen, pp. 18, 19 & 19a).

LISTS OF THE ORTHORHOMBIC MINERALS INCLUDED IN GOLDSCHMIDT'S WINKELTABELLEN. EDGAR T. WHERRY. Washington, D. C.—As the prism zone is on the whole most characteristic of orthorhombic crystals, it has seemed desirable to arrange the minerals of this system in the order of increasing values of axis a.

ORTHORHOMBIC MINERALS

a	C	Page	a	с	Page
Uranophanite 0.31	1.01	355	Topaz	0.95	346
Polycrasite (Poly-			Pucherite	1.17	274
kras) 0.35	0.31	271	Phosphosiderite0.53	0.88	266
Euxenite	0.30	137	Jordanite0.54	1.02	191
Molvbdite	0.47	243	Yttrotantalite 0.54	1.13	371
Columbite	0.36	101	Rammelsbergite0.54		291
Oanneroedite (An-			Samarskite	0.52	309
nerödit)0.40	0.36	45	Struvite	0.62	332
Flinkite	0.74	147	Mascagnite0.56	0.73	232
Monticellite0.43	0.58	253	Bertrandite0.57	0.60	64
Fayalite	0.58	252	Hopeite	0.47	180
Tephroite0.46	0.59	254	Beryllonite0.57	0.55	66
Hjelmite0.46	1.03	177	Mica (Glimmer) $\dots 0.58$	3.29	161
Olivine	0.59	251	Dyscrasite (Anti-		
Ardennite	0.31	53	monsilber)0.58	0.67	49
Chrysoberyl0.47	0.58	97	Argentopyrite (Silber		
Aeschynite	0.67	31	kies)0.58	0.55	318
Diaphorite0.49	0.73	115	Stromeyerite0.58	0.97	330
Pyrostilpnite (Feuer-			Chalcocite (Kupfer-		
blende)0.50	0.70	145	glanz)0.58	0.97	205
Wavellite [old data].0.50	0.38	362	Sternbergite0.58	0.84	329