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Abstract

Using a detent spindle stage one can determine the optic axial angle, 2V, to a fraction of
a degree and, simultaneously, the spindle settings that correctly orient the crystal's indicatrix
for measurement of refractive indices o, F, I (or e and -). Experimental procedure involves
setting the spindle stage so that the reading ^S on its protractor scale is successively O', 10",
2O',.  . .  180". For each such sett ing.l ,  the microscope stage is rotated unti l  the crystal
becomes extinct. The microscope stage readings M" for which crystal extinction is
observed-namely Mo, Mro, M*, . Mrw-are analyzed by a least-squares computer
techniquo which refines the coordinates for the two optic axes, calculates 22, and locates
the three principal vibration axes with a potential accuracy not routinely available previously.

For an adularia from St. Gotthard, a set of 19 extinction measurements (Mo,M,o,. . . M*),
here called trial (1), plus a second set of 18 extinction measurements (M;, M,u, . . . ML.,),here
called trial (2), observed at wavelengths 433 nm, 566 nm, and 666 nm yielded the following
results:
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666 (1 )  65 .18  86 ,69  86 .11  L7L.49  r43 . t4  r79 .58  53 .42

I3l 2i"2 3i?3 33.i3 ilt.Zt !2tr.3:, ,9.?i 'i\.f.?

where we define .S as the spindle setting that would bring X, Y, or Z into the plane of
the microscope stage, and E as the angle between X, Y, or Z and the spindle axis. Results for
2V" clearly demonstrate dispersion of the optic axes (r )> o). The relatively regular variation
in the average ,S and E angles observed from 433 to 666 mm for X, the acute bisectrix, sug-
gest it undergoes dispersion. The obtuse bisectrix, Z, appearc not to, but Y possibly does. If so,
the adularia must be optically monoclinic. However, the possibility remains that dispersion
ol Z is so small as to be undetectable.

Accuracy of the method decreases to the extent that the crystal happens to be oriented with
a principal axis parallel to the spindle axis. Accuracy increases if a Nakamura plate or Mac6
de Irpinay half-shadow quartz wedge (or similar device) is used to refine extinction measure-
ments,

The method applied here to adularia is applicable to studying anisotropic inclusions within
transparent isotropic materials like glass or diamond. Although errors might be introduced to
the extent that inclusion and host differ in refractive index, the resultant determinations of 2V
and of dispersion of the optic axes help identify the inclusion without damage to the host.

'computer programs written by David Upshaw under the direction of the authors.
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Introduction (none of the three show dispersion). Exceptions to

Using the detent spindle stage of Bloss and Light lltl:t*ll 
the dispersion of x' Y' or Z is too small

(1973) and the cornputer techniques Oevetoped"by to be detectable relative to experimental error'

the writers from the equation of Joel (1966), one
can now determine 2v and locate x, Y, and z for Experimental Methods

a single crystal with potentially greater accuracy Cement the crystal under study (or the transparent

than has been heretofore possible. Because inter- isotropic grain containing an anisotropic inclusion)

ference figures are not ur"d, the observer requires to the tip of a needle or glass capillary tube with the

little prioitraining in optical crystallography to col- glue-molasses mixture described by Wilcox (1959).

lect the data. He needs only to rotate the crystal to After the cement is thoroughly dry, insert the needle

extinction under the polarizing microscope for each with attached grain into the hypodermic tube that

spindle stage setting .9 (from 0o to 180o at 10o constitutes the spindle of the detent spindle stage'

intervals).ihusminutecrystals,if untwinned,canbe Next rotate the microscope stage until, as judged

handled with confidence. by eye, the spindle and needle are oriented E-W

By using light of different wavelengths while making
accurate extinction measurements, an observer can
determine whether a crystal is optically triclinic (X,

Y, and Z all show dispersion), monoclinic (only

two of the three show dispersion), or orthorhombic

with the needle pointing west (Fig. 1). Record this
reading as -Mn.

The visually estimated reading nMn, ca'n next be
refined by an optical technique to determine Mn,
the microscope stage reading which orients the spin-

Frc. 1. (A) Sample field of view imposed on a schematic partial drawing of the microscope

stage and spindle as seen after the spindle (set to read S - 0" ) has been visually aligned with

the E-w crosshair, the spindle tip pointing west. (The reversal of images by the microscope

makes the tip appear to point east within the field of view). A low-power objective, if used,

will permit more-ot the ipindle to be seen within the field of view during the alignment. As

shown, Mn equals 356' for this example.
The dashed lines represent the crystal's mutually perpendicular vibration directions, uo and

u'o. These lie in the plane of the microscope stage to the extent that ( I ) light is normally inci-

dent on the grain surfaces, and (2) the refractive index of the immersion oil surrounding the

grain is close to the grain's refractive index for light vibrating parallel to oo or o'o' If the

microscope stage were rotated clockwise until the crystal becomes extinct, uu would be E-W

and the stage reading, symbolized Mo, would be 16/2" for this example.
(B) Similar to (A) in that the microscope stage reading is again Mn. Now, however, the

spindle is set to read 180' on its protractor stage so that the crystal is upside down from its

position in (A). The privileged directions labelled urm is actually that labelled oo in (A). If

iho microscopo were rotated anticlockwise until the crystal becomes extinct, tteo would be E-W

and the stage reading, symbolized Mrm", would be 339V2" '
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dle axis exactly E-W. Following Wilcox and Izett microscope stage setting which orients the spindle
(1968, p. 270), we refer to Mp as the relerence axis precisely E-W. Thus, if we know Mr,the micro-
azimuth; note, however, that their reference azimuth scope stago reading that orients vibration direction o5
orients the spindle axis N-S. To determine setting precisely E-W, then we can determine Es because
Mni

(1) Set the spindle to read Oo on its protractor
scale, then rotate the microscope stage clock-
wise from position -Mn until the crystal be-
comes extinct. Record this extinction position
as M6

(2) Next set the spindle to read 180o and rotate
the microscope stage anticlockwise from posi-
tion Ms until the crystal again becomes ex-
tinct. Record this extinction position ?s M166".

Operations (1) and (2) should each be performed
at least five times so that Mn and Mlsou represent the
average of at least five extinction readings. Although
it will not be demonstrated here, Ms is necessarily
the microscope stage reading midway between M6
and Mr8oa. As a rule, therefore,

M a :  ( M s +  M $ o ) / 2 (1 )
For example, if Ma = l94o and, ML8otr: 86o, then
from Equation (1), Mn = 140". The value for Mp,
however, will be 180' in error if readings M" and
M$os a;te on opposite sides of the Oo graduation of
the microscope stage. To illustrate, if Ma = 24"
and MBoa - 350o, Equation (1) yields an M* of
187o whereas the true Mp equals 7o. Comparing
the value of Mp obtained from Equation ( 1) with its
visually estimated value -Ma will always prevent
such gross errors. Note that Equation (l) yields
the correct value of MB if we set M166u eeual to
-10o rather than 350". It is wise to be sure that Mg
is very accurately known prior to each study because
an error in Ms introduces a systematic error in the
calculations of 2V and in locating the principal vi-
bration axes. However, such systematic error can be
reduced or eliminated (as will be discussed under
"Results").

Let Ms represent the microscope stage reading
that brings a crystal to extinction while the spindle
stage reading is S. The crystal then has one vibration
direction (og) oriented E-W and its second vibration
direction (us') oriented N-S. We now define .Eg to
represent the angle between the spindle axis and a
vibration direction us.2 We already know Mp, the

'9In effect, Es represents the extinction angle for vibration
direction us as rn€isur€d relative to the spindle stage axis
rather than relative to some crystallographic direction, for
example, relative to the trace of a cleavage plane.

E s :  M s -  M R  ( 2 )

As for all extinction angles, we restrict Es to values
in the range 0 S Es S 180'. If Equation 2 yields
an Es value outside this range, add or subtract 180o
from this value so as to bring it in range without
changing its orientation in space. For example, sup
pose Mp equals 7" and Mr6 equals 262". Equation
(2) indicates that E2e equals 255o, so we subtract
180' to obtain E,o = 75".

Routine Procedure and Plotting

Having determined and set Ms very precisely,
set the spindle to read 0o on its protractor-that is,
,S : 0o-then rotate the microscope stage clockwise
until the crystal becomes extinct. Record this micre
scope stage reading and label it Mo. Then change
the spindle setting by 10' so that ,S = 10o, and again
rotate the microscope stage until the crystal becomes
extinct; record this stage position and label it Mn.
This process is repeated to determine the values for
Mpo, Mso, ... Mrco as the spindle stage setting S
is changed by 10" increments. The detent stage3 of
Bloss and Light (1973) has a spindle that "clicks"
into place at S = 0o, 10o, ... 180'. This increases
speed and accuracy for setting the spindle in deter-
ming Mj, Mrc, "' Mtao.

The coordinate systen for plotting spindle stage
data becomes apparent if we draw a crystal as if it
were a huge sphere at the spindle's tip (Fig.2). An
optieal direction can now be specified by stating its
S and Es coordinates-S being the setting of the
spindle stage that orients this direction into the plane
of the microscope stage, and Es (= Ms - Mn) being
the angfe between this direction and the spindle
axis. In Figure 3, the stereonet is oriented so that
its great circles represent some of the family of planes
that are hinged on the spindle axis when this axis
is E-W-. To emphasize this, a spindle handle (set to
read S : Oo) is drawn relative to these great circles,
which are labelled S = 0o, ,S = 10o, '" ,S : 180o
because they represent planes through the crystal
that become parallel to the plane of the microscope

3 Available commercially from Technical Enterprises, Inc.,
P. O. Box 2604, Cambria Station, Christiansburg, Virginia
24073.
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stage as the spindle is set at S : 0o, 10o, "' 180".
Any particular direction in a given S plane can be
plotted stereographically by counting, along the com-
parable great circle S, a number of degrees equal to
.Es for this particular direction. For example, sup-
pose the settings S : 20o and E2o = 75o bring the
crystal to extinction; the crystal vibration direction,
u2o, which is horizontal and E-W in this extinction
position, then plots as shown in Figure 3. The other
vibration direction, 426', which is then horizontal
and N-S, plots on the same great circle (S = 20')
but at 9Oo from us6; thus Ez,o'equals 165' (: 75" +
90') as shown. As is customary for all vibration
directions, u,2,s and D2s' are plotted stereographically
in the orientations they would have if the spindle

were oriented E-W and if S were equal to 0'. If
all vibrations, 7)n, I)st, Dro, ut(t', ' ' ' or80r 1;'rr6t at?
plotted, the extinction curves for the crystal result
(F ig.  a) .
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ComPuter Techniques

The measured values of Mn and of the eighteen

(Ms) readings of the microscope stage which pro-

duce crystal extinction as S is set at 0o, 10o, "' 170"

constitute input into two computer programs4 that

calculate 2V and the S, Es coordinates of the two

optic axes, of their acute and obtuse bisectrices, and

of the optic normal (Fig. 5). From the input, the

computer can not determine whether the acute

r The two computer programs used to analyze the pres-

ent extinction data are now being compiled into a single

program that will also calculate estimated standard devia-

tions. For use in the interim, copies of these two programs

can bo secured by ordering NAPS Document Number

022O4 from Microfiche Publications, 305 East 46th Street'

New York, New York 10017; remitting in advance $l'50

for microfiche or $5.00 for photocopies. Please check the

most recent issue of this journal for the current address

and orices.

COMPATER DETERMINATION OF 2V

Frc. 2. Hypothetical crystal drawn as a huge sphere attached to the tip of the spindle. The
planes hinged on the spindle axis represent a few of those planes through the crystal's indicatrix

that can be brought parallel to the microscop stage by setting the spindle to read 'S = 0',

30', 90', 160', 180' on its protractor scale. These planes are referred to as,S - 0., S - 30.'

etc, according to the sp.indlo setting necessary to bring them parallel to the microscope stage.

The crystal's two privileged directions r: and rs'for light vibrating within these "S planes" are

subscripted according to the particular ,S plane in which they lie. The microscope stage reading

of 358' is presumed here to equal Mn, the refererrce a:zimuth or setting which orients the spindle

axis precisely E-W.
To measure the extinction angle (Es) for a given privileged direction relative to the spindle

axis, for example Emz set the spindle at ,S - 30' on its protractor scale so as to bring uo and

o'rc parallel to the microscope stage. Rotate the microscope stage clockwise until the crystal

becornes extinct, say at a stage reading (M*) of 25'. Whereas stage reading Mn s€ts the spindle

axis E-W, stage reading Eo sets vibration direction obo to be E-W. Thus

E x : M s o - M n = 2 5 ' -  ( 3 5 8 ' )

If we consider 3 58" as a reading of -2' , then Em equals 27'.

E
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Fro. 3. Orientation of stereonet used for plotting a
crystal's vibration directions if their S, Es coordinates are
known.

bisectrix represents X or Z. To ascertain this. the
observer must use an accessory plate-that is, a
quartz wedge or first-order-red plate-to determine
whether one (and thus all) vibration(s) on the po,lar
extinction curve corresponds to the slow or fast wave
relative to one (and thus all) on the equatorial curve.
For our adularia example, the polar curve proved
to be the site of slow 7/ vibrations. Consequently,
the obtuse bisectrix-whose computer-determined
coordinates ,S, -Es placed it on the polar curve-
necessarily represented Z. This knowledge established
the crystal's optic sign to be negative and permitted
the directions, reported as 'acute bisectrix,, .obtuse

bisectrix,' and 'optic normal' in the computer print-
out (Fig. 5) to be equated to X, Z and y, resp€c-
tivelv.

Results

A very small crystal of adularia was mounted on
the spindle of a detent stage which, unlike the
standard detent stage, had detents every 5o. Narrow-
band-pass filters were used to isolate light of wave-
lengths 433, 566, and 666 nm which are fairly close
to the G, D, and C Fraunhofer lines. For each wave-
length, the crystal's extinction positions were deter-
mined by Dr. Michael W. Phillips as the spindle
stage was rotated at 10" intervals. For each wave-
length, two sets of extinction data were collected

(Table 1). For Set 1 the starting point was S = 0o;
for Set 2 it was at S : 5'. The computer programs
previously cited processed both sets, converting mi-
croscope stage extinction positionS, Ms, into extinc-
tion angles ̂Eg by use of Equation 2 (and the input
M6 value), then calculating 2V and the S, ^Eg co-
ordinates of principal vibration axes X, Y, and Z for
each wavelength. As already discussed, the direction
labelled 'obtuse bisectrix' in the program output was
established to be Z (and the crystal to be optically
negative) by use of an accesso'ry plate. Results were
as tabulated in the abstract. The average values for
each wavelength reveal a small but definite disper-
sion (r ) u) of the optic axes for this adularia, thus
2Ve - '63 .8o ,  2Vo -  65 .1o ,  2V6 =  65 .7 ' .  Sys-
tematic changes with wavelength of the S, ,Eg coordi-
nates for X and possibly for Y indicate their dis-
persion. For Z, however, its S, Eg coordinates
differ as little between wavelengths 433, 566, and
666 nm as they do between Sets 1 and 2 for an
individual wavelength. Probably, therefore, Z under-
go€s no dispersion and the crystal is optically mono-
clinic. If several more sets of extinction data were
collected at each wavelength-and if experimental

FIc. 4. Extinction curves for adularia for wavelength
433 nm as plotted from the extinction data in set 1, Table 4.
See Figure 5 for the computer-determined locations of the
acute bisectrix (AB), obtuse bisectrix (OB) and optic
normal (ON) which have been added to these curyes
(small squares). Figure 5 also contains the Es values (as
determined by the computer from the Ms and Mn values)
which were used in plotting these extinction curves. Note
that Es and Es { 90" locates the two vibration directions
that plot on a given gleat circle of the stereonet.
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S =  0 . 0
S =  1 0 . 0 0
S =  2 0 . 0 0
S =  3 0 . 0 0
S =  4 0  . 0 0
S =  5 0 . 0 0
S =  6 0 . 0 0
S =  7 0 . 0 0
S =  8 0 . 0 0
S =  9 0 . 0 0
S = 1 0 0 . 0 0
S = ] 1 0 . 0 0
S = 1 2 0 . 0 0
S = l  3 0 . 0 0
5 = l  4 0 . 0 0
S = 1 5 0 . 0 0
S =  1  5 0 . 0 0
5 = 1 7 0 . 0 0
5 = 1 8 0 . 0 0

M S = 1 2 5 . 8 0
M S = 1 3 1 . 5 0
M S  - - l  4 0  .  9 0
M S - - t 5 r . 9 0
M S = 1 6 0 . 4 0
M S = 1 6 7 . 6 0
M 5 = l 7 l  . 1 0
M S = 1 7 3  . 8 0
M S = 1 7 6  . 0 0
M S = | 7 7 . 7 0
M S = 1 7 9 . 9 0
M S = l 8 l  . 2 0
M S = l  8 3 . 7 0
M S = 1 8 8 . 7 0
M 5 = 1 9 7 . 4 0
M S = 2 I 0 . 5 0
M S = 2 2 4 . l 0
M S = 2 3 3 . 3 0
M S = 2 3 5 . 1 0

E S =  3 5 . 8 5
E S =  4 0 . 5 5
E S =  4 9 . 9 5
E S =  6 0 . 9 5
E  S =  6 9  . 4 5
E S =  7 6 . 6 5
E S =  8 0 . 1 5
E  S =  8 2  . 8 5
E S =  8 5 . 0 5
E S =  8 6 . 7 5
E  S =  8 8 . 9 5
E 5 =  0 . 2 5
E S =  2 . 7 5
E 5 =  / . / 5

E  S  =  I  6  .  4 5
E S =  2 9 . 5 5
E S =  4 3 . . l 5
E S =  5 2 . 3 5
E S =  5 4 . 1 5

O P T I C  A X I A L  A N G L E =  6 3 . 6 6
O P T f C  A X I S  A  S = 6 1 . 5 6  E s = 1 0 5 . 2 7
R =  0 . 8 4 8 2 9 0  S =  - 0 . 2 6 3 4 0 8  T =  0 . 4 5 9 3 6 8
O P T I C  A X I S  B  S =  1 4 4 . 6 0  E S  =  6 8 . 5 6
U =  0 . 8 4 6 3 1 1  V =  0 . 3 6 5 4 9 9  W =  - 0 . 3 8 7 5 1 6

L E A s T  S Q U A R E S  R E S I D U A L =  0 . 0 0 0 4 0 3 1
V E C T O R  A B  S - -  8 7 . 5 7  E S =  8 6 . 5 6
V E C T O R  0 B  5 =  0 . 1 3  E S = 1 2 6 . 6 0
V E C T O R  0 N  S =  1 7 2 . 9 6  E S = 1 4 3 . 1 9

FIc. 5. Typical computer output from Program 2. The
S, Ms data which represent in-put are printed out so that
punching errors in these cards can be more easily detected.
The Es values are calculated by the computer from each
Ms value (and the Mn value).

error in measuring the extinction positions were re-
duced by use of a Nakamura plate, Mac6 de Lepinay
quaftz wdge, or similar device-a more definitive
statement could perhaps be made with respect to the
dispersion of X, Y, and Z in this adularia. However,
the possibility will always remain that dispersion of
a principal vibration axis is so weak that it is masked
by even small experimental error.

The value of this technique now becomes apparent.
The extinction angles observed with a sodium vapor
light source or suitably filtered white light routinely
yield accurate values for 2V n and for the S, Mg
values that will correctly orient the crystal so that
the refractive indices ,on, Bn and yp can be com-
pared to the index of the immersion oil. Using
appropriate monochro{natic wavelengths, the disper-

ADULARIA USING EVEN VALUES

WAVELENGTH = 433 MR I80.95

sion of tho optic il1gs-fs1 example, 2Vc, 2Vn,
2Ve----+an be measured quantitatively. In addition,
the dispersion of X, Y, andf or Z (ot,less certainly,
the lack thereof) can also be determined so that in
some cases a biaxial crystal can be shown to be
optically orthorhombic, monoclinic, or triclinic.

The coordinates (S, Es) as computed fot X, Y,
and Z permit the crystal to be oriented so that its
indices 'o,, B, and y can be measured free of errors
from misorientation. The procedure is to set the
microscope stage to read Ms-where Ms is obtained
from the Es and Ms values because from Equation
(2), M": Es * MR' With Ms thus attained, vary
the spindle stage setting until the crystal becomes
extinct (whereupon the desired coordinate S is at-
tained). For example, if MR = 180.6o and if the
coordinates for Z are S = 0.1o and Es = 126.7",
the microscope stage would be set at Ms equal to
307.3" (= 126.7" + 180.6") and the crystal would
become extinct when S was set at (ca) 0.1.". For
crystals of low or moderate birefringence, a 2 or 3o
error in this setting produces negligible error in the
index being measured. For microscopes with N-S
polarizers, the initial step would be to set the micro-
scope stage to read Ms + 90".

It is wise to determine Ms with gleat cate because,
as mentioned earlier, any error in Ms produces a

Tenr-s 1. Microscope Stage Extinction Positions (Ms)
for an Adularia from St. Gotthard*

M S  v a l u e s ,  s e t  o n e

4 3 3  u  5 6 5  m  6 6 6  n m

MS values, set t@

4 3 3  m  5 6 6  m  6 6 6  m

l 0
2 0
30
4 0

5 0
60
7 0
80
90

100
1r0
L20
130
140

1 2 6 . 8 '  r 2 7  . 8 "
1 3 1 . 5  t } L . 7
1 4 0 . 9  r 4 0 . 7
1 5 1 . 9  r 5 r , 7
1 6 0 . 4  1 6 0 . 1

1 6 7 , 6  1 6 6 . 8
I 7 I . 1  I 7 I , 5
r 7 3 . 8  r 7 3 . 6
r 7 6 , 0  1 7 5 . 7
L 7 7 , 7  r 7 7 , 2

1 7 9 . 9  r 7 8 . 8
1 8 1 . 2  1 8 0 , 7
1 8 3 . 7  1 8 3 . 3
r 8 8 . 7  1 8 9 . 1
r 9 7 . 4  r 9 7 . 3

150 210.5  211,5
1 6 0  2 2 4 . 1  2 2 4 , 7
1 7 0  2 3 3 . 3  2 3 3 , 3
180 '  235.1 '  234.2 '

M R  1 8 0 . 9 5 "  1 8 1 . 0 '

726.9"
1 3 1 .  3  1 5
1 4 0 . 8  2 5
r5r .  7  35
L60.2  45

1 6 7 . 2  5 5
t 7 0 . 6  6 5
1 1 3 . 7  7 5
1 7 6 . 0  8 5
1 7 6  . 5  9 5

1 2 8 . 3 '  1 2 9 . 0 "  L 2 7 . 9 "
1 3 5 . 5  r 3 5 . 5  I 3 4 . 9
1 4 6 . 8  L 4 6 . 6  r 4 5 . 2
L56.2  156,4  155.0
164.7  163.7  163.6

1 6 9 . 8  1 6 9 . 7  1 6 8 . 7
t 7 2 . 5  r 1 2 . 4  L 1 2 . 8
t 7 6 , 3  L 7 5 . I  I 1 4 . t
L 7 6 . 6  1 7 6 . 8  r 7 5 . 8
1 1 9 . 0  r 7 7 . 5  1 7 8 . 3

1 7 9 . 0  1 0 5  1 8 0 . 5  1 8 0 . 0  1 8 0 . 0
180.9  115 742,3  182.0  182.6
184.6  I25  186. r  r85 .  9  187 .3
1 8 8 . 1  1 3 s  1 9 1 . 6  L 9 2 . a  1 9 2 . 4
r97  .2  r45  203.8  204.5  204,2

213,7  155 216 .9  2L8 ,5  2 t9  .6
2 2 6 . 3  1 6 5  2 2 9  . 7  2 3 0  , I  2 2 9  , a
232.2  r75"  234.9  234.4"  235.2"
235 .0"

r 8 0 . 9 5 "  M _  r 8 0 . 9 "  1 8 r . 0 "  1 8 0 . 9 "

* fhe nictoseope stage ett inct ion posit ions (M! uere detemLned

bA Dr. M.w. ei i lL ipe-uho kindLy pemitted use "o7 this datd. Fo!

each Mg reail:ing, the cantputer alcuLqtes E5--that !s' tls - aA'

Fot eranple, M6 for X = 133 m equals 126.8" and thue E6 =

I Z O . A  - ' l A O - . g S -  =  - 5 3 . 1 5 " ,  l h e  c o n p u t e r  t h e n  q d d s  9 0 o  t o  o b t a i n

36.85",  a ualue tLthin Lhe a ta L80" rmge to Dhich ue

c onoent ionaLly cons t taLn ext inct ion mgle s (  E. )  .
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systematic error in all values of Eg (cl Eq. 2). The
program permits results to be computed not only for
the empirically determined value of Ma but, at the
same time, for values above and below it; we
usually use values 0.1 and 0.2" above and below the
measured Mp, but the spread can be as wide as one
likes. As a rule, the least squares residual for the
computations will minimize for empirical Mp or
within 0. 1o thereof. For example, extinction meas-
urements for a synthetic nickel diopside crystal by
Brenda Higgins (Table 2) yielded. varying results
depending upon the value assigned to Ms (Table 3).
Note that the least squares residual was minimized
for Mp values of 180.5 (: empirical) and 180.6.
In a few instances where extinction measurements
were made for three different wavelengths of light
at each setting of S, the Ma values which minimized
the least squares residuals sometimes differed (by
0.1") from one wavelength to the other. To a cer-
tain extent, therefore, the additional degree of free-
dom introduced by varying Ms may in itself reduce
the least squares residuals. The situation resembles
the use of different temperature factors to decrease
further the R values in crystal structure analyses.

This method of determining 2V and the orienta-
tion of the principal vibration axes probably exceeds
all present methods in accuracy, particularly if the
18 extinction measurements were made with a Naka-
mura plate or Mac6 de Lepinay quaxtz wedge. Ac-
curacy could perhaps be slightly increased by grind-
ing the crystals into spheres or into cylinders co-axial
with the spindle needle. This insures that the wave
normal of the light would remain perpendicular to
the microscope stage after entering the crystal. With
an irregularly shaped crystal, this will not be true
for certain settings ,S to the extent that ( 1) the re-
fractive index of the oil differs from one or the other
of the crystal's two indices and (2) the crystal sur-
face on which light is incident is not parallel to the
microscope stage.

Fortunately, there seems little need to grind the
crystals into spheres or cylinders because errors due
to irregular shape may be, to some extent, compensa-
tory. Moreover, errors due to irregular shape could
be decreased by making the measurements for two
or more different mounts of the same crystal, then
averaging the results. Primarily, to test the eftect
of irregular shape, a detent spindle stage study of a
new mineral he was studying was made by Dr. M. G.
Bown, who brought the crystal to extinction at
maximum blackness. This same grain was then re-

Tlnre 2. Spindle Stage Setting (S) and Microscope-Stage
Extinction Positions (Ms) for a Nickel Diopside Crystal*

M
S

217 .6"
2 1 6 . 5
2 r 5 . 3
2 r 4 . 0
2 L T . 7

208.4  100 t46 .3  150 141.0
203.2  110 142.4  160 141.8
L97.9  L20 L47.7  r7o  142.7
169.8  l -30  140.4  180.  143.3 .
1 5 3 . 1  1 4 0  1 4 0 . s

5 0
6 0
7 0
80
90

0 '
10
20
30
4 0

Eaeh e:tinctton position (M) z,epresents an aue?age
of at Least tlnee measLuenents by Brenda Higgins iorLight of uauelength S3S nn.

moved and remounted in a different orientation on
the spindle's needle and its extinctions measured
(by F.D.B.) using a Macd de Lepinay quartz wedge.
This latter technique yielded a smaller least squares
residual and probably entailed less experimental
error. The measured values of 2V compare as fol-
lows:

I(nm)

(MGB)
(FDB)

500

44.6
4 5 . 8

600

47 .3
45.5

666

45.2
4 5 . 0

Tesrn 3. The Effect of Errors in Mn Values on Results
of Computer Analysis of Data in Table 2*

Test Values of MR

1 8 0 . 0 "  1 8 0 . 4 .  1 8 0 . 5 "  1 8 0 . 6 "  1 8 0 . 7 "  1 8 1 . 0 "

Least. squares residuals

0 . 0 0 1 5  0 . 0 0 0 5  0 . 0 0 0 4  0 . 0 0 0 4  0 . 0 0 0 5  0 . 0 0 1 1

Optlc axial angle

8 0 . 6 3 "  7 9 . 9 L "  7 9 . 7 3 "  7 9 . 5 6 .  7 9 . 3 8 .  7 8 . 8 6 "

Opt ic  ax is  A ,  coord ina tes

6 1 . 0 9 '  6 7 . L L "  6 8 . 3 6 .  6 9 . 5 3 "  7 0 . 6 2 "  7 3 . 5 1 "
L 7 2 . 0 5 "  L 7 0 . 7 7 "  L 7 0 . 4 4 "  1 7 0 . 1 0 .  1 6 9 . 7 7 0  1 6 8 . 7 5 .

Opt ic  d is  B ,  coord i :a tes

1 6 7 . 1 1 "  L 6 7 . 4 8 "  L 6 7 . 5 7 "  1 6 7 . 6 6 "  L 6 7 , 7 4 "  L 6 7 . 9 8 "
1 0 1 , 6 6 '  1 0 1 . 6 1 "  1 0 1 . 9 5 0  1 0 2 . 0 1 0  I O 2 . O 7 "  L 0 2 . 2 5 0

Acute  b isec t r l x .  coord ina tes

1 5 9 . 0 6 '  1 s 8 , 0 5 0  L 5 7 . 7 9 "  L 5 7 . 5 4 "  1 5 7 . 2 9 "  1 5 6 . 5 4 .
L 4 t . 4 4 "  1 4 1 . 1 0 "  1 4 1 . 0 1 "  L 4 0 . 9 2 "  1 4 0 . 8 3 "  1 4 0 . 5 5 "

ObEuse b isec t r i x ,  coord ina tes

1 7 4 . 5 5 "  1 7 6 . 3 9 "  L 7 6 . 8 4 0  r 7 7 . 2 9 "  L 7 7 . 7 4 "  r 7 g . O 7 .
5 2 , 4 7 "  5 2 . 5 5 "  5 2 . 5 8 "  5 2 . 6 L "  5 2 . 6 5 "  5 2 . 7 5 .

Opt ic  noru l ,  coord ina tes

7 8 . 6 8 '  7 9 . 4 0 .  7 9 . 5 8 "  7 9 . 7 5 "  7 9 . 9 2 "  8 0 . 4 3 "
8 2 . 4 I "  8 0 . 9 7 .  8 0 , 6 2 "  8 0 . 2 6 "  7 9 . 9 O "  7 8 . 8 3 .

s :
F .

S :
E :

q .

F .

s :
E :

s :
E :

Values,of MR_dhich yielded the snaLl..est Least squues
resi&taLs and uhich ate presunobly the cZosest to coreect
ate -the ,enrpiricalLy detemined Mp talue of 180.5" and
a closeLg neiglboring uaLue of 1'1i0.6".
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Unfortunately, the crystal was lost while being re-
mounted to use the Mac6 de Lepinay quartz wedge
to compile another set of data.

Some orientations of a biaxial crystal on the
spindle stage reduce the accuracy of this method'
Unfavorable orientations result to the extent that a
principal vibration axis approaches parallelism with
the spindle axis. In such cases the equatorial extinc-
tion curve departs less and less from a great circle
and this lack of distinctive characteristics prevents
precise location of the two optic axes. Favorable
orientations occur if an optic axis happens to be
nearly perpendicular to the spindle axis. For the new
mineral, the orientation studied by Dr. Bown was
relatively unfavorable, but was changed to a favor-
able orientation prior to study by F.D.B.

Recently, Dr. Max Carman, while using a Mac6
de Lepinay quartz wedge and testing the technique
in tho senior author's laboratory, determined 2V at
wavelength 500 nm tobe 47.7" for one sanidine crys-
tal and 48.0' for another frorn the same rock. The
first crystal proved to be in a favorable orientation,
one optic axis being at a 70" angle to the spindle
axis,, whereas the second was not, one optic axis
being at an 8o angle to the spindle axis. Interestingfy,
a 0.1,o change in the value of M*, the reference
azimtth, produced at most a 0. 1o change in the
computed value of 2V fon the favo'rable orientation
but a 0.6o change in 2V for the unfavorable orienta-
tion. The 2V valtes cited above were calculated
using the empirical values for Mp

Resume of Data Cards and Print-Out

Program 1; Sequence ol Data Cards

TITLE (20A4). No restrictions. Prints at top of
output. Include wavelength and observed Mp value.

KG (12). Number of 4-card sets of ,S, Ms cards.
Columns I and 2, right justified, no decimal point.

MR (' ',F10.4). Value of Ms, in columns 2-11,
with decimal point followed by not more than 2
places plus D0 (zero). Example: 180.95D0.

R,S,T,(J,V,W, (6F8.4). Direction cosines of trial
optic axis A (r,s,t) and B (u,u,w). Usually take
0.936, -0.219, O.275; 0.319, -0.516, -4.795,

each followed by D0 (zerc), in columns 1-8, 9-16,
17-24; 25-32, 33-40, 4I-48.

SS,MS (2F10.4). Spindle stage reading S [SS in
programl in columns 1-10; associated Ms reading
lMSl in program in 11-20. Punch 18 such cards,
S = 0o; S = 10o, . . . S = l7O" plus a duplicate

of each. D0 (zero) not required. If KG : 8, remove
cards S = 30. 80, l2O and, l'70 from duplicate deck,

then arrange the 32 remaining cards in order of S

values to form A-catd sets as suggested here: S = 0,

+O, 90, 130; 10, 50, 10O, 140;2O,60, 110, 150;

30,70, l2O, 16O;40, 80, 130,1.70;0, 50, 90'  140;

10 ,  60 ,  100,  150;  20 ,70 ,  110,  160.
IREP (12). This is blank card if another title and

more data are to follow (but contains L in column 2

if program is finished).

Program 1; Print-Out

For each 4-card set. (l) In-put values, S, Ms plus

Es (:Ms - M*). (2) Direction cosines of optic

axes A and B which satisfy Eq. (3) relative to the

4-card set. These need not be in upper hemisphere'
(3) S, ̂ Es values of ends of optic axes A and B in

the upper hemisPhere.
After aII 4-card sets. (1) Average values for

direction cosines of A and B for all 4-card sets. (2)

Their normalized values, and (3 ) the S and Es values
for the upper-hemisphere-ends of the optic axes

thereby defined, and (4) the angle (obtuse or acute)
between these ends. (5) The S and Es coordinates
for the acute bisectrix AB, obtuse bisectrix OB,
and optic normal ON.

Program 2; Sequence ol Data Cards

TITLE. No restrictions. Prints at top of output'
IN (12). No. of S, M* cards' Columns 1 and 2

only, right justified, no decimal.
IT0A (12). Number of pairs of trial optic axes to

be used. Columns I and 2 only, right justified, no

decimal.
TSA, TMAP (2F10.4). S (Cols. 1-10) and E5

(lI-20) for trial optic axis L Decimal followed by
up to 4 figures and ending with D0 (zero). Prepare
another such card for oPtic axis B'

Further pairs of such cards, according to number
of pairs (IT0A) of trial optic axes. Usually IT0A
equals 1, because only one such pair of cards is
needed. If Program 2 fails to converge, then it
might be desirable to try several different pairs of
trial optic axes.

ss, MS. A number (=IN) of S, Ms data cards'
Use same cards as for Program L but no duplicates
and arrange in order of S values: 0o, 10o, . . . 1'70".

KMR (12). Number of M^ values to be used.
Columns I and 2 only, right justified, no decimal.

MR (' ',F10.4). Values of Ms one per card, up

to KMR such cards. Columns 2-ll, decimal fol-
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lowed by up to four figures ending with D0 (zerc).
IREP (12). Blank card if another title and more

data follow. Otherwise a 1 in column 2 if program
is finished.

Program 2; Print-Out

Title, then Mp value, then S, Mg (and computed
.Es) for input cards (SS, MS), then input coordi-
nates (S, Eg) for trial optic axes and subsequent
pairs until a solution is found. If no solution is found
for any pair, program writes CIIECK TRIAL
OPTIC AXES FOR ERROR-but also check cor-
rect punching of MR and SS, MS cards. For a solu-
tion, the program prints: (1) Optic axial angle;
(2) S, Eg coordinates and direction cosines for
optic axes A and B; (3) The least squares residual
to seven decimal places. This is a measure of the
success of the refinement and of the precisio,n of the
extinction measurements. (5) S, Es coordinates for
acute bisectrix AB, obtuse bisectrix OB, and optic
normal ON.
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Appendix: Mathematical Dlscussion

The equations used by Joel (1966) to find the optic axes
vectors, ar and a2, are

( q ' a ' X q . a r )  -  ( q ' . a r X q ' . a z ) : 0  ( 3 )

where q'is a direction within the indicatrix that is parallel to the
spindle axis and q represents a second direction-the so-called
equivibration point-for which the crystal would exhibit the
same refractive index as for light vibrating parallel to q,. The
solutions involve the determination of six unknowns, namely
the three coordinates of ar and the three coordinates of a2 in a
rectangular xyz coordinate system. In all measurements, q, is
fixed and is taken to be the unit vector along the y axis, (0, l, 0).
Since we have six unknowns, we need six equations to solve for
ar oDd az. Two ofthese equations come from forcing ar and a2 to
be unit vectors, i.e., if we denote ar : (r, s, r) and az : (u, u, w\,
then r2 f J2 + tt : I and uz * u2 I wz : l. Thus if there were
absolutely no experimental error in determining each q, one
could perform experiments for only four different values of q
and then solve the resulting six equations to obtain ar orrd ar
precisely.

The first program does exactly this, using Newton's Method
(Bartle, 1967, p.231) for six variables. Let the different values for
q (usually 19 in number-one for each 10 degree increment of S
from 0o to 1800) be denoted by qn, 0 < k < 18. Each q1 is
transformed into rectangular coordinates, where its x, y, and z
coordinates are, respectively, sin 2E" sin S, cos 2E", and sin
2E" cos S, For each qr, let

f6 (a1 ,  a2)  :  (g r 'a ' ) (qn 'a r )  -  (q ' 'a 'Xq ' .a r )

:  (et.  a'Xqt. a2) - su (4)

?(a', ar; :

f1 , (a1 ,  a2)

fr=(ar, az)

fo" (a , ,  a2)

fn.(ar, ar)

r ' + s ' * t ' - l
2 t 2 t 2 .u tD t  l ' ,  -  r

where /<1, kz, ka, knrcprcsent any four functions of Equation (4).
The objective, of course, is to find vectors ar and ar so that all
six components offiat, az) are zero.If this is so, then Equation
(3) is satisfied for these four values of q*.kt xe : (16, .ss, /6,
ub ub wn) where (16, sn, t6) and (us, u6, ws) are initial guesses for
ar a,rrd o.2, respectively. (In all of our computations we used
(rs, se, ts) : (0.936, -0.219,0.275) and (uo, rso, wo) : (0.319,
-0.516, -0.795). These initial guesses need not be at all
accurate. The above values worked in all of our computations
no matter which material was being examined. Different initial
guesses can be used as long as they are unit vectors and rs a;nd us
are not negative.)

^ Our problem can be simply stated as: Find ar and 42 such that
?(r,, ar) : 0, the zero v@tor. Newton's Method to find a root.
X*, of a function of one variable, h(Xli.e., find X* such that
h(X*) : O-is as follows:

I.et Xo be an initial guess lbr X*, and, generate a sequence of
points, {Xr}, i  :  1,2,.  .  .  by the formula:

X, i * r  :  X i  -  f (X t \ / f t (X i ) (6)

Stop the iteration when ll(&)l ( e, where e is sufficiently
small enough to consider f(Xi) essentially equal to zoro.

Newton's Method for several variables (six, in our case) is of
the same form, except that the derivative of the vector-valued
function, ($ is the so-called "Jacobian" matrix, fd) (r""
Bartle, p. 231), where-f, is a variable vector with six componenrs.
In our case the Jacobian is 6 X 6 and non-singulu.. *, r-td)
denote the inverse of the Jacobian, and let the sequence of
vectors-f,; : (ri, si, ti, ui, Di, w;) be generated by the formula:

kr* r :  x ,  -  t - ' ( *oX( fn ) ,  Q)
where.fo is again the initial guess mentioned above. To avoid
computing J-\ft) for each 7', Equation 6 can be solved for
X 1ar by using the rBM srMe subroutine on the equivalent equa-
tion,

Let

(5)

J(Xi \X j . ,  :  J(* ) t i  -  ?( f , , ) ,  (8)
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which is merely a linear system of six equations in six unknowns.
Stop this iteration at a value of j when all six components of
fdi) are less than some prescribed value e. (We used fifty
iterations, i.e.,the last value ofi was fifty, and always obtained
e ( 10-15). The first three components of this X; are used for
ar and the last three are used for az.

If there were no experimental errors in determining the q7,

values, we would be finished at this point, because each meas-
ured qr value would satisfy Equation (3) within 10-15 for the
computed values of ar orrd 42. Because of the experimental
error in qr, however, this is not the case. Thus this procedure is
repeated with a different set of four measured values of q1.
(Our program is written to perform this repetition eight times,
although more can be used if certain values of qr are suspected
to be bad.) I-astly, the values computed for ar and az in each
repetition are averaged. These averages are normalized, i.e.,
divided by their lengths to make them unit vectors, and this
result is used for an initial approximation for ar and az in the
second program.

The values for a1 and a2 computed above do not exactly
satisfy Equation (3) for each qa due to its experimental error.
Thus, we form the "residual least squares function"

F(a1, a2): fo(ar, ar)" I fr(a1, ar)'

+ . . .  +  f ^ (a r ,  a , ) ' ,  (9 )

where n is the number of experimental measurements (usually
19). An accelerated gradient method (Goldstein, 1967, p. 37)
is used to find values for ar and az which minimize F(ar, az).

To minimize a real-valued function of one variable, g(X), we
find the root, X* , of its derivative, i.e., g'(X*) : 0. The process
is theoretically the same here, except that F(ar, az) is a real-
valued function of six variables and thus its derivative (see
Bartle, 1967, p. 247) is its so-called "gradient," VF(ar, a2).
This gradient is a vector-valued function with six components.
Thus, finding ar &rrd &r to make all six of the components of
the gradient equal to zero is the same kind of problem as was
solved by Newton's Method in the first program. This time,
however, the initial approximation must be "close" to the true
solution (Again, see Goldstein, 1967, p. 37), and thus Xo is
chosen as generated by the first program.

We have learned through computational experience that

finding the optic axes is a very ill-conditioned problem, i.e.,

small experimental errors for unfavorable crystal orientations
can propagate large errors in ar and az. In most of our com-
putations, the residual least squares function, Equation (9),

has a minimum value of the order 10-3' If one or more meas-

ured value of q* is bad, the ar and ag comPuted by the first pro-

gram can vary widely with each set of four qrc values and their

average may be sufficiently in error to prevent the second
program from converging. We emphasize that this is due

entirely to experimental error in qr resultant from either

operator error (including misadjustment of the microscope)

or crystal inhomogeneity, since the mathematical theory under-
lying the methods is completely sound. The two programs

combined will yield the best possible values for ar and a2

within the limits of the experimental errors. Thus we stress the

thorough examination of the values of ar and a2 generated by

the first program to eliminate those values of q7, which appear

to be experimentally bad. If one or more of these bad values

cannot be corrected and must be elincinated, the second program

is easily modified by setting the variable IN in our program

equal to the number of qa values used'
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