Bjarebyite, \(\text{Ba}(\text{Mn,Fe})^{2+}_2\text{Al}_2(\text{OH})_3[\text{PO}_4]_3 \): Its Atomic Arrangement

PAUL BRIAN MOORE, AND TAKAHARU ARAKI

Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois 60637

Abstract

Bjarebyite, \(\text{Ba}_{0.9} \text{Sr}_{0.1} (\text{Mn}_{0.9} \text{Fe}_{0.1})^{2+} \text{Al}_2(\text{OH})_3[\text{PO}_4]_3 \), a new species from the Palermo No. 1 pegmatite, North Grotto, New Hampshire, was recently described by Moore, Lund and Keester (1973). Its unusual formula indicated that a new type of \(\text{Al}-\text{O} \) octahedral cluster might reside in the structure and, with its simple crystal cell, prompted a thorough structure analysis. We have been much interested in the systematics of polyhedral clustering of first transition series oxysalt crystals, especially of \(\text{Mn}^{2+}, \text{Mn}^{3+}, \text{Fe}^{2+}, \) and \(\text{Fe}^{3+} \). The behavior of \(\text{Al}^{3+} \) in crystals formed at moderate to low temperature is so similar to \(\text{Fe}^{3+} \) that this cation has attracted our attention as well.

Here we would like to interject a sobering observation with which crystallographers who study mineral structures often find themselves confronted. As more and more structures are revealed, it becomes more apparent that Nature is delightfully combinatorial in what She finds the most satisfactory arrangements, and we are forced to wrest what secrets we can in a dogged, systematic way. Thus, the ultimate aim of the student of crystal structures is not to distinguish what is abundant from what is rare, but what exists and what is absent among the myriad hypothetical combinatorial structures which can geometrically and topologically potentially exist. The attempts at systematics of inorganic structure today appear to rest at a stage similar to the systematology of the Periodic Table of chemical elements one century ago.

Experimental

The cell data for bjarebyite, \(\text{Ba}_{0.9} \text{Sr}_{0.1} (\text{Mn}_{0.9} \text{Fe}_{0.1})^{2+} \text{Mg}_{0.2} \text{Al}_2(\text{OH})_3[\text{PO}_4]_3 \) (Moore, Lund, and Keester, 1973), are: \(a \) 8.930(14), \(b \) 12.073(24), \(c \) 4.917(9) \(\text{Å} \); \(\beta \) 100.15(13)\(^\circ\); \(P2_1/m \); \(V \) 521.8 \(\text{Å}^3 \); \(Z \) = 2; space group \(P2_1/m \); calculated density (gm cm\(^{-3}\)) 4.02 from cell data and 3.86 by a Gladstone-Dale calculation. Specific gravity was determined as 3.95 with a Berman torsion balance.

A small nearly equant single crystal measuring about 0.12 mm in mean dimension was selected from the type specimen and rotated about \(b \) on a PAILRED automated diffractometer utilizing a graphite monochromator and MoK\(\alpha \) radiation. Reciprocal lattice layers from \(k = 0 \) to 18 were collected to a maximum \(2\theta = 65^\circ \). Scans about \(\omega \) showed absorption anisotropy to be less than 4 percent of the mean value at low angles and absorption correction was thus disregarded. Background counts for 20 seconds were taken on opposite sides of each peak. The scan rate was 2.5\(^\circ\)/minute and a low, mosaic spread permitted a half-scan interval of 1.8\(^\circ\). Symmetry equivalent reflections were averaged and the data were processed by conventional procedures to obtain \(|F(\text{obs})| \).

Solution and Refinement

A three-dimensional Patterson synthesis, \(P(uvw) \), showed prominent images parallel to the \(uvw \)-plane and the probable existence of a mirror plane, this latter being substantiated by the holosymmetric morphology of the crystals investigated. The very prominent Ba-Ba' vectors led to rapid determination.
of the structure via the β- and γ-syntheses of Ramachandran and Sriniwasan (1970). All non-
hydrogen atoms were located unambiguously.

Least squares refinement required four cycles for convergence and led to

$$R(hkl) = \sum \frac{|F_{\text{obs}}| - |F_{\text{calc}}|}{\sum |F_{\text{obs}}|} = 0.062$$

for all 2313 reflections. This provided a ratio of data to variable parameters of 40:1 and the low, estimated
standard error for the oxygen coordinates ($\pm 0.005 \text{ Å}$) attests to a well-refined structure.

As scattering curves, we selected the data of Cromer and Mann (1968) for Ba$^{2+}$, Mn$^{2+}$, Al$^{3+}$, Fe$^{2+}$, and O$^{2-}$. The full-matrix least-squares refinement proceeded from a modified version (for IBM 360 computer) of the
familiar ORFLS program of Busing, Martin and Levy (1962).

Table 1 provides the atomic coordinate and iso-
tropic thermal vibration parameters and Table 2 lists
the structure factor data.

Discussion of the Structure

a. Topology and Geometry of the Polyhedra

The manner of polymerization of [AlO$_4$] octahedra
in bjarebyite should determine how the Al$^{3+}$ cation
coordinates to the isolated [PO$_4$]$^{3-}$ tetrahedra and
(OH)$^-$ groups as well as how the more weakly bonded
Mn$^{2+}$ and Ba$^{2+}$ cations are coordinated. In the
bjarebyite structure (Fig. 1) the Al$^{3+}$ cation coordinates
to O(3), O(5), and O(6) from the [PO$_4$]$^{3-}$
tetrahedra and to the hydroxyls, O(8) and O(9). These
hydroxyls are points of polymerization for the
octahedra, with O(8) comprising a shared corner and
a pair of O(9) ligands a shared edge. The resultant
infinite chain (stippled, Fig. 1) runs parallel to the
b axis and has composition [Al$_3$O$_8$(OH)$_2$]. A similar
chain, of composition [Fe$_2$O$_6$(OH)$_3$], occurs in the
structure of carminite, PbFe$_{5+}$Fe$_{5+}$(OH)$_3$AsO$_4$], as
determined by Finney (1963). The distribution of
hydroxyls within each two edge-sharing octaheda
which are components of these chains imparts to the
octahedral pair the point group symmetry m for carminite (Fig. 2a) but I for bjarebyite (Fig. 2b).

The similarity of the cell parameters and contents of
palermoite, SrLi$_3$Al$_4$(OH)$_6$[PO$_4$]$_4$, to those of carminite
suggest a close structural relationship between the two.
Since palermoite and bjarebyite occur together, the
AlO$_6$ (and FeO$_6$) chains involving edge- plus corner-
sharing is evidently stable in a particular temperature
regime. We are presently investigating the crystal
structure of palermoite.

The manner in which the P(1)O$_4$ tetrahedron
bridges to the octahedral chain is also worthy of note.
The corners of adjacent octahedra across the mirror
plane are joined by a common tetrahedral edge. This
configuration (Fig. 2c) is very common among the
"7 A chain structures" of which many examples are
known to science. Moore (1970a) has reviewed these
structures of which abundant representatives are
known in low temperature hydrothermal assemblages
in pegmatites, occurring later than the bjarebyite and
carminite. The isomorphism of Al$^{3+}$ and Fe$^{3+}$ in
such assemblages is characteristic and for these cations
it would appear that, with increasing temperature,
isolated octahedra form first (strengite, phosphosiderite, variscite); followed by the "7 A" corner-
sharing chain structures (laueite, paravauxite, etc);
followed by an increase in edge-sharing as in palermoite,
carminite, and bjarebyite; and finally edge-
sharing octahedral chains and sheets.

Of the remaining more weakly held coordination
polyhedra, the MnO$_6$ octahedra (shaded in Fig. 1)
are highly distorted and share an edge, O(2)-O(1).
These in turn bond, by edge sharing along O(5)-O(9),
to the Al-O octahedral chain. The Ba$^{2+}$ cations occur
at $X(1)$ large holes within the structure and coordinate
irregularly to eleven oxygen atoms, excluding two
long contacts with O(5) atoms at 3.17 Å.

b. Interatomic Distances

Table 3 lists the individual and average polyhedral
interatomic distances for bjarebyite. These averages
are consistent with the interpretation of the chemical
analysis. Thus, $M(1)$ has Mn$^{2+}$ extensively substituted
by Fe$^{2+}$ since Mn$^{2+}$-O averages in structures with
octahedral coordination are 2.20 Å. The $M(2)$-O

| Table 1. Bjarebyite. Site Multiplicities, Atomic Coordinates, and Isotropic Thermal Vibration Parameters* |
|---|---|---|---|---|
| x | y | z | $B(\text{Å}^2)$ |
| X(1) = (Ba, Sr) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| H(1) = (Ba, Sr) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| H(2) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| M(1) = Al$^{3+}$ | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| M(2) = Al$^{3+}$ | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| M(3) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| M(4) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| O(1) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| O(2) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| O(3) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| O(4) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| O(5) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| O(6) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| O(7) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| O(8) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| O(9) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |
| O(10) | $2.0547(3)$ | 7.5500 | $9.0420(1)$ | $0.69(1)$ |

*Estimated standard errors in parentheses refer to the last digit.
Table 2. Biotite. Structure Factor Data

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>F(hkl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.574</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-0.343</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.217</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.134</td>
</tr>
</tbody>
</table>

ATOMIC ARRANGEMENT OF BIOTITE
TABLE 2, continued
distance is identical to Al-O grand averages. Estimated standard errors in these calculations are Me-O ± 0.005 Å and O-O' ± 0.007 Å.

Three kinds of shared edges occur in the structure. The $M(2)\cdot M(2)' (= Al^{3+})$ shared edge O(9)-O(9)' of 2.40 Å reflects the extreme repulsion of the cations along a line normal to that edge. The edge O(5)-O(9), shared between the $M(1)$ and $M(2)$ octahedra, is, at 2.60 Å, the second shortest edge for the $M(1)$ and the third shortest for the $M(2)$ polyhedra. Finally, O(1)-O(2) at 2.52 Å is a shared edge between two $M(1)$ cations and is the shortest for that polyhedron.

c. Electrostatic Valence Balances

Table 4 provides electrostatic valence balance calculations (2) of cations about anions. In this model, the (OH)$^-$ anion is taken as a uninegative species. Deviations are then noted and possible hydrogen bonds are sought. Here, we assumed $M(1)^{6+}$, $M(2)^{4+}$, $P(1)^{4+}$, $P(2)^{4+}$, and $X(1)^{11+}$. In addition, we have geometrically investigated the possible locations for hydrogen bonds. Thus O(8), an OH$^-$ on the
mirror plane, does not appear to form a hydrogen bond since the distance O(8)-O(1) 3.65 Å is too long. However, O(9) = (OH)\(^-\) apparently forms a bond with the O(5) atom at the next level above (along the z-direction) since O(9)-O(5) is 2.60 Å, an acceptable distance. This would mean that O(5) becomes substantially oversaturated by cations (Σ = 2.08 + 0.16 = 2.24). Indeed, the M(1)-O(5) and P(2)-O(5) distances are the longest for their polyhedra.

The only remaining cation which deviates considerably from neutrality is O(9) with Σ = 1.33. Including the hydrogen bond, ΔΣ = 2/6 - 1/6 = 1/6. This, too, is reflected in the long M(1)-O(9) and M(2)-O(9) distances. The arrangement \(2M^{2+} + M^{2+}\) coordinated to OH\(^-\) is rather unusual, but it has been recognized in the crystal structure of basic ferrous-ferric phosphates, dufrenite, rockbridgeite, beraunite, etc (Moore, 1970b).

Acknowledgments

Support for this study was provided by the NSF GA 10932-Al grant and a Materials Research grant (NSF) awarded to The University of Chicago.

References

Manuscript received, November 5, 1973; accepted for publication, December 19, 1973.