The crystal structure of synthetic $\mathrm{Cu}_{5}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4}$, a polymorph of pseudomalachite

James B. Anderson, Gerald L. Shoemaker, Edward Kostiner and Ferdinand A. Ruszala
Institute of Materials Science and Department of Chemistry University of Connecticut, Storrs, Connecticut 06268

Abstract

A synthetic phase formed in the $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$-phosphoric acid system at 55,000 psi and $400^{\circ} \mathrm{C}$ has been found to be an interesting polymorph of pseudomalachite, $\mathrm{Cu}_{5}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4}$. This new phase crystallizes in the space group $P 2_{1} / a$ with $a=9.186(2), b=10.684(2), c=4.461(1)$ \AA, and $\beta=92.31(1)^{\circ}$. The structure was solved by direct methods. Full-matrix least-squares refinement of the automatic diffractometer data converged to a residual $R=0.056$ ($R_{w}=$ 0.067). The unit cell has a volume essentially identical to that of pseudomalachite and one essentially equal axial length which, in both structures, represents the stacking distance between two-dimensional copper-containing sheets. The coordination polyhedra about the copper ions are similar in the two structures; the copper ions occupy two six-coordinated sites in the synthetic structure characterized by four short and two long bonds; the third copper ion is in a distorted square pyramidal coordination (four short and one long bond) with a sixth oxygen atom just outside the coordination sphere. The difference between the two structures is in the polyhedral linkages within these sheets; pseudomalachite is based on a three-connected two-dimensional net, while the synthetic phase is based on a four-connected net.

Introduction

Copper in its divalent oxidation state has the distinction of having a most varied role in oxide crystal chemistry. It has been found to occupy many types of coordination polyhedra ranging from square planar to distorted trigonal bipyramidal, square pyramidal, and octahedral. Superposed on these polyhedral types is the general distortion of four short plus one or two longer bonds characteristic of the divalent copper ion (Wells, 1975).

There are three well-characterized basic copper phosphates known, each with a different $\mathrm{Cu}: \mathrm{PO}_{4}$ ratio. Libethenite, $\mathrm{Cu}_{2}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})$, the structure of which has been refined (Walitzi, 1963), is isostructural with andalusite, $\mathrm{Al}_{2} \mathrm{SiO}_{6}$, with copper ions in five- and six-coordination. Cornetite, $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})_{3}$, has a three-dimensional network of polyhedra containing copper ions (Fehlmann et al., 1964) with two copper ions in tetragonal pyramidal coordination and a third in the characteristically distorted $(4+2)$ six-coordination. Pseudomalachite, $\mathrm{Cu}_{5}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4}$, has a sheet structure (Ghose, 1963) with copper ions reported to be in three crystallographically unique sites, each of distorted six-coordination.

A short description of the structure of pseudomala-
chite (Ghose, 1963) is in order at this point. The unit cell $\left(P 2_{1} / c ; a=4.47, b=5.75, c=17.08 \AA, \beta=\right.$ 91.12°) contains two types of parallel chains composed of edge-sharing copper-containing polyhedra which join to form sheets in the $b c$ plane. These sheets are linked by phosphate groups to give the short a dimension. Three crystallographically unique copper ions occupy six-coordinated sites: $\mathrm{Cu}(1)$ (on a center of symmetry) has two oxygens and two hydroxyl ions at an average distance of $1.98 \AA$ and two further oxygens at $2.69 \AA . \mathrm{Cu}(2)$ has one oxygen and three hydroxyl groups at an average distance of $1.98 \AA$, a fifth oxygen at $2.39 \dot{\AA}$, and a sixth at $2.70 \dot{\AA} . \mathrm{Cu}(3)$ has two oxygens and two hydroxyl ions at an average distance of $1.96 \AA$ and two more oxygens at an average distance of $2.42 \AA . \mathrm{Cu}(3)$ octahedra form edgesharing chains parallel to b which are crosslinked by pairs of edge-sharing (across a center of symmetry) $\mathrm{Cu}(2)$ polyhedra. $\mathrm{Cu}(1)$ octahedra in turn share edges with $\mathrm{Cu}(2)$ polyhedra only.

During an investigation of the hydrothermal preparation of crystals of complex phosphates of metals of the first transition series, a phase was isolated which proved to have essentially the same unit cell volume as pseudomalachite (PM)-439 \AA^{3}. A complete X-ray structural analysis of this new phase-as
a convenience, hereinafter referred to as PPMproved its polymorphism with PM. This paper describes this new structure and provides a discussion of the polyhedral linkages within the copper-containing sheets.

Experimental

Dana (Palache et al., 1951) reports that libethenite can be prepared by heating copper(II) phosphate and aqueous phosphoric acid in a closed tube at temperatures up to $200^{\circ} \mathrm{C}$. We have found (Ruszala and Kostiner, 1974) that in order to keep divalent copper from being reduced to the metallic state in hydrothermal systems it is necessary to keep the system acidic. In a successful attempt to crystallize Cu_{2} $\left(\mathrm{PO}_{4}\right)(\mathrm{OH})$ out of a $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}-0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ mixture, a second phase (~ 1 weight percent of the product) was isolated. Crystals of this secondary phase, PPM, were emerald-green in color and easily distinguished from the olive-drab crystals of libethenite. After two weeks at 55,000 psi hydrostatic pressure at $400^{\circ} \mathrm{C}$ in sealed gold capsules (contained in cold-seal hydrothermal vessels), plate-like crystals of PPM attained a maximum dimension of 0.2 mm . Under these conditions needle crystals of libethenite up to 0.05 mm long and 0.01 in cross-section were also formed.

A well-formed PPM crystal of dimensions $0.05 \times$ $0.19 \times 0.15 \mathrm{~mm}$ was selected for data collection; precession photographs revealed monoclinic symmetry with systematic absences corresponding to the space group $P 2_{1} / a$ in accordance with the Donnay convention.

The lattice parameters were determined in a PickII least-squares refinement program, using 44 reflections within the angular range $31^{\circ}<2 \theta<49^{\circ}$; the reflections were automatically centered on a Picker Facs-I four-circle diffractometer using $\mathrm{Mo} K \alpha_{1}$ radiation. At $22^{\circ} \mathrm{C}$ the lattice parameters are $a=$ 9.186(2), $b=10.684(2), c=4.461(2) ~ \AA$, and $\beta=$ $92.31(1)^{\circ}$, where the figures in parentheses represent the standard deviations in the last reported figure. The calculated density, with $Z=2$, is $4.370 \mathrm{~g} \mathrm{~cm}^{-3}$.

Diffraction intensities were measured using Zr-filtered MoK α radiation at a take-off angle of 3.0° with the diffractometer operating in the $\theta-2 \theta$ scan mode. Scans were made at 1° per minute over 1.5° with allowance for dispersion and with 20 -second background counts taken at both ends of the scan. Of the 1406 independent data investigated in the angular range $2 \theta<62^{\circ}, 1275$ were considered observable according to the criterion $\left|F_{\mathrm{o}}\right|>1.58 \sigma_{F}$, where σ_{F} is
defined as $0.02\left|F_{0}\right|+\left[C+k^{2} B\right]^{1 / 2} / 2\left|F_{\mathrm{o}}\right| \mathrm{Lp}$; the total scan count is C, k is the ratio of scanning time to the total background time, and B is the total background count. Three reflections were systematically monitored, and no variations in intensity greater than 6 percent were observed over the data collection period; the mean variation was much smaller.

Intensity data were corrected for Lorentz and polarization effects, and absorption corrections for the crystal with $\mu=128.5 \mathrm{~cm}^{-1}$ (MoK α) were made using a computer program written by H. W. Alcock and modified by B. Lee for a crystal of general shape. Input for the program included the indices of the plane faces of the crystal, which were determined with the aid of precession photographs, and the orientation angles of the crystal coordinate system with respect to the diffractometer coordinate system, which were obtained from the program Pick-II. The maximum relative absorption correction applied was 65 percent of $\left|F_{0}\right|$.

As the unit cell volume of this new phase was essentially identical to PM, the multisolution symbolic addition program Multan (Germain et al., 1971) was used for the unit cell contents Cu_{10} $\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{8}$; this choice of stoichiometry was confirmed by the final refinement. Phases with a probability of being greater than 97 percent correct were used in the starting set. The three strongest peaks in the best electron density map generated by Multan from these reflections proved to be copper atoms, one located at the origin and the other two on general positions, and the next two peaks were phosphorus atoms. Difference Fourier maps revealed the positions of the six oxygen atoms.

Full-matrix least-squares refinement (Busing et al. 1962a) using a $1 / \sigma^{2}$ weighting scheme, zerovalent scattering factors for Cu, P, and O (Cromer and Mann, 1968), isotropic temperature factors, and corrections for anomalous dispersion, yielded a residual $R=0.096$ and a weighted residual $R_{w}=0.111$. The anisotropic refinement, based on a data to parameter ratio of 15 with 87 independently varied parameters, yielded a final $R=0.056$ and $R_{w}=0.067$ for the observed data. The reflections $00 l$, for which F_{o} was very much less than F_{c}, were discarded in the final refinement as the absorption correction for this class of reflections proved unsatisfactory. The significantly larger values of B_{33} in the anisotropic refinement are undoubtedly due to the approximate nature of the absorption correction. The final atomic coordinates and anisotropic thermal parameters are given in Table 1; the structure factor data are presented in

Table 2. ${ }^{1}$ The hydroxyl oxygen atoms are $\mathrm{O}(5)$ and $\mathrm{O}(6)$.

Results

The cooper ions lie in sheets of edge-sharing coordination polyhedra in the $a b$ plane; the sheets are linked together in the c direction by rather distorted phosphate tetrahedra. The average $\mathrm{P}-\mathrm{O}$ distance is $1.540 \AA(-0.025,+0.030 \AA)$, and the average $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angle is $109.4^{\circ}\left(-4.4,+3.8^{\circ}\right)$. Table 3 presents the tetrahedral bond angles and distances. The standard deviations for all bond lengths and angles were computed by the function and error program Orffe (Busing et al., 1962b).

The copper ion polyhedra each exhibit the characteristic distortion of four short and one or two longer bonds found for divalent copper. Table 4 summarizes the bond angles and distances for the three copper polyhedra. $\mathrm{Cu}(1)$, at a special position, has two oxygens and two hydroxyl oxygens at an average distance of $1.949 \AA$ A and two more hydroxyl oxygens at $2.723 \AA . \mathrm{Cu}(3)$ has two oxygens and two hydroxyl oxygens at an average distance of $1.972 \AA$ and two oxygen atoms at an average distance of $2.296 \AA$. $\mathrm{Cu}(2)$ is surrounded by one oxygen atom and three hydroxyl oxygens at an average distance of $1.962 \AA$ and a fifth oxygen at $2.296 \AA$. A sixth oxygen atom, $O(3)$, lies at $2.909 \AA$; we consider this outside of the primary coordination sphere of $\mathrm{Cu}(2)$ for several rea-

[^0]Table 3. Bond distances, angles, and polyhedral edge lengths for the phosphorus tetrahedron

Bond Distance (A)	Bond Angles (${ }^{\circ}$)		Edge Length (A)	
P-O(3) $1.515(5)$	$0(3)-\mathrm{P}-0(1)$	$113.2(3)$	$0(3)-0(1)$	$2.541(7)$
$\mathrm{P}-\mathrm{C}(1) \quad 1.530(5)$	$\mathrm{O}(3)-\mathrm{P}-0(4)$	$111.8(3)$	$0(3)-0(4)$	$2.533(7)$
P-O(4) 1.545(5)	$0(3)-P-0(2)$	110.1(3)	$0(3)-0(2)$	$2.528(7)$
$\mathrm{P}-\mathrm{O}(2) 1.570(4)$	$0(1)-\mathrm{P}-0(4)$	108.0(3)	$0(1)-0(4)$	$2.487(6)$
	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	108.4(3)	$0(1)-0(2)$	$2.515(6)$
	O(4)-P-0(2)	105.0(3)	$0(4)-0(2)$	2.471 (6)

${ }^{\text {M }}$ Mumbers in parentheses are e.c.d.'s in the hast significant figure.
sons. Using the formula given by Brown and Shannon (1973): $s=s_{0}\left(R / R_{0}\right)^{-N}$, where s is the strength (in valence units) of a bond of length R, s_{0} is the ideal strength of the bond of length R_{0}, and N a characteristic constant, we have calculated the individual bond strengths (in valence units) for each of the copper polyhedra. Values for s_{0}, R_{0}, and N for divalent copper were taken as the empirically fit values (Brown and Shannon, 1973) of $0.333,2.084$, and 5.3 , respectively. Bond strength sum of 2.07 and $2.09 \mathrm{v} . \mathrm{u}$. were calculated for six-coordinated $\mathrm{Cu}(1)$ and $\mathrm{Cu}(3)$, respectively. Five-coordinated $\mathrm{Cu}(2)$ gave a calculated bond strength sum of 2.04 v.u. (the addition of the sixth oxygen would only contribute 0.05 v.u. to the bond strength sum). As the sum of the bond strengths should level off near the valence of the cation, fivecoordination about $\mathrm{Cu}(2)$ is indicated. Furthermore, if a bond existed between $\mathrm{Cu}(2)$ and $\mathrm{O}(3)$, the coordination about $\mathrm{O}(3)$ would consist of three copper atoms and one phosphorus atom, whilst $\mathrm{O}(1), \mathrm{O}(2)$, and $O(4)$ are each bonded to two copper atoms and one phosphorus atom. $\mathrm{O}(5)$ and $\mathrm{O}(6)$, the hydroxyl

Table 1. Fractional atomic coordinates and anisotropic thermal parameters

Atom	$10^{4} \mathrm{x}$	$10^{4} \mathrm{y}$	$10^{4} \mathrm{z}$	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
$\mathrm{Cu}(1)$	0	0	0	0.55 (4)	0.42 (2)	$1.37(4)$	0	$0.40(3)$	0
$\mathrm{Cu}(2)$	3647.5(8)	758.2(7)	204(2)	0.26 (3)	$0.37(3)$	1.40 (3)	0.09(2)	-0.02(2)	-0.20(2)
$\mathrm{Cu}(3)$	1354.8(8)	2639.3(7)	345(2)	$0.38(3)$	$0.35(3)$	1.21 (3)	$0.15(2)$	-0.17(2)	-0.14(2)
P	3874(2)	2989(2)	4793(3)	$0.24(5)$	0.33 (5)	0.89 (5)	-0.07(4)	$0.02(4)$	-0.03(4)
O(1)	-23(5)	1282(4)	2997(10)	0.51 (15)	$0.72(17)$	1.34(17)	$0.09(13)$	$0.00(13)$	-0.31(14)
O(2)	2932(4)	2155 (4)	2560(10)	0.31 (14)	0.44 (15)	2.10(16)	-0.02(12)	-0.18(11)	-0.17(13)
O(3)	2896(5)	3826(5)	6570(11)	1.04(17)	$0.65(17)$	1.64 (19)	0.21 (14)	$0.48(14)$	-0.33(15)
O(4)	4725(5)	2051(4)	$6834(10)$	$0.48(15)$	$0.59(16)$	1.11 (16)	-0.19(12)	-0.21(12)	$0.18(14)$
O(5)	724(5)	4202(4)	1625(10)	$0.42(14)$	$0.29(15)$	1.28(17)	-0.08(11)	$0.16(12)$	-0.01(13)
0(6)	1687 (5)	890(4)	-1646(10)	$0.35(14)$	$0.06(14)$	1.31 (17)	-0.18(11)	$0.15(12)$	-0.22(13)

[^1]oxygens, are bonded to three copper atoms and a hydrogen atom. Lastly, close investigation (vide in$f r a)$ of the polyhedral linkages within the sheets indicates the lack of bonding between $\mathrm{Cu}(2)$ and $\mathrm{O}(3)$.

Difference Fourier maps failed to reveal the exact position of the hydrogen atoms. No evidence for water molecules was found in PPM; this supports

Ghose's conclusion (1963) that water is not a part of the structure of PM. The copper-containing polyhedra are edge-linked to form the $a b$ sheets. Figure 1 is a projection of these sheets onto the $a b$ plane (centered about $1 / 2,1 / 2,0$). The phosphate tetrahedra join the sheets in the c direction; the same linkage is found in PM.

Table 4. Bond distances, angles, and polyhedral edge lengths for the copper polyhedra*

	Bond Distance (A)		Bond Angle (${ }^{\circ}$)	Edge Length (A)
Cu(1) Polyhedron				
$\mathrm{Cu}(1)-0(1)$		1.915 (5)		
$\mathrm{Cu}(1)-0(6)$		$1.984(4)$		
$\mathrm{Cu}(1)-0(3)$	2 x	2.723(5)		
$0(1)-\mathrm{Cu}(1)-0(6) b$			$86.9(2)$	$2.683(6)$
$0(1)-\mathrm{Cu}(1)-0(6) a$			93.1. 2)	$2.830(6)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-0(3) c$			92.0(2)	$3.383(7)$
$0(1)-\operatorname{Cu}(1)-0(3) a$			$88.0(2)$	$3.273(7)$
$0(3)-\mathrm{Cu}(1)-0(6) c$			96.8(2)	$3.554(7)$
$0(3)-\mathrm{Cu}(1)-0(6)$			83.2(2)	$3.173(7)$
$\mathrm{Cu}(2)$ Polyhearon				
$\mathrm{Cu}(2)-0(5) \mathrm{c}$		$1.950(5)$		
$\mathrm{Cu}(2)-0(2)$		$1.954(5)$		
Cu(2)-0(6)		$1.956(4)$		
$\mathrm{Cu}(2)-0(5) a$		$1.986(4)$		
$\mathrm{Cu}(2)-0(4)$		$2.296(5)$		
$0(5) c-C u(2)-0(2)$			171.1(2)	$3.892(6)$
$0(5) c-\mathrm{Cu}(2)-0(6)$			99.7(2)	$2.984(6)$
$0(5) c-\mathrm{Cu}(2)-0(5) \alpha$			81.7(2)	2.574 (9)
0 (5) $\alpha-\mathrm{Cu}(2)-0(4)$			95.5(2)	$3.152(6)$
$0(2)-\mathrm{Cu}(2)-0(6)$			81.3(2)	$2.546(6)$
$0(2)-\mathrm{Cu}(2)-0(5) a$			$98.7(2)$	$2.990(6)$
$0(2)-\mathrm{Cu}(2)-0(4)$			93.2(2)	$3.097(7)$
$0(6)-\mathrm{Cu}(2)-0(5) a$			171.6(2)	3.931(7)
$0(6)-\mathrm{Cu}(2)-0(4)$			95.4(2)	$3.153(6)$
$0(5) a-\mathrm{Cu}(2)-0(4)$			$76.2(2)$	$2.655(6)$
$\mathrm{Cu}(3)$ Polyhedron				
$\mathrm{Cu}(3)-0(4)$		$1.945(4)$		
$\mathrm{Cu}(3)-0(2)$		1.974 (4)		
$\mathrm{Cu}(3)-0(5)$		1.984 (5)		
$\mathrm{Cu}(3)-\mathrm{O}(6)$		1.984 (4)		
$\mathrm{Cu}(3)-\mathrm{O}(3)$		2.379 (5)		
$\mathrm{Cu}(3)-0(1)$		$2.466(5)$		
$\mathrm{O}(4)-\mathrm{Cu}(3)-\mathrm{O}(5)$			85.0(2)	$2.655(7)$
$0(4)-\mathrm{Cu}(3)-\mathrm{O}(6)$			95.4(2)	$2.906(6)$
$\mathrm{O}(4)-\mathrm{Cu}(3)-\mathrm{O}(3)$			$89.7(2)$	$3.066(7)$
$0(4)-\mathrm{Cu}(3)-\mathrm{O}(1)$			95.2(2)	$3.276(7)$
$0(2)-\mathrm{Cu}(3)-0(5)$			$98.6(2)$	$3.001(6)$
$0(2)-\mathrm{Cu}(3)-0(6)$			80.1 (2)	$2.546(6)$
$0(2)-\mathrm{Cu}(3)-0(3)$			94.7(2)	$3.213(7)$
$0(2)-\mathrm{Cu}(3)-0(1)$			80.2(2)	2.884 (6)
$0(5)-\operatorname{cu}(3)-0(3)$			90.0(2)	$3.097(6)$
$0(5)-\mathrm{Cu}(3)-\mathrm{O}(1)$			93.5(2)	$3.258(7)$
$0(6)-\mathrm{Cu}(3)-0(3)$			103.3(2)	3.431(7)
$0(6)-\mathrm{Cu}(3)-0(1)$			$73.3(2)$	$2.683(6)$
$0(4)-\mathrm{Cu}(3)-0(2)$			$174.3(2)$	
$0(5)-\mathrm{Cu}(3)-0(6)$			$166.7(2)$	
$0(3)-\mathrm{Cu}(3)-0(1)$			174.2(3)	

[^2]

Fig. 1. A view of the copper-containing layer (the $a b$ plane) of PPM centered about $1 / 2,1 / 2,0$. Copper atoms are represented by the smaller circles, oxygen atoms by the larger.

Discussion

The structures of PPM and PM are so closely related that a descriptive comparison is in order. In each structure, copper atoms are contained in twodimensional polyhedral networks which are then linked by phosphate tetrahedra to form the threedimensional structure. Because the choice of unit cell in the compounds is different, we are comparing the (001) projection of PPM and the (100) projection of PM . The copper-containing polyhedra are essentially the same. The difference between these two structures lies solely in the arrangements of these polyhedra in the two-dimensional planes.
A useful comparison of the two structures can be made if idealized octahedra are used to build the edge-sharing network of $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ sites while momentarily ignoring the $\mathrm{Cu}(1)$ sites. This leads in
each case to a two-dimensional layer of edge-sharing octahedra-brucite $\left[\mathrm{Mg}(\mathrm{OH})_{2}\right.$] or CdI_{2} type-from which one third of the octahedra have been removed as edge-sharing pairs. Figures 2 a and 2 b show the networks of $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ atoms in PPM and PM, respectively, constructed in this manner. The idealized unit cells are outlined. Close analysis reveals that PPM is based on a four-connected two-dimensional net whereas PM is based on a three-connected net; herein lies the basic difference between the two structures. The topological repeat units which define the four- and three-connected nets, respectively, are emphasized in Figure 2.

In reality the centers of the holes in these idealized nets are filled by the $\mathrm{Cu}(1)$ octahedra. The $\mathrm{Cu}(1)$ sites have become highly distorted in this idealized construction. The transition from the idealized network

Fig. 2. The idealized networks of edge-sharing $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ octahedra found in the layers of the two polymorphs of $\mathrm{Cu}_{5}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4}$: (a) PPM, slice parallel to (001), (b) PM, slice parallel to (100). The unit cell is outlined, and the locations of the inversion centers are indicated by small circles. The $\mathrm{Cu}(1)$ polyhedra are omitted (see text). The heavily outlined areas show the topological repeat units for the two networks: (a) four-connected in PPM, (b) three-connected in PM.

a

b

Fig. 3. (a) the idealized net of $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ polyhedra in PPM; (b) the actual view of the PPM layer. The arrows in (a) depict the relative rotations of $\mathrm{Cu}(3)$ octahedra and the motion of $\mathrm{O}(3)$ atoms which lead to $(\mathrm{b}) . \mathrm{Cu}(1)$ atoms lie at the centers of the large holes. Phosphate tetrahedra lie above and below the $\mathrm{O}(2)-\mathrm{O}(4)-\mathrm{O}(1)-\mathrm{O}(3)$ quadrangle and joining successive layers. The smallest circles indicate the positions of inversion centers.
of PPM to the actual structure is shown in Figures 3a and 3b. In Figure 3a the arrows depict the relative motion of $\mathrm{O}(3)$ and the rotations of $\mathrm{Cu}(3)$ octahedra which lead to the arrangement shown in Figure 3b. Figure 3b is the projection of the PPM $a b$ layer as shown in Figure 1 but with the oxygen-oxygen contacts outlined to show the polyhedral edges. It can be seen that this analysis leads to the correct distortions of the copper polyhedra in PPM. A similar analysis can be made for PM.

The distortions from the idealized network of Figure 2 a have the following effects: (1) the $\mathrm{Cu}(1)$ octahedral sites become less distorted, (2) the $\mathrm{O}(1)$ and $\mathrm{O}(3)$ atoms draw together allowing bridging of $\mathrm{O}(1)-\mathrm{O}(2)$ and $\mathrm{O}(3)-\mathrm{O}(4)$ by the phosphate tetrahedron, (3) the $\mathrm{Cu}(2)-\mathrm{O}(3)$ distance lengthens to the point where bonding is no longer possible, and (4) the whole structure shears in the a direction. These distortions do not destroy the inversion center or glide planes which are observed in the idealized network.

In view of the great similarities between the two structures it becomes a matter of speculation as to what factors cause the stabilization of one network over the other. In addition, since there are other ways to remove one-third of the octahedral sites as edgesharing pairs from a CdI_{2}-type layer than the two shown in Figures 2a and 2b, it seems that other twodimensional polymorphs of $\mathrm{Cu}_{5}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})_{4}$ might be found. We expect to carry out a refinement of the structure of PM since it would seem, in analogy to the above analysis, that the sixth oxygen in the $4+1+1$ coordination of $\mathrm{Cu}(2)$ (Ghose, 1963) should not be bonded to that atom.

Acknowledgments

This work was supported by the National Science Foundation through grant \#GH-42433. Computations were carried out at the University of Connecticut Computer Center.

References

Brown, I. D. and R. D. Shannon (1973) Empirical bond-strength-bond-length curves for oxides. Acta Crystallogr. A 29, 266-282.
Busing, W. R., K. O. Martin and H. A. Levy (1962a) Orfls. U.S. Natl. Tech. Inform. Serv. ORNL-TM-305.
——,————, (1962b) ORFFE. U. S. Natl. Tech. Inform. Serv. ORNL-TM-306.
Cromer, D. T. and J. B. Mann (1968) X-ray scattering factors computed from numerical Hartree-Fock wave function. Acta Crystallogr. A24, 321-324.
Fehlmann, M., S. Ghose and J. J. Finney (1964) Direct determination of the crystal structure of cornetite $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})_{3}$ by the Monte Carlo method. J. Chem. Phys. 41, 1910-1916.
Germain, G., P. Main and M. N. Woolfson (1971) The application of phase relations to complex structures. III. Acta Crystallogr. A27, 368-376.
Ghose, S. (1963) The crystal structure of pseudomalachite, $\mathrm{Cu}_{5}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4}$. Acta Crystallogr. 16, 124-128.
Palache, C., H. Berman and C. Frondel (1951) System of Mineralogy of. . . . Dana, 7th ed., Vol. 2, John Wiley and Sons, New York, p. 863.
Ruszala, F. A. and E. Kostiner (1974) The hydrothermal synthesis of single crystals of azurite and malachite. J. Cryst. Growth, 26 , 155-156.
Walitzi, E. M. (1963) Structure refinement of libethenite $\mathrm{Cu}_{2}(\mathrm{OH}) \mathrm{PO}_{4}$. Tsch. Mineral. Petrog. Mitt. 8, 614-624.
Wells, A. F. (1975) Structural Inorganic Chemistry, 4th ed., Oxford University Press, Oxford.

Manuscript received, January 8, 1976; accepted for publication, April 28, 1976.

[^0]: ${ }^{1}$ To receive a copy of Table 2, order document number AM-76022 from the Business Office, Mineralogical Society of America, Suite 1000 lower level, 1909 K Street NW, Washington, D.C. 20006. Please remit $\$ 1.00$ in advance for the microfiche.

[^1]: *Numbers in parentheses are e.s.d.'s in the last significant figure. The B^{\prime} 's are defined by the generat temperature factor $\exp \left[-\frac{7}{4}\left(B_{7} h^{2} a^{* 2}+B_{22^{2}} k^{2} b^{* 2}+B_{33^{2}} l^{2} c^{* 2}+2 B_{72} h k a^{*} b^{*}+2 B_{7} h \ell a^{*} c^{*}+2 B_{23} k \ell b^{*} c^{*}\right)\right]$.

[^2]: Numbers in parentheses are e.s.d.'s in the last significant figure. a) $7 / 2+x, 7 / 2-y, z$; b) $\bar{x} \bar{y} \bar{z}$; c) $7 / 2-x, 1 / 2+y, \bar{z}$

