THE AMERICAN MINERALOGIST, VOL. 53, SEPTEMBER-OCTOBER, 1968

CALCULATED POWDER PATTERNS: I. FIVE PLAGIO-CLASES

I. Y. BORG AND D. K. SMITH, Lawrence Radiation Laboratory University of California, Livermore, California.

Abstract

As an aid in indexing complex plagioclase X-ray powder patterns, integrated $(I_{\rm INT})$ and peak $(I_{\rm P})$ intensities are calculated for five plagioclases [low and high albite (An_0) , oligoclase (An_{29}) , bytownite (An_{80}) and anorthite (An_{100})]. Lorentz-polarization, absorption and multiplicity corrections appropriate to powder mounts are applied to temperaturecorrected $|F|^2$ which are calculated from single-crystal structure analyses. Graphical expression of $I_{\rm P}$ as a function of 2θ results in plots which are very similar to the comparable experimental X-ray diffraction traces.

PREAMBLE

X-ray diffraction data are indispensable in modern studies of the plagioclase feldspars. Extensive studies relating lattice parameters to composition and conditions of crystallization have laid the basis for advanced studies on the relation of feldspars to other minerals. Many studies involve the use of x-ray powder patterns and require the reduction of complex patterns to yield the unit-cell dimensions. The assignment of Miller indices, hkl, to the observed diffraction maxima to obtain data for a least-squares refinement is a usual step in the data reduction process. The low symmetry of the plagioclases, their pseudo-symmetry (low obliquity), and rather large unit cells result in powder patterns of closely spaced and overlapped maxima. Because of rapid changes in cell constants with composition, as well as small changes in intensity related to composition, atomic distribution (disorder) and atomic coordinates, reliable and general guides to correct indexing, are precluded. For example, separating the approximately 120 reflections with intensities greater than 2 in the first 65° , 2θ range of anorthite is virtually impossible with only approximate cell dimensions and the spacings calculated from them. Intensity data are necessary to identify the reflections that contribute to each observed maximum. Such intensity data may be obtained from careful study of a series of powder patterns over the whole compositional and disorder range; however, some question usually remains as to the correct identity of some lines.

A better guide to relative *hkl* intensities is structure factors conventionally tabulated in descriptions of single-crystal structure analyses. For complex structures like the feldspars these tables are generally too numerous for publication, and are only available upon specific request to the investigators. Even when such tables are in hand, for the purpose of comparison with powder data, they must be interpreted in terms of the absorption, Lorentz-polarization, and multiplicity corrections applicable to powder samples. Therefore, in order to put the data from structure analyses in a more convenient form for use with powder patterns, sets of X-ray intensities have been calculated for five plagioclases.

Source of Data for Calculations

The five plagioclases for which powder patterns have been calculated include low and high albite, Ano (Ribbe, Megaw, and Taylor, 1968); oligoclase, An29 (Colville and Ribbe, 1966); bytownite "body-centered anorthite," An₈₀ (Fleet, Chandrasekhar, and Megaw, 1966); and anorthite, An100 (Kempster, Megaw, and Radoslovich, 1961). Results of calculations for transitional anorthite, Angg (Ribbe and Megaw, 1963) are not tabulated because of their similarity to those of anorthite; however, a calculated pattern is displayed for comparison. The chief difference in the two structures lies in the presence of sharp, very weak "d" reflections, and sharp, medium strong "c" reflections in anorthite. A resumé of pertinent parameters is given in Table 1. Minor K, Na, and Ca were generally ignored in the structural refinements and, as a consequence, the albites and anorthite were treated as pure NaAlSi₃O₈ and CaAl₂Si₂O₈, respectively, in results of calculations presented here. A random distribution was assumed on the Na/Ca sites for oligoclase and bytownite. All data were derived from three-dimensional structure analyses.

CALCULATIONS

The calculated intensities and spacings tabulated in Tables 2–7 were calculated from Smith's (1967, 1968) program for calculating powder diffraction patterns. Required input data include unit-cell dimensions, space group, atomic coordinates including site occupancy, temperature factors, and atomic scattering factors. If absorption corrections appropriate to the shape of the shape (in this case a cylinder or flat plate) are to be applied, linear absorption coefficients or density, atomic weights, and mass absorption coefficients are also needed. After a temperature-corrected $|F|^2$ is calculated, multiplicity, Lorentz-polarization corrections, and absorption factors are applied to give an integrated intensity for each *hkl* reflection permitted by the space group.

The decision to calculate structure factors rather than use published values of $|F_{obs}|$ or $|F_{cale}|$ is in consideration of the voluminous amount of input and attendant errors that are thereby eliminated. Agreement between $|F_{cale}|$ generated by the program and $|F_{cale}|$ published by the original researchers is a convenient check on the accuracy of the input used to generate the calculated powder intensities.

The calculated integrated intensity (I_{INT}) is directly proportional to the total energy per unit time for each diffraction event, and is independent of instrumental errors and

Va Comj	riety position	Low Albite Ab _{98,5} An _{0,5} - Or _{1,3}	High Albite Ab _{\$7.7} An _{0.7} - Or _{1.6}	$\begin{array}{c} { m Oligoclase} \\ { m Ab_{69}An_{29}} \\ { m Or_2} \end{array}$	Bytownite ~Ab ₂₀ An ₈₀	Anorthite ~Ab ₀ An ₁₀₀
Se	ource	Ramona, Calif.	Amelia, Va. (Inverted from low form)	Mitchell Co., N. C.	St. Louis Co., Minn.	Monte Somma, Italy
a (Å)		8.138	8.149	8.169	8.178	8.1768
b		12.789	12.880	12.851	12.870	12.8768
С		7.156	7.106	7.124	14.187	14.1690
α (deg)	94.33°	93.37°	93.63°	93.50°	93.17°
β		116.57°	116.30°	116.40°	115.90°	115.85°
γ		87.65°	90.28°	89.46°	90.63°	91.22°
Space gro	oup	$C\overline{1}$	CI	$C\overline{1}$	IĪ	PI
Site occu	pancy (%	Si)				
	(0000)	Oa	72ª	35	100	100
75.70)	(00i0)				100	100
$1_1(0)$	(0z00)	0	72	35	6	0
	(0zi0)				0	0
	(m000)	100	75	81	13	0
Tr (m)	(m0i0)				13	0
$1_1(m)$	(mz00)	100	75	81	100	100
	(mzi0)				100	100 ^b
	(0000)	100	78	79	30	0
$T = \langle 0 \rangle$	(00i0)				13	0
12(0)	(0z00)	100	78	79	100	100
	(0zi0)				100	100
	(m000)	100	75	81	100	100
T (m)	(m0i0)				90	100 ^b
12(11)	(mz00)	100	75	81	13	0
	(mzi0)				13	0
R		0.068	0.082	0.069	0.118	0.111
Referenc	e	Ribbe et al.	Ribbe et al.	Colville &	Fleet et al.	Kempster
		(1968)	(1968)	Ribbe	(1966)	et al. (1962);
		Ferguson	Ferguson	(1966)		Megaw et al.
		et al. (1958)	et al. (1958)			(1962); Cole
						et al. (1951)

TABLE 1. DESCRIPTION OF PLAGIOCLASES

^a Ribbe, personal communication, 1968.

^b These sites are reported to contain 10% Al (Megaw *et al.*, 1962, p. 1023), but because strain effects can limit the accuracy of apparent site occupancy to $\pm 5\%$, for simplicity these sites are considered to be 100% Si in subsequent calculations (Fleet *et al.* (1966) p. 797).

other abberations. The peak intensity $(I_{\rm P})$, on the other hand, is not so easily interpreted because it is sensitive to the real dispersion of the diffracted waves producing the maximum.

 2θ (INT) 2θ (P) hk Ø 20(INT) 20(P) d hke IINT I_{P} d I_{INT} I_P 1,825 043 5 13 86 6.387 001 7 49.97 49.98 9 1,824 062 7 6.376 50,00 13 89 020 4 13.88 9 13.96 6.343 110 3 50,13 50.13 1_820 400 12 9 5 14.06 6.299 110 3 50.63 50.64 1.803 113 9 1,784 204 2010 14,99 14.99 5.912 111 4 2 51.21 51.21 15.88 15.88 5,581 111 4 3 52.16 1.753 420 2 3 52.18 52.19 1.753 224 4 22.07 22 07 4.027 201 93 61 442 4 23,08 23.08 3.854 111 15 11 52.54 52.54 1.742 7 242 3 53.21 1.721 23.56 23.56 3.777 111 39 26 24.16 24,18 3.684 130 2221 53.28 1 719 062 3 133 3 6 ī31 53.32 53.32 1.718 24.26 3.668 16 24.32 34 441 2 24.33 3.658 ī30 42 53.35 1 717 1.717 262 4 25.41 25.41 3.505 112 15 10 53.35 1.685 224 4 2 25,57 25.57 3,483 221 6 5 54.44 54.44 242 3 3.370 112 1610 55.09 55,09 1 667 4 26.44 26.44 080 2 2 57.84 57.84 1.594 27.76 27.76 3.214 202 7258 4 27.94] 3.194 002 100) 58,18 1 586 353 58.20 3 1.585 424 3 58.20 27.99 27,96 3,188 040 66100 1,573 024 4 58 70l 28.13 3,172 220 37 -8 58.70 58 80 1,570 081 3 28.34 28.34 3.150 220 39 30 3 59.23 59.23 1,560 351 3 30,14 2,965 131 25 30.14 20 424 2 2 60.41 60,46 1,532 30.23 2 956 222 16 022 61.50 61,48 1.508 281 4 3 2 931 30,49 30.52 19 533 5 30,53 2,928 041 18 61.77 61.78 1.502 3 31.25 2,862 9 63.53 63.52 1,464 280 7 5 31.25 131 15 1.458 063 6 31.50 31.50 2.840 132 4 3 63.83 63.94 4 5 280 34.00 2.637 132 7 63.95 1.456 34,00 11 461 2 35.03 35.03 2.562 241 21 12 64.93 64.94 1.436 6 35.38 35.38 2.537 $\bar{3}\bar{1}2$ 3 2 65.20 65,20 1.431 262 6 4 **4**62 $2\bar{2}1$ 2 65.401 1.427 5] 35.98 35.98 2,496 3 243 36,81 36.82 2.442 241 15 9 65.48 65.42 1.425 4 4 151 65.60) 1,423 514 36.98 36.96 2.4316 5 2 37.35 2.408 240 5 66.07 66.06 1.414 114 4 37.36 4 534 37,46 2,401 150 3 67.13 67.16 1.394 4 3 67.44 1,389 190 37.66] 2 388 240 3] 2 67.46 3 310 2 67.49 1.388 460 37.68 37,68 2.387 3 134 3 37.80 310 3 67.90 67,90 1.380 4 2 380 243 3 331 68.06 68.04 1.377 3 2 319 12 7 38.83 38.83 405 4 39.59 39.59 2.276 113 3 2 68.57 68,37 1,372 2 40.17 40,18 2.244 331 3 2 68.92 68,92 1.362 425 4 2 1 352 192 5) 41.27 2,187 042 3 69.51) 41.30 5 6 1.352 602 6 41.51 2.186 151 5 69.55 69.54 1.348 115 4 42.53 42.53 2.125 060 12 7 69.74 1,344 7 3 42.73 42.73 2.116 151 5 5 70.00 69,98 402 622 2 313 70,73 70,73 1.332 2 43.32 43.32 2.088 2 2 43.58 43.58 2,077 241 8 4 70.97 70.97 1.328 135 4 3 74.00 74.00 1.281 482 5 3 44.54 44.54 2.034 241 3 3 282 5 4 45.33 45.34 2.001 **4**01 3 2 74.85 74.84 1.268 2 1.256 535 1.979 061 3 75.76 75.74 3 45.85 45-84 4 3 47,16 47,16 1.927 222 4 2 77.98 77,98 1 225 282 5 1.221 482 4 2 422 127 78.31 78.30 48.05 48,06 1.893 2 1.213 600 4 48,16 1.889 351 3 78,91 78.91 48.16 8 2 316 48,19 1.888 222 9 81.93 81.96 1.176 3 353 2 2 49,28 49.28 1.849 403 13 7 82.93 82.93 1,164 260 4 85.39 1,137 640 2 49.49 49,49 1.842 4 85.40 1 1,136 194 2 49.83 1.830 113 2 85.43

9

85.97

85.90

8

3

2

640

1.131

TABLE 2. CALCULATED POWDER DATA FOR LOW ALBITE (Ano)

49,98

1.829

260

49.86

Table 3. Calculated Powder Data for High Albite (An_0)

20 (INT)	20(P)	d	hkl	INT	1P	20 (INT) 20(P)	d	hkl	IINT	I P
13.74)		6.445	ī10	9)		50,13	49.96	1,820	260	5	11
13.78 \$	13,76	6.425	020	10 \$	16	50.86 }	50 '00	1.795	170	3)	7
13,93	13,93	6,356	001	4		50.91	50,50	1.794	113	81	,
15.22	15,22	5,822	111	6	6	51.53	51,53	1,773	204	21	14
15_69	15,70	5.648	111	6	5	52,42	52,42	1,745	242	5	5
22_04	22.04	4.032	201	100	84	52,60	52.60	1.740	420	3	3
22,90	22,90	3,884	111	23	20	52.73	52.70	1.736	224	3	3
23.71)	22 72	3,752	130	45)		53.18	53.18	1.722	062	3	3
23.73	40.14	3,750	111	30	61	53 42)		1 715	441	31	U.
24,46)	04 40	3,639	130	30 1		53 55	53,54	1 711	112	6	5
24.56	24,40	3,625	131	9	28	53 79	53 76	1 704	ā42	3	3
25,66	25,66	3.472	112	9	8	55.67	55.67	1.651	242	4	3
26.08	26.04	3,422	221	2	3	57 12	57 19	1,612	359	4	2
26,46	26.46	3.368	112	18	15	58 92	58 00	1 569	024	7	2
27.68)		3.223	220	43)	10	60.10	60.10	1,540	251	2	0
27.77	27 84	3 212	040	68	100	61 17	00.10	1,340	331	3	3
27.86		3 203	202	00	100	01.11	01,17	1,515	244	2	4
28.08	28.09	2 170	202	100	0.0	62.10	62.10	1,495	281	5	4
20.00	20.00	3.170	002	100	88	62,33	62,33	1.490	280	6	5
20.04	48.04	3,127	220	35	30	62.69	62,69	1.482	533	4	4
29.04	29,62	3.016	131	18	14	62,93	62.93	1.477	461	5	6
30.51	30.31	2,949	041	22	19	63.28	63.26	1,470	533	2	3
30,52	30.52	2,929	022	16	15	63,52	63,52	1.465	462	2	3
30,71	30,70	2,911	222	10	10	63,87	63.87	1.457	063	5	4
31.56	31.56	2.835	131	21	17	64.15	64,15	1.452	280	5	3
31.79	31,79	2.815	132	6	6	64.84	64,84	1,438	243	4	3
33,73	33.73	2,656	Ī32	10	7	65.41	65.41	1.427	514	3	2
35,45		2,532	221	2		65.89	65,90	1,418	262	3	3
35.65	25 00	2,518	$\bar{2}\bar{4}1$	24		66.43	66 43	1.407	264	2)	3
35.68	33*99	2,516	312	3	23	66,43	00,10	1,407	114	25	9
35,69		2,515	112	3)		67.25	67 28	1.392	190	3	2
35.82	35,80	2.507	$\bar{2}41$	16		67.32	01,50	1,391	441	2 \$	2
36.61	36.61	2,455	240	3	4	67.78]		1.382	191	2	
36,91	36.91	2,435	221	3	3	67.80	67.80	1,382	463	3	5
37.20	37,20	2,417	151	3	3	67.82		1.382	134	5	
37.37	37,37	2.407	310	3	3	68,12	68,12	1,376	534	3	3
37.86)	37 94	2.376	310	31	c	68,69)		1.366	243	21	
37.95	01.01	2,371	240	7 \$	0	68.72	68.72	1.366	460	2	5
38.22	38,22	2,354	151	2	2	68.73		1.366	405	4	
39.16	39,16	2,300	331	5	4	69.35)		1.355	602	6 /	8
39,52	39,52	2,280	331	7	6	69.50	69,38	1 352	192	5	ā
39.75	39,75	2.268	113	4	3	69.72)		1 349	425	21	
42.19	42,19	2.142	060	11	8	69.91	69.90	1 346	402	7	4
42,63	42.63	2,121	241	12	10	70.15	00,00	1 342	115	3	.00
43.01	43.01	2,103	151	5	4	71.45	71 44	1 320	125	2	3
43.21	43.20	2.093	312	3	2	73 20	73 20	1.020	100	0	3
44.96	44 96	2.016	402	3	2	75.50	75 59	1.291	402	0 E	4
45.18	45 18	2.007	100	2	0	75.01	10.02	1,259	482	5	4
45 61	45 61	1 000	101	5	3	15.91	75,92	1,253	482	3	3
46 72	46.00	1,049	001	5	5	75,94)		1,253	642	2)	
47 10 }	*0.00	1.0942	400	4	3	76,85	76.84	1,240	535	2	2
47 20	47,32	1,926*	422	3 {	7	76.89)		1.240	083	1)	
41.32)		1,921	422	9)		78,56		1.217	442	1	
48.52	48.54	1.876	260	6	8	78,62	78.68	1.217	600	4	4
48.56)		1,875	222	7 (78.73		1.215	282	4	
49.35	49,35	1.847	403	11	8	82,35 }	82.40	1.171	316	2	2
49.69	49,70	1,835	062	4	4	82.41	52,10	1,170	084	2 1	
49,89		1,828	113	3		83.87]	83 88	1,154	353	2]	2
49.92	49.96	1.827	043	3 }	11	84.07	00,00	1,151	640	2	
49.97 1		1.825	400	11							

θ (INT)	2 <i>θ</i> (P)	d	hkl	I _{INT}	^{I}P	2θ (INT)	20(P)	d	hkl	I _{INT}	Ip
3.81	13.82	6,412	ī10	6	5	49.87		1.829	260	5]	
5.13	15,13	5,856	111	4	2	49.94	49,86	1_826	043	3	11
8.98	18.98	4.675	021	3	2	50.12		1,820	262	3]	
1.99	21,99	4,042	201	93	52	50.78	50,78	1,798	113	10	5
2.93	22.93	3.879	111	17	10	51.41	51.41	1.777	204	24	10
3.64	23.64	3.763	111	31	19	52,55)	50 50	1.741	$\bar{2}\bar{2}4$	4 1	4
3 89	23 89	3.725	130	41	24	52.63	52.00	1.739	242	5 1	
4 34		3.657	130	29)		53.11		1.724	442	8)	
4.45	24.34	3 640	131	12	18	53.17	53,14	1.723	062	3	- 10
5 60	25 59	3 483	112	13	8	53 75	53 78	1.705	4 41	3	2
5.00	20.00	0.440	001	5	0	52.96	53.86	1 702	441	2	2
5,83	20,83	3.449	710	00	19	53.00	54.00	1 695	ā42	4	2
6.44	26,44	3.371	112	44	14	54.05	54.03	1.005	594	4	3
7.78		3,211	202	87		54.44	54.44	1.000	049	- -	1
7.83	27.82	3.206	220	46	100	55.40	55,40	1,658	242	- -	2
7,83		3.206	040	67 J		57.38	57.38	1.606	303	0	1
8.03	28,03	3,184	002	100	64	58,50	58,56	1,578	511	2	2
8.34	28.34	3,149	220	40	25	58.59		1.575	424	3)
9.77	29.77	3.001	131	23	12	58.84	58.84	1.569	024	3	2
0.38	30.38	2,942	041	23	15	59.71	59,71	1,549	351	3	1
0.51 1	30,52	2.929	022	16	18	60,08	60,10	1,540	424	2	1
0.53		2.928	222	14	<u> </u>	61.87	61.86	1.500	281	5	3
31.42	31.42	2,847	131	20	10	62.24	62.24	1.492	533	5	3
1.70	31.70	2,823	132	5	4	62.81	62,81	1,480	280	6	3
3,80	33,80	2.651	132	13	7	63.44	63 44	1.466	461	6	4
5.41		2,535	241	26	1	63,44	00.41	1_466	533	3	5
5.50	0.5 40	2,529	312	5	14	63,81		1.459	063	5	1
15.56	35,42	2.524	221	3	14	63,90	63,88	1,457	280	5	4
5 68		2.516	112	3		63.99		1.455	462	5	
80.85	36.08	2.489	241	17	. 9	64.99	64.99	1.435	243	3	2
36 72	36 74	2 447	221	3	2	65.32	65.32	1.429	514	4	2
26.90	36 90	2 436	240	3	3	65.58	65.56	1.423	262	4	2
07 19	27 19	2 422	161	4	3	66 27	66.26	1.410	114	2	2
07.00	37 14	0.405	210		2	67 20	67 20	1.303	190	3	2
07.00	01.08	2,405	210	2		67 67	67 70	1 384	534	5	3
37.69	37.70	2.380	310	3	4	07.07	01,10	1 202	124	5	9
37.70 1	00.01	2.385	240	0	2	01.04	01.00	1 971	243	3	1
39.21	39.21	2,298	331	0	(9)	00.40	68.52	1 960	105	5	8 3
39-39	39,38	2,288	331	5	3	68.54	60.10	1,309	203	0	8.7
39.68	39,68	2,271	113	3	4	69.16	69.10	1.300	10-2	0	8
40.77	40.76	2,213	151	3	2	69.39	69.48	1.354	420	4	83
\$1.82	41.82	2.160	223	3	3	69.50	1	1,352	192	6	{
12.29	42.29	2.137	060	10	-6	69.77	69.78	1.348	402	7	1
12.88	42.88	2.109	151	7	1 8	70.00)	1.344	115	4	1
42.89		2.109	241	12	1	71,02	71.04	1.327	553	3	1
43.18	43,16	2.095	313	4	3	71,30	71,30	1,323	135	4	1
44.84	44.86	2_021	402	3	3	73,76	73.76	1.285	282	4	2
45.08	45.08	2.011	401	3	2	74.92	74,92	1.267	482	5	
\$5.66	45.66	1,987	061	4	3	76.11	76.14	1,251	643	3	4
46.85	46.86	1,939	222	3	3	76,27	76,26	1,248	642	3	2
47.41	47.41	1.917	422	13	6	76,55	76.55	1.245	482	4	
48.37	48.37	1.882	222	8	4	78,39	79 10	1,220	282	4	1
48.91	48,91	1.862	260	6	4	78,44	10 42	1.219	600	3	5
49.21	49.21	1.852	4 03	11	5	79.22	79.18	1.209	355	3	5 I
		1 001	062	5	1	0.0 17	82 17	1.173	316	3	
49.79		1 24 4 1	A 4 5 6 6			02.12					
49.79	49.86	1,831	400	19	11	84 40	84 44	1,149	640	2 2	

TABLE 4. CALCULATED POWDER DATA FOR OLIGOCLASE (An_{29})

2θ (INT)	20(P)	d	hkl	I _{INT}	^{I}P	2 <i>θ</i> (INT) 20(P)	d	hk.ℓ	I _{INT}	г _р
12.94	12,94	6,839	ĪĪ1	2	2	42,68	42,66	2.118	134	2	3
13.63	13,63	6,498	I 10	9	9	42,96	42.98	2.105	136	4	4
13.80	13.80	6.417	020	91	0	43,12	43.12	2,098	152	5	5
13.92)	10,00	6.364	002	45	5	43,29	43,28	2.090	316	4	4
15.25	15,25	5,809	112	10	8	44.86}		2,020	404	3]	
15.71	15.71	5.640	112	5	5	44.87	44.88	2.020	154	7	8
17.65	17.65	5.026	121	2	2	44,95		2.017	4 02	5	
18.90	18.90	4.694	022	2	1	45,26	45.24	2.004	312	3	3
20.36	20.36	4.361	022	2	2	45.73	45.73	1,984	062	2	2
22.00	22.00	4.041	202	100	82	46.11	46.10	1,968	312	2	3
22.73	22.73	3.913	112	31	26	46,41	46.41	1,956	224	2	2
23.61	23.64	3.767	130	29	48	46,91	46.91	1.937	246	4	4
23.66		3.761	112	37		47.16	47.16	1,927	424	2	8
24.22	24,22	3,675	200	3	4	47.16		1.927	424	10	
24.51	24.51	3.631	130	23	20	48.36	48.38	1.882	352	2	7
24.61		3,618	132	5		48.41		1,880	224	6]	
25.69	25,69	3.468	114	3	3	49.17	49,37	1.853	352	2	в
26,52	26,52	3,360	114	8	7	49.37		1_846	406	11	
27.45	27.45	3,249	220	29	27	49,57		1.839	064	2	
27.80	27,82	3,209	040	84	93	49.61	49.60	1.838	400	11	10
27,91	27.91	3.197	204	86	100	49.66		1.836	116	2 J	
28.04	28.04	3,181	004	86	85	50.25	50.25	1_816	260	6	4
28,49	28.49	3.132	220	23	21	50.45	50,43	1.809	264	2	3
29.42	29,42	3.036	132	12	10	50.78	50.78	1,798	116	8	8
30,26	30,26	2.954	042	17	15	50.81		1.797	170	4	
30,43	30,43	2,938	024	16	14	51.12	51,16	1.787	420	2	3
30.78	30,78	2,905	224	9	7	51.33	51.33	1,780	172	2	3
31,59	31.59	2.832	132	7	5	51.64	51.64	1,770	208	18	11
31,81	31,81	2,813	134	4	4	52.00	52.00	1.759	244	8	6
32,10	32,12	2.788	221	1	2	52.33		1.748	264	1	
33,06	33,06	2,709	202	2	1	52.37	52.38	1.747	420	2	4
33,84	33,84	2.649	134	4	3	52.42		1.745	172	13	
35.14	35,14	2.554	222	3	3	52,80	52,80	1.734	228	3	4
35.73	35.73	2.513	242	2	19	52.81		1.734	136	2	
35.73		2.513	242	7]		53,33	53.33	1.718	064	3	3
35.91	35,88	2,501	314	9	10	53,60	53,60	1.710	444	7	9
36.38	36,38	2,469	240	8	10	53.61		1.710	444	6 }	
36.53		2,459	114	13		54.62	54.62	1.680	228	3	2
36.59	36,56	2.456	150	12	17	55.64	55.64	1.652	244	6	3
36.801		2,442	222	2]		56.58	56.58	1.627	338	1	2
37.26	37,26	2,413	152	5	4	57,10	57.04	1.615	446	1	1
37.60	37.60	2.392	150	9	7	57.44	57.44	1.604	080	3	-2
38.00	38.00	2,368	240	13	9	57,97	57,97	1.591	008	1	1
38.35	38,35	2,347	044	2	3	58,27	58,27	1.583	082	2	2
38.69	38.69	2.327	315	1	2	58.76	58,76	1.571	028	2	2
38,95	39.00	2,312	362	3	5	59.03	59.03	1 564	428	2	2
39,03		2.308	244	4		60.26	60.10	1.536	266	1	2
39.53	39153	2.280	332	12	9	61.34	61,36	1.511	248	3	13
39,81	39.81	2.264	116	10	8	62.14		1_494	280	3	Lan-1
40.43	40.43	2.230	226	2	2	62.26	62=26	1_491	282	5	D
40.56	40,54	2,224	244	2	2	62.32J		1_490	176	1.1	
41.40	41,40	2,181	334	3	3	62.56	62.56	1_485	462	4	3
41.92	41.94	2.155	226	2	3	62.72	62.72	1-481	536	3	3
42,25	42.28	2.139	060	6	19	62_94		1.477	084	1]	
42.29		2_{-137}	242	24		63.32	63.32	1.469	464	1	4
						64,04	64.04	1.454	066	3	3
						64.33	64.34	1 448	280	2	3
						64.35		1.448	246	3	

Table 5. Calculated Powder Data for Bytownite (An_{80})

TABLE 6. CALCULATED POWDER DATA FOR ANORTHITE (An100)

2θ (INT)	20(P)	d	hk <i>l</i>	I _{INT}	1 _p	20(INT)	20(P)	d	hkℓ	I _{INT}	I _P
13.01	13.01	6.807	ĨĪ1	9	8	45.22	45.20	2.005	312	3	4
13,58	13.58	6.522	110	10	8	45.54	45.54	1,992	136	3	3
13.79	13.79	6.420	020	4	4	45,69	45.68	1,986	062	4	4
17.33	17.32	5,118	111	3	2	46.16	46.14	1,966	312	3	4
17.73	17.73	5,002	121	2	1	46,38	46.38	1,958	224	3	3
18,92	18,92	4,690	022	17	14	47.04	47.04	1,932	424	11	9
20,95	20.95	4,240	003	2	2	47.32	47.32	1.921	424	5	4
22.01	22.01	4.039	202	58	48	48.10	48.10	1,892	352	2	4
22.71	22,71	3,916	112	13	11	48.11)		1.891	260	4.	
23.52	23,52	3,783	130	30 (28	48,47	48,47	1,878	224	9	7
23.62)		3,767	131	5)		49.27		1,849	353	2	
23,69	23.68	3,756	112	17	19	49.39	49.42	1.845	246	2	12
24.59	24.60	3.620	130	38 }	33	49.41		1.845	406	11]	
24.71)		3.603	132	13)		49.61		1.838	064	3	
25.37	25.37	3,510	132	4	4	49.62	49.62	1.837	400	18	16
25.63	25,76	$3_{+}476$	131	4]	14	49.69		1,835	116	4]	
25.75)		3.459	114	15)		50,42	50,44	1,810	260	5	5
26,18	26,18	3_403	222	7	7	50_67	50,68	1.802	264	5	8
26.51	26.51	3.362	114	31	25	50,68		1.801	170	4)	
27.35	27.35	3_261	220	64	52	50.81	50.81	1.797	116	10	9
27.79	27.79	3.210	040	53	63	51_69	51,69	1.768	208	26	17
27,93	27.93	3,194	204	100	100	51,91	51.88	1.761	244	8	8
28.06	28.06	3,180	004	93	91	52.27	52.26	1.750	172	3	4
28.59	28,59	3.122	220	49	39	52,58	52.52	1.742	154	3	4
29,36	29.36	3.042	132	23	18	52.67		1.738	262	3	
30.27	30,27	2.952	042	33-	27	52.92	52.82	1.733	442	4	6
30,46	30,46	2,934	024	20	19	52.93		1.730	228	3 1	
30,91	30,92	2,893	224	8	8	53.28		1,719	064	4	
31.64	31.64	2,828	132	27	20	53,35	53.34	1.717	444	4	7
31,92	31,92	2,804	134	11	9	53,48 J		1.713	046	3)	0
33.76	33.76	2,655	134	18	14	53,87	53,88	1,702	444	6	-5
35.07	35.07	2,559	222	5	6	54,59	54,58	1.681	228	5	4
35.50	35,54	2,529	114	7	20	55,73	55,73	1 649	244	3	4
35.55)		2.525	242	22)		56,94	56.94	1.617	355	0	
35,79	35,90	2,509	314	4	28	57.41	57.38	1_605	080	3	9
35.91)		2,501	242	37)		58.83	58.83	1.570	028	3	04) 19
36.88	36.88	2,437	222	5	6	59.35	59.32	1.007	334	0	
37.01)	0.0	2,429	310	3)		59,61	29.01	1.551	319	3	3
36,37	31.31	2.400	152	2	4	60.09	0. 9.0	1.540	428	2	
30 19 }	31,12	2,304	150	0 0	4	00.22	00.20	1,007	259	4	1.4
20 14	38.14	2,300	240		5	60.01		1 521	264	2 1	
38 77	38 79	2,000	240	3) 0	0	61.04		1.519	028	2	
30.75	30 75	2,020	152	3	2	61.05	61.06	1.519	110	2	4
20.71)	00,20	2.200	222	5	3	61.00		1.517	504	2	1
39 89 1	39.72	2.210	116	5	7	61.93		1.514	2/2	2	
40.28		2 230	152	5		61 90	61 90	1 499	240	- 7	5
40 39	40.28	2 2 3 3	244	2	4	62.22	62.22	1 409	462	7	6
41.85	41.85	2,159	226	3) 4	4	62 47	90.00	1 497	289	6	Ĭ
42 16	41.00	2 143	2.40	10	*	62 /0	62,48	1 496	324	9	6
42.23	42.18	2 140	060	10	17	62 94 1		1 477	536	3	1
42.69	42 69	2 119	225	3	4	62.97		1 476	0.84	2	
43 17	43 17	2,110	159	3	4	62 07	62.96	1.476	464	6	10
42.20	43.17	2.090	0.7 5	14	10	62 00		1,410	104	0	
44 75	44 75	2.007	164	а 9	0	02,90		1.477	200	-1	
14 90)	44.(5	2,020	104	3	3	04.99	64.00	1,470	032	1	
44 96	44.94	2,019	404	5	5	64.00	64.00	1.405	276	3	2
74,30)		4.010	402	5 }		64.30	04.30	1,449	240	4	0
						64.51	64.51	1.444	280	3	3

20 (INT)	d	hkl	IINT	20 (INT)	đ	hkl	$I_{\rm INT}$
6.95	12.718	001	0.6	29.17	3.061	041	1.1
13.01	6.807	111	9.0	30.60	2.921	221	0.6
15.00	5.904	021	1.2	30.96	2.889	140	0.6
15.10	5.869	012	0.6	32.10	2.781	221	2.1
15.90	5.573	021	0.7	32.90	2.723	$\overline{2}05$	1.8
17.33	5.118	$1\overline{1}1$	2.6	33.79	2.653	043	1.7
19.32	4.594	122	1.1	34.23	2.620	133	0.6
19.96	4.448	113	1.1	35.11	2.556	311	2.1
20.58	4.316	113	0.7	35.28	2.544	005	0.5
20.95	4.240	003	2.4	35.29	2.543	$\overline{225}$	1.8
23.42	3.798	I 31	0.8	36.34	2.472	$\overline{2}25$	1.4
23.62	3.767	131	5.0	36.83	2.440	151	1.3
24.12	3.689	203	1.5	36.90	2.436	243	0.6
24.31	3.661	023	0.9	37.73	2.384	$1\overline{5}1$	1.1
25.63	3.476	131	4.4	38.78	2.322	$\overline{315}$	1.5
26.00	3.426	023	1.2	39.01	2.301	025	1.9
27.42	3.253	131	0.6	39.25	2.295	153	2.7
27.63	3.229	133	1.5	39.51	2.280	331	0.9
27.75	3.215	223	1.0	39.72	2.269	333	0.8
28.88	3.092	113	0.7				

TABLE 7. "c" AND "d" REFLECTIONS IN ANORTHITE (An100)

Thus, profiles of observed peaks are convolutions of the X-ray spectral distribution and are strongly influenced by instrumental aberrations, sample alignment, and effects that relate to particle size, strain and homogeneity of the sample. Thus, the calculated peak intensities reflect assumptions that have been made concerning the shape of the diffraction maxima as well as overlap of adjacent maxima. They are: (1) the diffraction maxima from both $K\alpha_1$ and $K\alpha_2$ have Cauchy profiles; (2) the width of the profile at half maximum is dependent on the diffraction angle and can be estimated without evaluating the individual factors mentioned above which influence it: (3) adjacent maxima will overlap to produce a single I_P when separated by less than one half-width.

The relation of half-width to 2θ in (2) is based on empirical data from α -Al₂O₃ and Si. The data were measured on diffractometer traces of uncemented powders in standard holders, using a Norelco wide-angle goniometer over the whole 2θ range (1/4° 2θ .min scan using a pulse-height analyzer, 1° divergent and scattering slits and 0.003 in. receiving slits). The half-widths recorded on Al₂O₃ and Si are more narrow (0.10° at $2\theta = 40^{\circ}$) than recorded in plagioclase scanned under similar conditions (0.10–0.16° at $2\theta = 40^{\circ}$). This is due in large part to the greater compositional variation in samples of natural silicates. The I_P data of Tables 2–7 are based on the half-width versus 2θ function determined on Al₂O₃ and Si extrapolated to a half-width of 0.16° at $40^{\circ} 2\theta$.

The intensities I_{INT} and I_P (Tables 2–7) are directly related to intensities obtained from diffractometry which utilizes flat samples and thus eliminates absorption corrections for materials with moderate absorption. Use of cylindrical samples in Debye-Scherrer cameras requires an absorption correction; and within the angular range reported, the resultant I_{INT} and I_P differ so slightly from those tabulated for flat samples (see Table 8) that they have not been included in Table 2–7. In general, absorption in cylindrical mounts causes the front reflection to be relatively weaker than the back reflection region, the effect bring pronounced in compounds containing the heavier elements.

hkl	$2\theta \operatorname{CuK}_{\alpha}(\operatorname{deg})$	$I_{\rm INT}(F)$	$I_{\rm INT}(C)$
111	13.01	9.0	7.9
202	22.01	58.3	54.9
$\overline{2}04$	27.93	100.0	100.0
152	43.17	14.0	16.7
066	64.00	8.8	13.5

TABLE 8. EXAMPLES OF INTEGRATED INTENSITIES IN ANORTHITE FOR CYLINDRICAL (C) and FLAT SAMPLES (F)

In the case of calculated integrated intensities $(I_{\rm INT})$, the strongest peak was set to 100 (002 for albite and oligoclase; $\overline{2}02$ and $\overline{2}04$ for bytownite and anorthite, respectively). Peak intensities $(I_{\rm P})$, graphically displayed in Figures 1–4 and also included in Tables 2–6, are scaled to the maximum observed which was set at 100.

In view of the relatively narrow spectra of spacings, normally measured and indexed in these complex powder patterns, an unresolved $CuK\alpha$ radiation was used in the computations. The total number of reflections that could be calculated was limited by the code to 1000, thus restricting the maximum 20 angle to 87° for C-centered cells and to 65° for primitive and body-centered cells. However, in consideration of space limitations, only those *hkl* reflections whose calculated integrated

FIG. 1. Powder patterns at low albite, $CrK\alpha$. (a) Calculated pattern of Ramona albite, (b) measured pattern of Amelia albite by William Parrish, Phillips Laboratories. Peaks marked "O" are due to impurities. (40 kVp/20mA, 10° take-off angle on point source, vacuum diffractometer, $\frac{10}{2}$ /min, time const=2 sec, $2-\frac{10}{2}$ angular aperature, 0.006 in. (0.05°) receiving slit, specimen rotated in its own plane.)

FIG. 2. Powder patterns of oligoclase, An₂₉, Mitchell Co., N.C., CuK α . (a) Calculated pattern, (b) measured pattern by D. B. Stewart, U.S.G.S. F=fluorite. (45kVp/20mA, 1° /min, time const=4 sec, 1° divergent and anti-scatter slits, 0.006 in. receiving slit, pulse height analyzer.)

intensities met the following criteria were included in Tables 2-6:¹ $100I_{hkl}/I_{202} \ge 2.4$ (albite and oligoclase); $100I_{hkl}/I_{202} \ge 1.4$ (bytownite); and $100I_{hkl}/I_{204} \ge 2.4$ for $2\theta = 0^{\circ}-60^{\circ}$ and ≥ 1.4 for $2\theta = 61^{\circ}-65^{\circ}$ (anor-thite). In consideration of the importance of weak "c" reflections (h+k, even; l, odd) in distinguishing anorthite and transitional anorthite, a separate Table 7 lists "c" and "d" reflections (h+k, even; l odd and h+k,

FIG. 3. Powder patterns of synthetic transitional anorthite, An₁₀₀, ANS-26 (Stewart, 1967, p. 50), CuK α . (a) Calculated pattern, (b) measured pattern by D. B. Stewart, U.S.G.S. F=fluorite. (Experimental conditions as in Fig. 2b.)

¹ 20 receive unabridged Tables 2–6, order NAPS Document-00038 from ASIS National Auxiliary Publications Service, c/o CCM Information Sciences, Inc., 22 West 34th Street, New York, N. Y. 10001; remitting \$2.00 for microfiche or \$6.00 for photocopies. odd; *l*, even respectively) for anorthite. Most are too weak to be included in Table 6. Criterion for inclusion in Table 7 is $100I_{hkl}/I_{204} > 0.05$ and $2\theta < 40^{\circ}$.

Results and Conclusions

Calculated diffractometer traces are juxtaposed with real diffractometer traces in Figures 1-4 to illustrate their generally good agreement. Except for Figure 1, real traces are measured on smear mounts; no effort was made to eliminate preferred orientation in any of the four.

The calculated traces in Figures 1–4 are based on an assumed halfwidth at 40° 2θ of 0.12–0.13° which is smaller than that used to calculate

FIG. 4. Powder patterns of synthetic anorthite, An_{100} , ANS-305 (Stewart, 1967, p. 50), $CuK\alpha$. (a) Calculated pattern, (b) measured pattern by D. B. Stewart. F=fluorite (experimental conditions as in Fig 2b).

the I_P of Tables 2–7 (0.16°). Use of the smaller value was necessary in order to match the good resolution in the real patterns. These are not only of high quality but also include traces from synthetic plagioclases. In contrast to the natural plagioclases, the latter are more uniform in composition and therefore also in unit cell size; as a consequence, line broadening from these sources is not expected. The 0.16° half-width used for calculated I_P in the Tables and Figure 5 is considered to be a better approximation for natural plagioclases. But even use of the large half-width results in plots with resolution that may not be found in natural patterns. For example, in the high albite trace (Fig. 5), resolution of 0 $\overline{41}$, 0 $\overline{22}$, and $\overline{222}$ at $2\theta \sim 30.5$ and 131 and $\overline{132}$ at $2\theta \sim 31.7^{\circ}$ has no counterpart in the measured patterns recorded in Figure 1 (Smith and Yoder, 1956) and Figure 1 (Bambauer *et al.*, 1967). The lack of resolution may reflect incorrect overlap criterion used in the calculated

HIGH ALBITE An₀ Ribbe et al. 1968

LOW ALBITE An₀ Ribbe et al. 1968

OLIGOCLASE An₂₉ Colville and Ribbe 1966

BYTOWNITE An₈₀ Fleet et al. 1966

ANORTHITE An₁₀₀ Kempster et al. 1962

FIG. 5. Portions of calculated powder patterns.

model, which is determined by the half-width chosen, or slight differences in lattice parameters in the various plagioclases used.

The chief differences in the juxtaposed patterns is in the intensities of certain peaks. For example, in real traces of oligoclase, anorthite and transitional anorthite (Figs. 2-4), the $\overline{2}0l$ peaks at $2\theta \cong 22.0^{\circ}$ are low relative to the calculated counterpart. The reasons for these differences are not certainly known, but are believed to be due to a preferred orientation of the particles on the slide mounts because of perfect (001) and (010) cleavages. Under these circumstances, lower intensities of h00, h0l and hkl peaks would be anticipated as well as enhancement of 00l, 0k0 and 0kl. In our experience, peak heights in synthetic materials, more closely resemble the calculated than do those in natural minerals. The observation is in keeping with an initial finer grain size in synthetics, which eliminates the need for further grinding and therefore the production of particles bounded by cleavages.

It is hoped that the calculated integrated and peak intensities presented here will serve as guides to indexing the complex patterns of the plagioclases. If so, the data will have helped to eliminate one important source of error in the process of reducing powder data to meaningful parameters, *vis.*, mis-identification of diffraction maxima.

For indexing complex patterns, we recommend use of the calculated $I_{\rm INT}$ and $I_{\rm P}$ of Tables 2–7 to recognize overlap, and in such cases to assess the likely contribution of each reflection to the observed peak maximum. As is well-known, overlap of a strong and a weak reflection can result in a single peak whose intensity is enhanced as well as skewed off the 2θ value associated with the stronger of the two. In the case where the ratio of the intensities is large, *e.g.* 10:1, the peak can be confidently associated with the *hkl* of the stronger, but if the ratio approaches 1:1 and the reflections do not exactly coincide, the *d* of the peak does not correspond to either reflection. Even in the case of closely spaced, but resolved reflections, the position of each is effected to some extent by proximity of the other. These considerations put a limit on the ultimate accuracy of lattice parameters calculated by least-square refinements of triclinic powder data assuming otherwise ideal conditions.

In resumé, I_P in calculated as well as measured powder patterns must be interpreted with discretion. These intensities are influenced by overlap of maxima and by line-broadening related to minor variations in sample, composition, particle size, instrumental abberations, strain, and sample alignment. In addition, preferred orientation, because of perfect cleavages and dimensional alignment of particles, is a factor that influences I_P . Nonetheless, the data presented here make reasonable allowance for many of these variables, and by doing so simulate natural patterns.

ACKNOWLEDGMENTS

We are grateful to Paul Ribbe, A. Colville, Helen Megaw, and W. H. Taylor for making the results of their structure analyses available before publication. Comment and recommendations by D. B. Stewart and Helen Megaw have greatly improved the lucidity of the text. Finally, we are in debt to D. B. Stewart and W. Parrish for their high-quality diffractometry data on natural plagioclases which were used in the illustrations.

Work performed under the auspices of the U.S. Atomic Energy Commission.

References

- BAMBAUER, H. U., M. CORLETT, E. EBERHARD AND K. VISWANATHAN (1967) Diagrams for the determination of plagioclase using X-ray powder methods. Part III. Schweiz. Mineral. Petrog. Mitt., 47, 333-349.
- COLE, W. F., H. SORUM AND W. H. TAYLOR (1951) The structures of plagioclase feldspars. I. Acta Crystallogr., 4, 20–29.
- COLVILLE, A. A., AND P. H. RIBBE (1966) The crystal structure of oligoclase. (abstr.) Geol. Soc. Amer. Spec. Pap., 101, 41.

FERGUSON, R. B., R. V. TRAILL AND W. H. TAYLOR (1958) The crystal structures of lowtemperature and high-temperature albites. *Acta Crystallogr.*, 11, 331–348.

FLEET, S. G., S. CHANDRASEKHAR, AND HELEN D. MEGAW (1966) The structure of bytownite ('body-centered anorthite'). Acta Crystallogr., 21, 782-801.

KEMPSTER, C. J. E., HELEN D. MEGAW, AND E. W. RADOSLOVICH (1962) The structure of anorthite, CaAl₂Si₂O₈. I. Structure analysis. *Acta Crystallogr.*, 15, 1005–1017).

MEGAW, HELEN D., C. J. E. KEMPSTER, AND E. W. RADOSLOVICH (1962) The structure of anorthite, CaAl₂Si₂O₈. II. Description and discussion. Acta Crystallogr., 15, 1017– 1035.

RIBBE, P. H., AND HELEN D. MEGAW (1963) The structure of transitional anorthite. A comparison with primitive anorthite. Norsk Geol. Tids., 42, 158-167.

, ____, AND W. H. TAYLOR (1968) The albite structure. Acta Crystallogr. (in press).

SMITH, D. K. (1968) Computer simulation of X-ray diffractometer traces. Nordco Rep., 15, 57-65.

- (1967) A revised program for calculating X-ray powder diffraction patterns. Lawrence Rad. Lab. [U. S. Clearinghouse Fed. Sci. Tech. Inform.]UCRL-50264.
- SMITH, J. R., AND H. S. YODER (1956) Variations in X-ray powder diffraction patterns of plagioclase feldspars. Amer. Mineral., 41, 632–647.
- STEWART, D. B. (1967) Four-phase curve in the system CaAl₂Si₂O₈-SiO₂-H₂O between 1 and 10 kb. Schweiz. Mineral. Petrog. Mitt., 47, 35-59.

Manuscript received, December 6, 1967; accepted for publication, March 17, 1968.