The Structures of Synthetic Paracelsian Analogs, $\mathrm{SrGa}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ and $\mathrm{SrGa}_{2} \mathrm{Ge}_{2} \mathrm{O}_{8}$

Michael W. Phillips, ${ }^{1}$ H. Kroll, H. Pentinghaus, Institut für Mineralogie der Universität Gievenbecker Weg 61, Münster, West Germany
and Paul H. Ribbe
Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Abstract

The crystal structures of two synthetic paracelsian analogs, $\mathrm{SrGa}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ (SGSP) ${ }^{2}$ and $\mathrm{SrGa}_{2} \mathrm{Ge}_{2} \mathrm{O}_{8}$ (SGGP), have been refined by conventional methods. These compounds are pseudo-orthorhombic; completely ordered T^{3+}, T^{4+} distributions in their respective tetrahedral frameworks result in $P 2_{1} / a$ symmetry for both. Pertinent crystal data are: | | $a(\AA)$ | $b(\AA)$ | $c(\AA)$ | β | R factor |
| :--- | :---: | :---: | :---: | :---: | :---: |
| SGSP | 9.001 | 9.484 | 8.399 | 90.68° | 0.036 |
| SGGP | 9.206 | 9.660 | 8.583 | 90.43° | 0.050 |

Mean $\mathrm{Sr}-\mathrm{O}$ and T - O distances (in \AA) are: | | $\langle\mathrm{Sr}-\mathrm{O}\rangle$ | $\langle\mathrm{Ga}-\mathrm{O}\rangle_{T_{1}}$ | $\langle\mathrm{Ga}-\mathrm{O}\rangle_{T_{2}}$ | $\langle\mathrm{Si}-\mathrm{O}\rangle_{T_{1}}$ | $\langle\mathrm{Si}-\mathrm{O}\rangle_{T_{2}}$ | $\langle\mathrm{Ge}-\mathrm{O}\rangle_{T_{1}}$ | $\langle\mathrm{Ge-O}\rangle_{T_{2}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SGSP | 2.626 | 1.822 | 1.824 | 1.627 | 1.629 | $-\overline{1.746}$ | - |
| SGGP | 2.630 | 1.823 | 1.826 | - | - | 1.750 | |

These structures are compared in detail with hurlbutite $\left(\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}\right)$, another paracelsian-type structure, and with danburite $\left(\mathrm{CaB}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right)$ whose T^{3+}, T^{4+} ordering is distinctly different. Onefourth of the $T-\mathrm{O}-T$ linkages in danburite are of the type $T^{3+}-\mathrm{O}-T^{3+}$ or $T^{4+}-\mathrm{O}-T^{4+}$; threefourths are of the type $T^{3+}-\mathrm{O}-T^{4+}$. In paracelsian all linkages are of the latter type. Consideration of charges on bridging oxygen atoms in $T_{2} \mathrm{O}_{7}{ }^{n-}$ groups (as calculated by extended Hückel molecular orbital approximations) indicates that the charges on oxygen atoms involved in $T^{3+}-\mathrm{O}-T^{3+}$ linkages are substantially different from those in $T^{4+}-\mathrm{O}-T^{4+}$ linkages except for the case $T^{3+}=$ boron. This suggests that in the presence of $\mathrm{Si}(\mathrm{or} \mathrm{Ge})$ any $T^{3+}-\mathrm{O}-T^{3+}$ bonds involving Al or Ga (but not B) will result in a non-uniform charge distribution on the oxygen atoms. This is offered as an explanation for the absence of danburite analogs of ordered $M^{2+} T_{2}{ }^{9+} T_{2}{ }^{4+} \mathrm{O}_{8}$ compounds containing Al or Ga which have thus far been observed as only feldspar or paracelsian-type structures.

Introduction

In order to determine the bonding properties of tetrahedral (T) cations which are involved in orderdisorder transformations and the polymorphism of feldspars and related framework structures, it is im-

[^0]portant to obtain precise structural data, not only for naturally occurring minerals but also for their synthetic analogs. It is particularly useful to investigate Ga and Ge analogs of alumino-silicates, as Goldsmith and Laves (1955) recognized in their study of $\mathrm{GaGe} \rightleftharpoons \mathrm{AlSi}$ substitutions in anorthite. Ga and Ge not only have greater X-ray scattering powers than Al and Si , but they are distinctly larger and thus afford new insight into the role of cation size in framework structures. As part of an extensive program to characterize the crystal chemistry of
$M^{2+} T_{2}{ }^{2+, 3+} T_{2}{ }^{5+, 4+} \mathrm{O}_{8}$ compounds, this paper presents the structures of $\mathrm{SrGa}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ (SGSP) and $\mathrm{SrGa}_{2} \mathrm{Ge}_{2} \mathrm{O}_{8}$ (SGGP), which are analogs of paracelsian, $\mathrm{BaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ (BASP).

Paracelsian is pseudo-orthorhombic, and Smith (1953) determined its average structure, refining it in space group Pnam. However, on the basis of optical observations he realized that paracelsian is monoclinic and that the true space group might be $P 2_{1} / a$ and that an ordered distribution of Al and Si might account for the slight deviation from orthorhombic symmetry. Bakakin and Belov (1960) showed that Al and Si were indeed ordered, as in anorthite, and that the space group is $P 2_{1} / a$. They also found (1959) that hurlbutite, $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$, is isostructural with paracelsian and that danburite, $\mathrm{CaB}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$, although topologically similar, has a distinctly different ordering scheme in which $\mathrm{B}_{2} \mathrm{O}_{7}$ and $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups alternate in the tetrahedral framework. Recent refinements of paracelsian (Craig, Louisnathan, and Gibbs, 1973), hurlbutite (Lindbloom, Gibbs, and Ribbe, 1974), and danburite (Phillips, Gibbs, and Ribbe, 1974) provide the basic data for a comparison of paracelsian-like structures. When combined with refinements of slawsonite (SASP-Griffen, personal communication), $\mathrm{SrAl}_{2} \mathrm{Ge}_{2} \mathrm{O}_{8}$ (SAGP—Kroll and Phillips, in preparation), and SGSP and SGGP (this paper), a good understanding of this group of compounds should emerge.

Experimental Methods

Sample Preparation

Crystals of both SGSP and SGGP were prepared in the following manner. First, a fine-grained material was produced by solid-state reaction of a stoichiometric mixture of $\mathrm{SrCO}_{3}, \mathrm{Ga}_{2} \mathrm{O}_{3}$, and SiO_{2} (or GeO_{2}). The reactant products were then crushed and sealed in a platinum capsule. Starting from a temperature $10-20^{\circ} \mathrm{C}$ above the melting points, the samples were individually cooled at a constant rate of several degrees per hour over a range of $125^{\circ} \mathrm{C}$. This procedure yielded grains suitable for single crystal work. ${ }^{3}$ The crystal of SGSP selected for study was ground to a sphere of diameter $0.185 \pm 0.010 \mathrm{~mm}$. For SGGP a crystal $(0.09 \times 0.10 \times 0.16 \mathrm{~mm})$ with well-developed faces was chosen. Precession

[^1]Table 1. Lattice Parameters*

	SGSP	SGGP
a	$9.0009(9) \AA$	$9.2056(7) \AA$
b	$9.4840(8)$	$9.6602(6)$
a	$8.3987(7)$	$8.5834(6)$
B	$90.682(7)^{\circ}$	$90.432(5)^{\circ}$
V	$716.90(7) \AA^{3}$	$763.28(6) \AA^{3}$
The estimated standard errors		
are given in parentheses and		
refer to the last decimal place.		

photographs of both crystals confirmed the $P 2_{1} / a$ space group.

Lattice Parameter Determination

Unit cell parameters (Table 1) were determined on the same samples from which the single crystals were chosen. Powder photographs were taken by the Guinier-Jagodzinski technique using monochromatized $\mathrm{CuK} \alpha_{1}$ radiation ($\lambda=1.54051 \AA$) and a 99.999 percent silicon metal standard which was tested against the Parrish (1960) silicon and found to have a statistically identical cell dimension. After correcting for systematic errors, 59 lines for SGSP and 46 lines for SGGP could be indexed unambiguously. The lattice parameters were refined using the program LclsQ (Burnham, 1962).

Data Collection and Refinement

Intensity data for the range $\sin \theta / \lambda=0.1-0.5$ were collected from both SGSP and SGGP on a Picker automated four-circle diffractometer with a scintillation counter employing Nb -filtered $\mathrm{Mo} \mathrm{K} \alpha$ radiation. All reflections were measured using a $\theta-2 \theta$ scan at a speed of $1^{\circ} 2 \theta / \mathrm{min}$. and a scan width of $2.0^{\circ} 2 \theta+\Delta 2 \theta$, where $\Delta 2 \theta$ is the calculated $\alpha_{1}-\alpha_{2}$ peak separation. Background counts of 40 sec were taken at the beginning and end of each scan. A program written by C. T. Prewitt was used to correct the intensity data for background, Lorentzpolarization effects, and absorption, and to convert to $\left|F_{\text {obs }}\right|$. The linear absorption coefficients of 160.2 cm^{-1} for SGSP and $228.9 \mathrm{~cm}^{-1}$ for SGGP demonstrate the high absorption of $\mathrm{Mo} K \alpha$ radiation by Sr, Ga, and Ge . Reflections of the type $\left|F_{\text {obs }}\right|$ less than four times the standard deviation in $\left|F_{\text {obs }}\right|$ as determined by counting statistics were considered to be unobserved and were not used in the refinements. Exclusion of these reflections left 1706 and 1723 nonequivalent structural amplitudes for SGSP and SGGP, respectively. A listing of $\left|F_{\text {obs }}\right|$ and $F_{\text {calc }}$ values may be obtained from the authors.

Table 2. Site Occupancies Obtained for SGSP Using Two Refinement Programs, Ms-fls and Rfine

Site	MS-FLS		RFINE	
	Ga	Si	Ga	Si
$\mathrm{T}_{1}{ }^{\circ}$	0.996 (6)	0.004 (6)	0.995 (6)	0.005 (6)
$\mathrm{T}_{1}{ }^{\text {m }}$	0.016 (5)	0.984 (5)	0.019(10)	0.981 (10)
$\mathrm{T}_{2}{ }^{0}$	-0.003(5)	$1.003(5)$	-0.002(6)	$1.002(6)$
$\mathrm{T}_{2}{ }^{\text {m }}$	0.991 (8)	0.009 (8)	0.988 (5)	0.012 (5)

Starting coordinates were taken from a recent refinement of hurlbutite, $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{\mathrm{B}}$ (Lindbloom et al, 1974), with Ga assigned to the Be sites and Si (or Ge) to the P sites. Atomic scattering factors for neutral atoms were taken from Doyle and Turner (1968), and anomalous dispersion corrections were made using coefficients from Cromer (1965). Dr. L. W. Finger's program RFine was used throughout, although in the latter stages of refinement a leastsquares program (Ms-FLs) written by D. Stöckelmann was also employed. This program permits the use of double precision (on Ibм systems) in the summation of derivatives used to form the normal equations matrix and in the inversion of the matrix itself.

After initial convergence was obtained using unit weights and isotropic temperature factors, the data were corrected for extinction effects using an angular independent approximation described by Stout and

Jensen (1968, p. 409). The data were then weighted according to a scheme: $w=a_{0}+a_{1}\left|F_{\text {obs }}\right|+a_{2}\left|F_{\text {obs }}\right|^{2}+$ $\ldots+a_{i}\left|F_{\text {obs }}\right|^{i}$, where the coefficients $a_{0}, a_{1}, \ldots, a_{i}$ are chosen in such a way that w has a minimum value of 1.0 and the variation of $w|\Delta F|^{2}$ with $\left|F_{\text {obs }}\right|$ is minimized as suggested by Cruickshank (1965).
The final refinements using isotropic temperature factors yielded weighted and unweighted R values of 0.045 and 0.044 for SGSP and 0.070 and 0.062 for SGGP. With the introduction of anisotropic temperature factors the weighted and unweighted R factors dropped to 0.037 and 0.036 for SGSP and 0.059 and 0.050 for SGGP. At this stage the occupancies of the tetrahedral (T) sites were included as variables along with the atomic coordinates and anisotropic temperature factors. The total occupancy of each T site was constrained at 1.0 and the $\mathrm{Ga}: \mathrm{Si}$ (or $\mathrm{Ga}: \mathrm{Ge}$) ratio of $1: 1$ was maintained. The occupancies obtained for SGSP using both programs (see Table 2) are nearly identical and indicate that ordering is essentially complete. The occupancies obtained for SGGP have errors about 50 times greater than those of SGSP and therefore were not considered meaningful. This can be attributed mainly to the similar scattering powers of Ga and Ge , although a reasonable site refinement has been obtained in one instance (an ordered synthetic feldspar, $\mathrm{BaGa}_{2} \mathrm{Ge}_{2} \mathrm{O}_{8}$; Kroll, Phillips, and Pentinghaus, in preparation).

The positional parameters and anisotropic temperature factors quoted in Tables 3 and 4 are taken from the final anisotropic refinements assum-

Table 3. Atomic Coordinates and Isotropic Temperature Factors ($B)^{*}$

Atom	SGSP				SGGP			
	x	y	z	$B\left(\AA^{2}\right)$	x	y	z	$B\left(\AA^{2}\right)$
M (Sr)	0.8893(1)	$0.4131(1)$	$0.2515(1)$	0.68(1)	$0.8857(1)$	$0.4125(1)$	$0.2499(1)$	0.71 (2)
$\mathrm{T}_{1} \bigcirc(\mathrm{Ga})$. 2284 (1)	. $9257(1)$.9302(1)	. $50(2)$.2359(1)	.9242(1)	.9329(1)	.49(2)
$\mathrm{T}_{1} \mathrm{~m}$. 2434 (2)	. $9185(1)$. 5596 (2)	. 46 (4)	. 2425 (1)	. 9206 (1)	. $5622(1)$. 44 (2)
$\mathrm{T}_{2} \mathrm{O}$.0611(2)	. 2017 (1)	. 9463 (2)	. $39(4)$. $0565(1)$.1992(1)	.9408(1)	. 40 (2)
$\mathrm{T}_{2} \mathrm{~m}$ (Ga)	.0530(1)	.1910(1)	. $5732(1)$. 45 (2)	. $0529(1)$.1945(1)	. 5685(1)	.43(2)
$0_{1} 0$. $1930(4)$. 0980(4)	. $0150(5)$.64(6)	.1926(7)	. 0911 (7)	. $0179(8)$.78(11)
$\mathrm{O}_{1} \mathrm{~m}$. 1899 (5)	.0692(4)	. 4894 (5)	.76(7)	. $1905(7)$. 0784 (7)	. $4833(8)$.71(11)
$\mathrm{O}_{2} \mathrm{O}$.1188(5)	. 3651 (4)	. $9397(5)$.73(7)	. $1162(7)$. $3719(7)$. 9340 (8)	.59(11)
O_{2} m	.1230(5)	. 3718 (4)	. 5594 (5)	.73(7)	. 1182 (8)	. $3729(7)$. 5658 (8)	. 81 (12)
$\mathrm{O}_{3} \mathrm{O}$. $9268(4)$. 1961 (4)	. 0734 (5)	.70(6)	. $9134(7)$.1970(7)	. $0737(8)$.70(11)
$\mathrm{O}_{3} \mathrm{~m}$.8930(4)	. 1941 (4)	. 4365 (5)	.73(6)	. $9007(7)$. $1972(7)$. 4315 (8)	.70(11)
O_{4}	.0061(5)	. 1449 (4)	.7742(5)	. 91 (7)	. 0017 (9)	. 1363 (8)	. 7605 (8)	1.01 (12)
O_{5}	. 3184 (4)	. 9256 (4)	.7367(5)	.73(6)	. $3282(7)$. $9250(8)$. $7450(8)$	1.04(12)

[^2]Table 4. Anisotropic Temperature Factors ($\times 10^{4}$)

	SGSP						SGGP					
	$\beta 11$	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
M	29(1)*	15(1)	21(1)	I(1)	- 1(1)	-1 (1)	$33(1)$	15(1)	18(1)	1(1)	O(1)	0 (1)
$\mathrm{T}_{1} \mathrm{O}$	17(1)	13(1)	17(1)	O(1)	- 1 (1)	-2(1)	20(1)	13(1)	11(1)	1(1)	O(1)	$-1(1)$
$\mathrm{T}_{1} \mathrm{~m}$	15(1)	12(1)	$15(1)$	1(1)	1(1)	O(1)	18(1)	11(1)	10(1)	2(1)	O(1)	0 (1)
$\mathrm{T}_{2} \mathrm{O}$	13(1)	11(1)	13(1)	- 2(1)	O(1)	-2(1)	19(1)	9(1)	9(1)	O(1)	0 (1)	0 (1)
$\mathrm{T}_{2} \mathrm{~m}$	19(1)	10(1)	14 (1)	O(1)	0 (1)	2(1)	20(1)	10(1)	10(1)	1(1)	1(1)	O(1)
$\mathrm{O}_{1} \mathrm{O}$	$24(4)$	12(3)	$27(5)$	$4(3)$	- $5(4)$	-3(3)	$23(6)$	15(6)	29(8)	5(5)	-6(6)	$-2(6)$
$\mathrm{O}_{1} \mathrm{~m}$	$31(4)$	13(4)	$30(5)$	6(3)	$4(4)$	$5(3)$	$34(7)$	9(6)	$24(8)$	12(5)	$4(6)$	$7(6)$
$\mathrm{O}_{2} \mathrm{O}$	30(4)	12(3)	31(5)	-9(3)	-10(4)	$5(3)$	$27(7)$	$4(6)$	$28(8)$	- 5(5)	- 5(6)	$7(5)$
$\mathrm{O}_{2} \mathrm{~m}$	$26(5)$	15(4)	33(5)	-12(3)	9(4)	1(3)	38(8)	$17(7)$	20(8)	- 5(5)	9(6)	2(6)
$\mathrm{O}_{3} \mathrm{O}$	13(4)	$24(3)$	26(5)	- 4 (3)	8(3)	-9(3)	$11(6)$	$21(7)$	$32(8)$	- 4 (5)	1(5)	-7(6)
$\mathrm{O}_{3} \mathrm{~m}$	20(4)	18(3)	$28(5)$	- $4(3)$	- 3(4)	$7(3)$	22(6)	$17(6)$	25(8)	-13(5)	-10(6)	$7(6)$
O_{4}	48(5)	25(4)	18(5)	-15(4)	$0(4)$	-1(4)	57(9)	$32(7)$	10(7)	-21(6)	$0(6)$	$2(6)$
O_{5}	$24(4)$	33(4)	13(4)	- 5(3)	$6(3)$	$0(3)$	26(7)	48(8)	21 (8)	-2(6)	-3(6)	12(7)

* The estimated standard errors are given in parentheses and refer to the last digit.

Table 5. Interatomic Distances and Angles*

T-O distances (\AA)			0-0 distances (\AA) and 0-T-0 angles (${ }^{\circ}$)				
	SGSF	SGGP		SGSP	SGGP	SGSP	SGGP
$\mathrm{T}_{1} \mathrm{O}-\mathrm{O}_{1} \mathrm{O}$	1.812	1.815	$\mathrm{O}_{1} \mathrm{O}-\mathrm{O}_{2} \mathrm{O}$	2.807	2.783	100.5	99.1
$\mathrm{O}_{2} \mathrm{O}$	1.839	1.842	$\mathrm{O}_{3} \mathrm{O}$	3.079	3.050	116.2	114.8
$\mathrm{O}_{3} \mathrm{O}$	1.813	1.806	0_{5}	3.078	3.109	115.6	117.1
0_{5}	1.824	1.829	$\mathrm{O}_{2} \mathrm{O}-\mathrm{O}_{3} \mathrm{O}$	3.036	3.052	112.5	113.6
Mean	1.822	1.823	O_{5}	2.829	2.846	101.1	101.6
			$\mathrm{O}_{3} \mathrm{O}-\mathrm{O}_{5}$	2.971	2.968	109.5	109.5
$\mathrm{T}_{1} \mathrm{~m}-\mathrm{O}_{2} \mathrm{~m}$	1.617	1.734	$\mathrm{O}_{1} \mathrm{~m}-\mathrm{O}_{2} \mathrm{~m}$	2.544	2.689	103.6	100.8
$\mathrm{O}_{2} \mathrm{~m}$	1.634	1.756	$\mathrm{O}_{3 \mathrm{~m}}$	2.681	2.887	111.5	112.3
$\mathrm{O}_{3} \mathrm{~m}$	1.627	1.742	O_{5}	2.730	2.967	114.5	116.7
O_{5}	1.629	1.752	$\mathrm{O}_{2} \mathrm{~m}^{-\mathrm{O}_{3} \mathrm{~m}}$	2.724	2.932	113.3	113.9
Mean	1.627	1.746	O_{5}	2.599	2.763	105.6	103.9
			$\mathrm{O}_{3} \mathrm{~m}-\mathrm{O}_{5}$	2.639	2.842	108.3	108.9
$\mathrm{T}_{1} \mathrm{O}-\mathrm{O}_{1} \mathrm{O}$	1.641	1.757	$\mathrm{O}_{1} \mathrm{O}-\mathrm{O}_{2} \mathrm{O}$	2.693	2.892	110.6	110.7
$\mathrm{O}_{2} \mathrm{O}$	1.636	1.758	$\mathrm{O}_{3} \mathrm{O}$	2.622	2.810	106.9	106.6
$\mathrm{O}_{3} \mathrm{O}$	1.623	1.749	O_{4}	2.654	2.846	109.2	109.3
O_{4}	1.615	1.734	$\mathrm{O}_{2}{\mathrm{O}-\mathrm{O}_{3} \mathrm{O}}$	2.619	2.795	107.0	105.7
Mean	1.629	1.750	O_{4}	2.700	2.913	112.3	113.1
			$\mathrm{O}_{3} \mathrm{O}^{-\mathrm{O}_{4}}$	2.665	2.875	110.8	111.3
$\mathrm{T}_{2} \mathrm{II}-\mathrm{O}_{1} \mathrm{~m}$	1.835	1.847	$\mathrm{C}_{1}{ }^{\mathrm{mm}} \mathrm{O}_{2}{ }^{\mathrm{m}}$	2.992	3.008	109.4	110.0
$\mathrm{O}_{2} \mathrm{~m}$	1.831	1.826	$\mathrm{O}_{3} \mathrm{~m}$	2.953	2.935	107.3	106.2
$\mathrm{O}_{3} \mathrm{~m}$	1.832	1.823	0_{4}	3.010	3.009	111.9	110.9
O_{4}	1.799	1.807	$\mathrm{O}_{2} \mathrm{ml}-\mathrm{O}_{3} \mathrm{~m}$	2.854	2.861	102.4	103.3
Mean	1.824	1.826	O_{4}	3.006	3.032	111.8	113.2
			$\mathrm{O}_{3} \mathrm{rl}-\mathrm{O}_{4}$	3.039	3.024	113.7	112.8
T-0-T angles (${ }^{\circ}$)			Sr-0 distances (\AA)				
SGSP		SGGP		SGSP		SGGP	
$\mathrm{O}_{1} \mathrm{O}$	122.1	122.3		$\mathrm{Sr}-\mathrm{O}_{1} \mathrm{O}$	2.646	2.660	
$\mathrm{O}_{1} \mathrm{~m}$	127.9	124.6		$\mathrm{O}_{1} \mathrm{~m}$	2.706	2.703	
$\mathrm{O}_{2} \mathrm{O}$	120.8	118.0		$\mathrm{O}_{2} \mathrm{O}$	2.646	2.614	
$\mathrm{O}_{2} \mathrm{~m}$	123.3	119.9		$\mathrm{O}_{2} \mathrm{~m}$	2.588	2.608	
$\mathrm{O}_{3} \mathrm{O}$	126.1	124.3		$\mathrm{O}_{3} \mathrm{O}$	2.568	2.587	
$\mathrm{O}_{3} \mathrm{ml}$	124.4	123.2		$\mathrm{O}_{3} \mathrm{~m}$	2.594	2.602	
O_{4}	$\begin{aligned} & 133.4 \\ & 129.1 \end{aligned}$	129.0		O_{5}	2.635	2.637	
O_{5}		125.5	Mean		2.626	2.630	
Mean	125.9	123.4					

ing complete order for SGGP and assuming the occupancies given in Table 2 for SGSP. The interatomic distances and angles (Table 5) were obtained from the same refinements using the program Orfre (Busing, Martin, and Levy, 1964).

The atomic sites are labeled according to a scheme similar to that used for the triclinic alkali feldspars in which the O and m sites are related by a pseudomirror. The nomenclature is based on that of danburite (Phillips et al, 1974) and assumes that the T_{2} site $(x=0.0533 ; y=0.1924 ; z=-0.0558)$ which contains Si in danburite is the $T_{2} \mathrm{O}$ site containing Si in SGSP. The site occupancies then become:

$T_{2} \mathrm{O}$	$T_{1} m$	$T_{2} \mathrm{O}$	$T_{2} m$
B	B	Si	Si
Be	P	P	Be
Al	Si	Si	Al
Ga	Si	Si	Ga
Ga	Ge	Ge	Ga

Discussion

Pseudo-symmetry

Both the paracelsian and danburite structures can be thought of as sheets of 4 - and 8 -membered tetrahedral rings parallel to (001) with a regular alternation of T^{3+} and T^{4+} (for hurlbutite, T^{2+} and T^{5+}) cations within each sheet (see Fig. 2, Phillips et al, 1974). Every tetrahedron within a sheet points either up or down, and the apical oxygens serve as bridging

Fig. 1. The mean of the three $\mathrm{O}-T-\mathrm{O}$ angles involved in a given T-O bond is plotted against that bond distance for each T-O bond distance in SGSP $\left(\mathrm{SrGa}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right)$ and $\operatorname{SGGP}\left(\mathrm{SrGa}_{2} \mathrm{Ge}_{2} \mathrm{O}_{8}\right)$. The vertical arrows point out the bond distances which have the smallest and largest values of $\langle\mathrm{O}-T-\mathrm{O}\rangle_{3}$, for each of the three $T-\mathrm{O}$ populations, whereas the dashed lines represent visually estimated boundaries for these populations.
atoms to adjacent sheets, thereby forming a threedimensional framework of corner-sharing tetrahedra. In danburite (space group Pnam) these apical oxygens $\left(\mathrm{O}_{4}\right.$ and $\left.\mathrm{O}_{5}\right)$ lie on mirror planes at $z=0.25$ and 0.75 , forming only linkages of the type $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ or $\mathrm{B}-\mathrm{O}-\mathrm{B}$ between the successive layers which result in $\mathrm{Si}_{2} \mathrm{O}_{7}$ and $\mathrm{B}_{2} \mathrm{O}_{7}$ groups (Bakakin and Belov, 1960a; Phillips et al, 1974). In the paracelsians (space group $P 2_{1} / a$) these apical oxygens lie near pseudo-mirrors and form only linkages of the type $T^{3+}-\mathrm{O}-T^{4+}$ between the layers, resulting in alternation of T^{3+} and $\cdot T^{4+}$ cations throughout the entire framework. Both structures are completely ordered but according to two different schemes (cf Fig. 2, Lindbloom et al, 1974). The shifts of atomic coordinates from those of danburite are only slight in the paracelsian-type structures, and β angles are very nearly 90°. Hence
these structures are "strongly pseudo-orthorhombic" (Smith, 1953).

In SGSP and SGGP, which have β angles of 90.67° and 90.43° respectively, the crystallographic axes can be experimentally identified unequivocally, but in structures where β is close to 90° (as in paracelsian or hurlbutite) it may be difficult or impossible to distinguish the octants. In these cases there is an even chance the reflections may be assigned improper indices; e.g., $h k l$ may be indexed as $h k \bar{l}$. Because β is nearly 90°, such an error will not appreciably affect the refinement and indeed cannot be detected by simply examining the resultant structure. However, to obtain the conventional orientation ($\beta>90^{\circ}$ in a right-handed system) if $h k l$ reflections were indexed as $h k \bar{l}$, it would be necessary to transform the z coordinates to $1-z$. Using a four-circle diffractometer, Lindbloom et al (1974) were able to distinguish the octants in hurlbutite unambiguously, and in order to obtain convergence they found it was necessary to transform the z coordinates of the Bakakin and Belov (1960b) refinement in just this way.
In the space group $P 2_{1} / a$ it is equally valid to choose as the origin the center of symmetry at either $(0,0,0)$ or $(0,0,1 / 2)$. In practice this is determined by the choice of starting coordinates used in the refine-

Fig. 2. A plot of the mean $T-\mathrm{O}-T$ angle $v s$ the ratio of the mean $M-\mathrm{O}$ distance ($M=\mathrm{Ca}, \mathrm{Sr}$, or B) to the grand mean T - O distance for each of the structures. Danburite, which has an ordering scheme different from the rest, does not lie along the visually estimated dashed line.
ment, and because SGGP and SGSP were refined from the hurlbutite coordinates (Lindbloom et al, 1974), our final coordinates differ from those of Bakakin and Belov (1960a) by $1 / 2+z$.

One problem arising from the pseudo-symmetry is that if the β and β^{*} angles are unknowingly reversed in the data-collection procedure, and if the origin is chosen at $(0,0,1 / 2)$, then the refined structure will have coordinates corresponding to those which would have been obtained had the β angle been properly assigned and the origin chosen at $(0,0,0)$, except that the T^{3+} and T^{4+} sites will appear to be reversed. This explains why Bakakin and Belov (1960 a, b) were led to believe that P^{5+} and Al^{3+} (and Be^{2+} and Si^{4+}) occupy similar positions in the hurlbutite and paracelsian structures. Although this is not a serious matter, it is convenient for purposes of comparison to have the structures oriented in the same way.

Tetrahedral Ordering in Paracelsians and Danburite

As pointed out above, the paracelsians and danburite are ordered differently. Because both structure types are topologically so similar, danburite might be expected to have a regular threedimensional alternation of T^{3+} and T^{4+} like that observed in paracelsians and in the ordered alkalineearth feldspars where linkages of the type $T^{3+}-\mathrm{O}-T^{3+}$ (and $T^{4+}-\mathrm{O}-T^{4+}$) tend to be avoided. Until now no satisfactory explanation for the occurrence of B-O-B linkages in danburite has been provided.

Table 6. Calculated Relative Charges $[Q(O)]$ on Oxygen Atoms in a Variety of T-O-T Linkages

Linkage	Q(0)	Linkage
B-O-B	-1.25	
Si-0-Si	-1.27	B-0-Si
Al-0-Al	-1.53	
Si-0-Si	-1.40	AI-0-Si
Ga-0-Ga	-1.50	
Si-0-Si	-1.39	Ga-0-Si
Al-0-Al	-1.53	
Ge-O-Ge	-1.41	A1-0-Ge
Ga-0-Ga	-1.30	
Ge-0-Ge	-1.40	Ga-0-Ge

As part of an investigation of the bonding in feldspars Gibbs, Louisnathan, Ribbe, and Phillips (1974) performed extended Hückel molecular orbital (EHMO) calculations on idealized $T_{2} \mathrm{O}_{7}{ }^{n-}$ groups containing different T cations. Examining the bond overlap populations (n) of the $T-\mathrm{O}$ bonds to the bridging oxygens they found that $n(\mathrm{~B}-\mathrm{O})-n(\mathrm{Si}-\mathrm{O})$ $=1 / 3[n(\mathrm{Al}-\mathrm{O})-n(\mathrm{Si}-\mathrm{O})]$ (see Fig. 5, Gibbs et al, 1974). Using the procedure outlined by Gibbs et $a l$, we calculated the charges on the bridging oxygen atoms in a variety of $T_{2} \mathrm{O}_{7}{ }^{n-}$ linkages; the results are presented in Table 6. It is to be emphasized that although the absolute values of the charges probably have no physical significance, their relative values are meaningful.

It is expected that the tetrahedral cations in a framework structure would be arranged in such a way as to maintain a uniform charge distribution over all oxygen atoms. Inspection of Table 6 shows that if an $\mathrm{Al}-\mathrm{O}-\mathrm{Al}$ (or $\mathrm{Ga}-\mathrm{O}-\mathrm{Ga}$) linkage were present (along with a corresponding $T^{4+}-\mathrm{O}-T^{4+}$ linkage which would necessarily occur in a $T_{2}{ }^{3+} T_{2}{ }^{4+} \mathrm{O}_{8}$ framework), the bridging oxygens would have substantially different charges. On the other hand, formation of $\mathrm{B}-\mathrm{O}-\mathrm{B}$ and $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ linkages (rather than all $\mathrm{B}-\mathrm{O}-\mathrm{Si}$) produces only small differences in the relative charges on the bridging oxygens. This indicates that although perfect alternation of B^{3+} and Si^{4+} may be slightly favored, there are not the serious restrictions on the formation of $\mathrm{B}-\mathrm{O}-\mathrm{B}$ and $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ linkages in danburite as there are on both $\mathrm{Al}-\mathrm{O}-\mathrm{Al}$ and $\mathrm{Ga}-\mathrm{O}-\mathrm{Ga}$ linkages in the presence of either Ge or Si .

Distortions of Tetrahedra

As already pointed out, confusion may arise in recognizing the analogous sites in the different paracelsian-type structures because of their orthorhombic pseudo-symmetry. An examination of the distortions of tetrahedra in the different structures indicates that the orientations chosen for SGSP and SGGP are consistent with both those of danburite and hurlbutite. As a quantitative measure of distortion, we define a parameter σ, where

$$
\sigma^{2} \equiv \sum_{i=1}^{6}\left[(\mathrm{O}-T-\mathrm{O})_{i}-\langle\mathrm{O}-T-\mathrm{O}\rangle\right]^{2} / 6
$$

This is similar to the parameter σ^{2} tet defined by Robinson, Gibbs, and Ribbe (1971).

Values of σ in Table 7 demonstrate that distortions arise from both structural and chemical factors. The T_{1} sites are always more distorted than their cor-
responding, chemically identical T_{2} sites. Regardless of whether a 7 - or 9 -fold coordination model is chosen for the large cation, the T_{1} tetrahedra always have two more shared polyhedral elements than the T_{2} tetrahedra, where "shared polyhedral elements" are defined as the sum of all edges and corners common to both the tetrahedron and the alkaline-earth polyhedron (Ribbe, Phillips, and Gibbs, 1974). Ribbe et al (1974) observed that in anorthite and in the alkali feldspars, the distortion of tetrahedra varies directly with the number of shared polyhedral elements, therefore the T_{1} tetrahedra are expected to be the more distorted, as observed. The T_{2} sites in both danburite and the paracelsians have very similar environments, and the same is true for the T_{1} sites. This is reflected in the nearly constant ratios of distortions shown in the last line of Table 7, where $\sigma T_{2}: \sigma T_{1} \equiv$ $\left.1 / 2\left[\sigma\left(T_{2} \mathrm{O}\right) / \sigma\left(T_{1} m\right)+\sigma\left(T_{2} m\right) / \sigma T_{1} \mathrm{O}\right)\right]$.

For pairs of structurally similar sites ($T_{1} \mathrm{O}, T_{1} m$ or $T_{2} \mathrm{O}, T_{2} m$), the T^{3+} tetrahedra are more distorted than the T^{4+} tetrahedra; however, this does not necessarily imply that formal charge is the dominant factor controlling distortion. In fact, because T^{3+} cations are usually larger than T^{4+} cations, and because distortion increases with increasing cation size, it is not yet possible to separate the effects of charge and size on distortion, even though size appears to be the more important. The structure of SAGP (in preparation) may help to resolve this problem, because Al and Ge are similar in size. In addition it appears that the particular combination of T^{3+} and T^{4+} cations may also affect the distortions, although to a lesser degree. For example, respective Ga sites in SGSP are less distorted than in SGGP.

Despite the influence of these chemical factors, the dominant influence on distortion appears to be the environment of the tetrahedra, particularly with respect to the M polyhedra whose geometries, within a given structure type (paracelsian or feldspar), are remarkably similar, regardless of whether M is Ca , Sr , or Ba . For example, the distortion of tetrahedra which share equal numbers of polyhedral elements (edges plus corners) with M polyhedra in anorthite (CASF) and $\mathrm{SrAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ (SASF) are nearly identical (Chiari, Calleri, Bruno, and Ribbe, 1975, Fig. 4). Likewise, the mean distortion of tetrahedra in the feldspar SGSF (6.41°) (Kroll and Phillips, in preparation) is much more like that of BGSF (6.22 $)$ than that of SGSP (3.91 $)$.

It is interesting to note that the $\sigma T_{2}: \sigma T_{1}$ distortion ratio for danburite is the same as those for the paracelsians, even though the averaging process used

Table 7. Distortion Parameters for Tetrahedra in Danburite, Hurlbutite, SGSP, and SGGP

Distortion param.	Danburite	Hurlbutite	SGSP	SGGP
$\sigma\left(T_{1} 0\right)$	$3.87(\mathrm{~B})$	$4.75(\mathrm{Be})$	$6.31(\mathrm{Ga})$	$6.75(\mathrm{Ga})$
$\sigma\left(T_{1 m}\right)$		$3.66(\mathrm{P})$	$4.00(\mathrm{Si})$	$5.77(\mathrm{Ge})$
$\sigma\left(T_{2} 0\right)$	$1.96(\mathrm{Si})$	$1.99(\mathrm{P})$	$2.01(\mathrm{Si})$	$2.61(\mathrm{Ge})$
$\sigma\left(T_{2} \mathrm{~m}\right)$		$2.36(\mathrm{Be})$	$3.31(\mathrm{Ga})$	$3.56(\mathrm{Ga})$
Mean	2.92	3.20	3.91	4.62
$\sigma T_{2}: \sigma T_{1}$	0.51	0.52	0.51	0.49

to obtain the paracelsian values has the effect of factoring out the influence of chemistry, which is not the case for danburite.

Variation of Bond Angles and Distances

The tetrahedral distortions described above are related to differences in $\mathrm{O}-\mathrm{T}-\mathrm{O}$ angles from their respective mean values for individual tetrahedra and generally may be related to polyhedral edge- and corner-sharing. Phillips et al (1974) found that $\langle\mathrm{O}-T-\mathrm{O}\rangle_{3}$, the mean of the three $\mathrm{O}-T-\mathrm{O}$ angles common to a given T-O bond, is negatively correlated with the length of that $T-\mathrm{O}$ bond, especially for B in danburite. That same relationship is recognizable for $\langle\mathrm{O}-\mathrm{Ga}-\mathrm{O}\rangle_{3}$ and $\mathrm{Ga}-\mathrm{O}$ bond lengths in SGSP and SGGP, and much less certainly for $\langle\mathrm{O}-\mathrm{Si}-\mathrm{O}\rangle_{3}$ and $\mathrm{Si}-\mathrm{O}$ and $\langle\mathrm{O}-\mathrm{Ge}-\mathrm{O}\rangle_{3}$ and $\mathrm{Ge}-\mathrm{O}$ (Fig. 1).
The mean T-O distances in these paracelsian analogs are consistent with completely ordered T atom distributions. The $\langle\mathrm{Ga}-\mathrm{O}\rangle$ distances of the individual tetrahedra in the two structures are statistically identical, ranging between 1.822 and 1.826 Å. The $\langle\mathrm{Ge}-\mathrm{O}\rangle$ distances in SGGP are 1.746 and $1.750 \AA$ A , only several thousandths of an Angström larger than the $\langle\mathrm{Al}-\mathrm{O}\rangle$ distances in paracelsian BASP (Craig et al, 1973). The $\langle\mathbf{S i - O}\rangle$ distances in SGSP are 1.627 and $1.629 \AA$, larger than expected for an ordered framework silicate. Though the grand mean $\mathrm{Si}-\mathrm{O}$ distance in anorthite is only $1.613 \AA$, that value is 1.620 for BASP in which Al and Si are ordered. It is probable that the larger $\langle\mathrm{Si}-\mathrm{O}\rangle$ value for SGSP is due to inductive effects of the much larger Ga atoms in the four tetrahedra which share corners with each SiO_{4} tetrahedron.

The fundamental difference between feldspar- and paracelsian-type structures is the manner in which the double crankshaft chains of 4-membered tetrahedral rings are connected (Smith and Rinaldi, 1962). In feldspars there are two types of 8 -membered rings which are elongated normal to one another in adjacent layers, whereas in paracelsians there is only one type of 8 -membered ring which is related by a
pseudo-mirror to those in adjacent layers (Phillips et al, 1974, pp. 81-83 and Fig. 3). The environment of the M cation is much more constrained between adjacent 8 -membered rings in paracelsians than in feldspars, as evidenced by more regular M polyhedra and generally smaller temperature factors for M cations in paracelsians. For example, in SGSP and SGGP the Sr-O distances exhibit a range of only $0.13 \AA\left(B_{\mathrm{Sr}}=\right.$ $0.7 \AA^{2}$), whereas in SASF (Chiari et al, 1975) the range is $0.41 \AA\left(B_{\mathrm{Sr}}=1.1 \AA^{2}\right)$. Furthermore, the range of values of the individual T - $\mathrm{O}-T$ angles in the paracelsians is relatively small (up to 17°) compared to that in feldspars (up to 47°). However, in feldspars the mean $T-\mathrm{O}-T$ angle for individual structures shows less sensitivity to chemical variations ($\langle T-\mathrm{O}-T\rangle$ $=133^{\circ}$ for BGGF, 136° for anorthite) than in comparable paracelsians. In the paracelsians, because of the relationship of the framework to the M site, the mean inter-tetrahedral angles depend strongly on the combination of M and T cation size. Figure 2 shows the manner in which the inter-tetrahedral angles respond to differences in the relative sizes of the M cation and the cations in the tetrahedral framework.

In SGSP and SGGP, as in danburite and hurlbutite, the 2-coordinated O_{4} atom is involved in the widest $T-\mathrm{O}-T$ angle. The O_{1} and O_{3} atoms in the 4-membered rings have intermediate angles, while those at O_{2}, which occur only in the 8 -membered rings, tend to be the smallest.

Further analysis of bond angle and bond length variation in Sr paracelsians awaits the completion of refinements of the structures of slawsonite (SASPGriffen, personal communication) and SAGP (Kroll and Phillips, in progress).

Note Added in Proof

It has come to our attention that M. Calleri and G. Gazzoni have a paper in press (Periodico di Mineralogia XLIV) entitled "Part II. The crystal structure of the paracelsian modification of $\mathrm{SrGa}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$."

Acknowledgments

We express our appreciation to Herrn Diplom-Mathematiker Diedrich Stöckelmann of the Institut für Mineralogie, Münster, for many long and informative discussions on various computational procedures and for the use of his elegant refinement program, and to Professor G. V. Gibbs for his counsel on EHMO calculations. MWP thanks Professor Dr. H. U. Bambauer for his invitation to visit the Institut für Mineralogie at Münster during the year in which this work was consummated. Special thanks are due the Deutsche Forschungsgemeinshaft for financial support of this entire project, and PHR is indebted to the National Science Foundation for travel funds from grant GA-30864X.

References

Bakakin, V. V., and N. V. Belov (1959) The crystalline structure of danburite $\mathrm{CaB}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ and hurlbutite $\mathrm{CaBe}_{2} \mathrm{P}_{2} \mathrm{O}_{8}$. Dokl. Akad. Nauk SSSR, 129, 1155-1158.
—— AND - (1960) The crystal structure of paracelsian. Kristallografiya, 5, 864-868.
Burnham, C. W. (1962) LCLSQ, crystallographic lattice-constant least-squares refinement program. Carnegie Inst. Wash. Year Book, 61, 132-135.
Busing, W. R., K. O. Martin, and H. A. Levy (1964) Orffe, a Fortran crystallographic function and error program. U.S. Nat. Tech. Inform. Serv. Ornl-tm-306.
Chiari, G., M. Calleri, E. Bruno, and P. H. Ribbe (1975) The structure of partially disordered synthetic strontium feldspar. Am. Mineral. 60, 111-119.
Craig, J. R., S. J. Louisnathan, and G. V. Gibbs (1973) Al/Si order in paracelsian (abstr.). Trans. Am. Geophys. Union, 54, 497.

Cromer, D. T. (1965) Anomalous dispersion corrections computed from self-consistent field relativistic Dirac-Slater wave functions. Acta Crystallogr. 18, 17-23.
Cruickshank, D. W. J. (1965) Errors in least-squares methods. In, J. S. Rollett, Ed., Computing Methods in Crystallography. Pergamon Press, New York, p. 112-116.
Doyle, P. A., and P. S. Turner (1968) Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Crystallogr. A24, 390-397.
Gibbs, G. V., S. J. Louisnathan, P. H. Ribbe, and M. W. PhilLIPS (1974) Semiempirical molecular orbital calculations for the atoms of the tetrahedral framework in anorthite, low albite, maximum microcline, and reedmergnerite. In, W. S. Mackenzie and J. Zussman, Eds., The Feldspars. Manchester University Press, p. 49-67.
Goldsmith, J. R., and F. Laves (1955) Cation order in anorthite $\left(\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right)$ as revealed by gallium and germanium substitutions. Z. Kristallogr. 106, 213-226.
Lindbloom, J. T., G. V. Gibes, and P. H. Ribbe (1974) The crystal structure of hurlbutite: A comparison with danburite and anorthite. Am. Mineral. 59, 1267-1271.
Parrish, W. (1960) Results of the I.U.Cr. precision latticeparameter project. Acta Crystallogr. 13, 838-850.
Phillips, M. W., G. V. Gibbs, and P. H. Ribbe (1974) The crystal structure of danburite: A comparison with anorthite, albite and reedmergnerite. Am. Mineral. 59, 79-85.
-, P. H. Ribbe, and G. V. Gibbs (1973) Tetrahedral bond length variations in anorthite. Am. Mineral. 58, 495-499.
Ribbe, P. H., M. W. Phillips, and G. V. Gibbs (1974) Tetrahedral bond length variations in feldspars. In, W. S. Mackenzie and J. Zussman, Eds., The Feldspars. Manchester University Press, p. 26-48.
Robinson, K., G. V. Gibbs, And P. H. Ribbe (1951) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567-570.
Smith, J. V. (1953) The crystal structure of paracelsian, $\mathrm{BaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$. A cta Crystallogr. 6, 613-620.
—, and F. Rinaldi (1962) Framework structures formed from parallel four- and eight-membered rings. Mineral. Mag. 33, 202-212.
Stout, G. H., and L. H. Jensen (1968) X-ray Structure Determination. Macmillan, New York, 467 p.

Manuscript received, October 1, 1974; accepted for publication, March 24, 1975.

[^0]: ${ }^{1}$ Present address: Department of Geology, Arizona State University, Tempe, Arizona 85281.
 ${ }^{2}$ The abbreviated symbols are based on the initial letters of the M^{2+}, T^{3+}, and T^{4+} cations and the letter P which symbolizes the paracelsian structure type; by contrast, the feldspar, anorthite, is represented by CASF and celsian by BASF.

[^1]: ${ }^{3}$ A more detailed description of the synthesis of paracelsian-type compounds will be presented elsewhere (Pentinghaus, in preparation).

[^2]: * The estimated standard errors are given in parentheses and refer to the last decimal place.

