For the reverse case the formulas are identical but $\lambda, \mu$, and $\nu$ are substituted for $\alpha, \beta$, and $\gamma$ respectively thruout and vice versa.

These fundamental relations are deduced and proved by Goldschmidt in Index der Krystallformen, pages 5-9. They form the foundation of his whole system of crystallographic discussion, and it is hoped that they may some day be adequately presented to American readers.

## Calculation of Angles from Elements

The following relations may be derived from the diagram of figure 40 .

$$
\tan \varphi=\frac{x}{y}=\frac{x_{0}+p p_{0} \sin \nu}{y_{0}+q q_{0}+p p_{0} \cos \nu} \quad \tan \rho=\frac{x}{h \sin \varphi}=\frac{y}{h \cos \varphi}
$$

For a prism $\infty \frac{\mathrm{q}}{\mathrm{p}}, \tan \varphi=\frac{\mathrm{pp}_{0} \sin \nu}{\mathrm{qq}_{0}+\mathrm{pp}_{0} \cos \nu} ; \rho=90^{\circ}$
Forms for the most rapid carrying out of the somewhat laborious computations, with adequate controls, will be found in Winkeltabellen, pages 19b and 20.

# CALCULATION IN THE TRICLINIC SYSTEM, ILLUSTRATED BY ANORTHITE. 

A. L. PARSONS

University of Toronto
The methods involved in the complex problem of measuring and calculating the axial ratios of a triclinic crystal are illustrated by the following measurements and calculations of a crystal of anorthite from Vesuvius, made by the writer in the laboratory of Professor Victor Goldschmidt in 1909.

The crystal was slightly elongated but there was no cleavage apparent to guide in orienting it, so that the zone with the longest edges was assumed to be the prism zone, and the crystal was adjusted on the goniometer with this zone parallel to the axis of the vertical circle. Readings were obtained from 19 faces as shown in Table 1.

From these readings a gnomonic projection was made (Fig. 42), from which it is at once evident that this crystal is a simple
individual and not a twin. By measuring the angles between the faces in the principal zones it was found that faces $15,5,4$, 11, 12 and 18 were in the prism zone. For the purpose of identifying the forms present on the crystal it was only necessary to find the angle-point of each zone, and to measure the angles between the normals to the faces represented by the points in the projection, as shown for the prism zone (Fig. 42). By this means it was also found that face 17 was the base (001)-on the negative end of the crystal, using the standard orientationthus necessitating an adjustment of the values of $\sigma$ for the various faces on account of the inverted position of the crystal.

For purposes of calculation two methods of procedure were available: transposing the projection to a plane parallel with the normals to the prismatic zone, or readjusting the crystal so that the edges in the prism zone were parallel with the axis of the vertical circle, and remeasuring the crystal. The latter method was adopted, as there are fewer sources of error in the final calculation. For convenience the prismatic faces were kept separate from the terminal faces. The results of the second measurement are shown in tables 2 and 3.

| Table 1. Anorthite. Preliminary MeasUREMENTS |  |  |  | Table 2. Anorthite. Prism Zone Measurements.$\mathrm{H}_{0}=70^{\circ} . \quad \mathrm{V}_{0}=71^{\circ} 57^{\prime}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | v | $\underset{\mathrm{H}_{0}=70^{\circ}}{\mathrm{H}}$ | $\rho=\mathrm{H}-\mathrm{H}_{0}$ | No. |  | bol | v | H | $\begin{aligned} & \mathrm{V}-\mathrm{v}_{0} \\ & =\mathrm{v}^{\prime}=\varphi \end{aligned}$ | $\mathrm{H} \stackrel{p=}{=} \mathbf{H}_{0}$ |
| 14 | $300^{\circ} 51^{\prime}$ | $159^{\circ} 55^{\prime}$ | $89^{\circ} 55^{\prime}$ | 18 | M | 0 m | $288^{\circ} 02^{\prime}$ | $159^{\circ} 58^{\prime}$ | $359^{\circ} 59^{\prime}$ | $89^{\circ} 58^{\prime}$ |
| 17 | 34733 | 15955 | 8955 | 12 | , | $\infty 3$ | 25804 | 15958 | 33001 | 8958 |
| 16 | 3013 | 15954 | 8954 | 11 | 1 | $\infty$ | 22957 | 15958 | 30154 | 8958 |
| 15 | 7321 | 15956 | 8956 | 4 | T | $\infty$ | $170 \cdot 27$ | 15958 | 24224 | 8958 |
| 13 | 12043 | 15958 | 8958 | 5 | z | $\infty \overline{3}$ | 13857 |  |  |  |
| 19 | 16730 | 16000 | 9000 | ${ }_{15}^{5}$ | $\stackrel{\text { Z }}{\text { M }}$ | $\infty 3$ $0 \infty$ | 13857 10805 | 15959 15956 | 21054 180 1 | 8959 8956 |
| 18 | 25324 | 15956 | 8956 | 15 | $\mathrm{M}_{\mathrm{f}}$ | $0 \infty$ $\infty$ | 10805 7840 | 15956 15955 | 180 150 157 | 8956 8955 |
| 7 10 | 34641 23 | 12510 | 5510 | 22 | f | $\infty 3$ | 7840 5006 | 15955 | 15037 12203 | 8955 8952 |
| 10 | 2334 | 11613 | 4613 | 22 | T | $\infty$ | 5006 35035 | 15952 | 122.03 | 8952 |
| 6 | 6622 | 12154 | 5154 | 23 | T | $\infty \infty$ | 35035 | 15954 | 6232 | 8954 |
| 5 | 8804 | 13230 | 6230 | 24 | z | $\infty \overline{3}$ | 31900 | 15854 | 3057 | 8854 |
| 4 | 11315 | 10708 | 3708 |  |  |  |  |  |  |  |
| 9 | 16832 | 11835 | 4835 |  |  |  |  |  |  |  |
| 11 | 21822 | 11012 | 4012 |  |  |  |  |  |  |  |
| 12 | 23922 | 13319 | 6319 |  |  |  |  |  |  |  |
| 8 | 26020 | 12215 | 5215 |  |  |  |  |  |  |  |
| 3 | 30624 | 11455 | 4455 |  |  |  |  |  |  |  |
| 2 | 26652 | 10333 | 3333 |  |  |  |  |  |  |  |
| 1 | 34201 | 7908 | 908 |  |  |  |  |  |  |  |

Table 3. Anorthite.
Terminal Face Measurements and Calculation of $x^{\prime}$ and $y^{\prime}$.

$$
\mathrm{H}_{0}=70^{\circ} \quad \mathrm{V}_{0}=\overline{7} \overline{\mathbf{1}}^{\circ} 57^{\prime}
$$

| No. |  | nbol | v | H | $\mathrm{V}^{\mathrm{v}} \mathrm{v}^{-\mathrm{V}_{0}} \mathrm{~F}^{\prime}$ | $\stackrel{\mathrm{H}}{=}{ }_{\rho}^{\text {¢ }}{ }_{0}$ | $\operatorname{logsin} \varphi$ logtan $\rho$ $\log \cos \varphi$ | $\log ^{\log \mathrm{x}^{\prime}}$ | $\mathrm{x}^{\prime}$ $\mathrm{y}^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | v | $\overline{2} \overline{4}$ | $255^{\circ} 06^{\prime}$ | $139^{\circ} 20^{\prime}$ | $327^{\circ} 03^{\prime}$ | $69^{\circ} 20^{\prime}$ | $\begin{aligned} & 973552 \\ & 042342 \\ & 992384 \end{aligned}$ | $\begin{aligned} & 015894 \\ & 034726 \end{aligned}$ | $\begin{array}{\|c} \mathrm{r} .4419 \\ \mathrm{z} .2247 \end{array}$ |
| 2 | u | $\overline{2} \overline{2}$ | 23542 | 13120 | 30739 | 6120 | $\begin{aligned} & 989859 \\ & 026223 \\ & 978592 \end{aligned}$ | 016082 004815 | $\begin{aligned} & \mathrm{I} .4482 \\ & \overline{\mathrm{I}} .1173 \end{aligned}$ |
| 3 | 0 | ì $\overline{1}$ | 24532 | 10514 | 31729 | 3514 | $\begin{aligned} & 982982 \\ & 984899 \\ & 986752 \end{aligned}$ | $\begin{aligned} & 967881 \\ & 971651 \end{aligned}$ | $\begin{aligned} & \overline{0} .4773 \\ & \bar{o} .5206 \end{aligned}$ |
| 6 | w | $\overline{2} 4$ | 14121 | 13907 | 21318 | 6907 | $\begin{aligned} & 973959 \\ & 041847 \\ & 992211 \end{aligned}$ | 015806 034058 | $\begin{aligned} & \overline{\mathrm{I}} .439 \\ & 2.19007 \end{aligned}$ |
| 10 | p | İ 1 | 14719 | 10700 | 21916 | 3700 | $\begin{aligned} & 980136 \\ & 987711 \\ & 988886 \end{aligned}$ | 967847 976597 | $\begin{aligned} & \overline{0} .4796 \\ & 0.5834 \end{aligned}$ |
| 7 | q | $\frac{\overline{2}}{\frac{2}{3}} 0$ | 18104 | 7917 | 25301 | 917 | $\begin{aligned} & 998063 \\ & 921341 \\ & 946552 \end{aligned}$ | 919404 867893 | $\begin{aligned} & \overline{0} .1563 \\ & 0.04775 \end{aligned}$ |
| 17 | P | 0 | 2721 | 9612 | 9918 | 2612 | $\begin{aligned} & 999425 \\ & 969202 \\ & 920845 \end{aligned}$ | $\begin{aligned} & 968627 \\ & 890047 \end{aligned}$ | $\begin{aligned} & 0.4856 \\ & 0.07952 \end{aligned}$ |
| 14 | n | 0 ̀ | 31319 | 11837 | 2516 | 4837 | $\begin{aligned} & 963026 \\ & 005497 \\ & 995633 \end{aligned}$ | $\begin{aligned} & 968523 \\ & 001130 \end{aligned}$ | $\begin{aligned} & 0.4844 \\ & \overline{\mathrm{I}} .0264 \end{aligned}$ |
| 16 | e | 02 | 8549 | 12157 | 15746 | 5157 | $\begin{aligned} & 957793 \\ & 010641 \\ & 996645 \end{aligned}$ | 968434 007286 | $\begin{aligned} & 0.4834 \\ & 1.1826 \end{aligned}$ |
| 1 | y | $\overline{2} 0$ | 19814 | 12456 | 27011 | 5456 | 000000 015370 750512 | 015370 765882 | $\begin{aligned} & \overline{\mathrm{I}} .4246 \\ & 0.0045 \end{aligned}$ |
| 27 | t | 20 | 1914 | 14038 | 9111 | 7038 | 999991 045407 831495 | $\begin{aligned} & 045398 \\ & 876902 \end{aligned}$ | $\begin{aligned} & 2.8443 \\ & 0.05875 \end{aligned}$ |

The polar position of the instrument $h_{0}$ was $70^{\circ}$. Subtracting this value from each $H$ reading we obtain the angle $\rho$ of each face. Plotting the faces by means of the angles $V$ and $\rho$, we obtain the gnomonic projection of figure 43 which permits a graphical determination of the forms and elements. In order to determine them mathematically it was necessary to have the face $010(0 \infty)$ at zero on the vertical circle; or to subtract a value from the vertical circle readings which would give the
value 0 for this face and corresponding values for the other faces. The latter plan was followed and the amount to be subtracted was called $\mathrm{V}_{0}$.


Fig. 42


Fig. 43

Gnomonic projections of anorthite crystal (Parsons, p. 187), Preliminary. Final.

## Determination of $\mathrm{v}_{0}$

This calculation may be made in three ways:
(1) By means of the projection and the Winkeltabellen.
(2) By means of the angles of the terminal faces.
(3) By means of the angles of the prism faces.

Table 4. Calculation of vo from projection and Winkeltabellen

| No. | Symbots |  | v | v -( $\varphi^{\prime}$ ) | $\mathrm{v}_{0}$ | No. |  | bols | v | v - $\varphi^{\prime}$ ) | $\mathrm{v}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | e | 02 | $85^{\circ} 49^{\prime}$ | $157^{\circ} 41^{\prime}$ | $\overline{7} 1^{\circ} 52^{\prime}$ | 24 | , | $\infty{ }^{3}$ | $319^{\circ} 00^{\prime}$ | 390 ${ }^{\circ} 58^{\prime}$ | 7 $\overline{1}{ }^{\circ} 58{ }^{\prime}$ |
| 15 | M | $0 \infty$ | 10805 | 18000 | 7155 | 8 | v | $\frac{3}{24}$ | 25506 | 32703 | $\overline{7157}$ |
| 18 | M | 08 | 28802 | 360 | 71 58 | - | u | $\frac{2}{2} \frac{4}{2}$ | 23542 | 30751 | 7209 |
| 10 | p | İ1 | 14719 | 21916 | ¢1 57 | 3 | - | III | 24532 | 31725 | 7153 |
| 12 | f | $\infty 3$ | 25804 | 33031 | [ $\overline{7} 2127]$ | 6 | w | $\overline{2} 4$ | 14121 | 21321 | $\overline{7} 200$ |
| 11 | 1 | $\bigcirc$ | 22957 | 30156 | 7159 | 7 |  | ${ }_{2}^{2}$ |  |  |  |
| 4 | T | $\infty$ | 17027 | 24227 | $\overline{7} 200$ | 7 | q | $\overline{3}$ | 18104 | 25247 | 7143 |
| 25 | z | $\infty \overline{3}$ | 13857 | 21058 | $\overline{7} 201$ | 17 | P | 0 | 2721 | 9927 | $\overline{7} 206$ |
| 21 | ${ }^{\text {f }}$ | $\infty 3$ | 7840 | 15031 | 7151 | 14 | n | $0{ }^{2}$ | 31319 | 38527 | 7208 |
| 22 | 1 | $\cdots$ | 5006 | 12156 | 7150 | 1 | y | 20 | 19814 | 26920 | [ 7106 06] |
| 23 | T | $\infty \times$ | 35035 | 42227 | $\overline{7} 152$ | 7 | t | 20 | 1914 | 9414 | [75 00] |

Omitting 12, 1 and 27:-Average $\mathrm{v}_{0}=71^{\circ} 57-1 / 9^{\prime}$

## 1. Determination of $v_{0}$ by the use of the angles of the Winkeltabellen. Figures 39 and 43 and Table 4

The symbols of the forms having been determined in the projection, the $\varphi$ angle of each is found in the Winkeltabellen, suitably transformed for the inverted position of the crystal; from each is subtracted the reading on V and the resulting differences give a series of values of $\mathrm{V}_{0} . \mathrm{V}-\mathrm{v}_{0}=\varphi$. Therefore $\mathrm{V}_{0}=\varphi-\mathrm{V}$.
(To be concluded)

## PROCEEDINGS OF SOCIETIES.

## NEW YORK MINERALOGICAL CLUB

The regular monthly meeting of the New York Mineralogical Club was held in the Assembly Room of the American Museum of Natural History on the evening of May 19th, at 8.15 P.M. The President, Dr. George F. Kunz, presided and there was an attendence of 35 members and guests. The minutes of the last meeting were read and approved. On a suggestion by the Chair the report of the Committee on change of name was deferred.

Mr. Roy M. Allen read a paper on "Polarized Light and Its Application to the Study of Crystal Structure." In the course of his paper Mr. Allen took up the explanation of polarized light by analogies, explaining the nature of light and how it is transmitted thru crystalline structures. He took up the vibratory theory of light and pointed out the difference between ordinary light and polarized light. Using a diagram of a Nicol prism he illustrated the phenomena of refraction, reflection and absorption of light. By means of a blackboard demonstration he illustrated the molecular structure of crystalline bodies and showed how polarized light transmitted thri them produced the various effects which are used in determining minerals in thin section under the polarizing microscope.

In the second half of the program, Mr. George E. Ashby, using the polarizing microscope attached to the lantern, showed upon the screen a number of striking illustrations of the behavior of minerals in polarized light. After this exhibition a vote of thanks was tendered to Messrs Allen and Ashby.

Taking up the subject of the Decoration Day Excursion, Mr. Oppenheimer and Mr. Broadwell spoke of the Bronx locality at Burke Avenue as a possible objective. After some discussion this was adopted.

The New York Mineralogical Club and the Newark Mineralogical Society met for a joint field excursion on Decoration Day, May 31st, at the Lexington Avenue Subway Station at 180th Street, and proceeded to the recently opened locality at Burke Avenue, Bronx. Among the Club members attending this Field Excursion were: Miss Catherine Schroder, Messrs. George F. Black, W. H. Broadwell, Louis W. Dunham, Charles Francesconi, J. A. Grenzig, John Holzman, H. M. Lehman, Frank D: Tansley, George S. Scott, E. H. Wilson, J. P. Wintringham and H. P. Whitlock. Practically all the species reported from this locality were encountered and several members secured notable examples.

