Improved heavy-liquid separation at fine particle sizes

KEITH J. HENLEY

The Australian Mineral Development Laboratories (AMDEL)
Flemington Street, Frewville, Adelaide, South Australia 5063

Abstract

A method is described for effective heavy-liquid separation of material in the particle size range 50 to 10 μm. The method involves centrifugal separation of the material in a necked glass tube, in which a density gradient column spanning the specific gravity range of the light minerals is positioned above the constriction, the specific gravity of the heavy liquid from the base of the density gradient column to the bottom of the tube being the desired specific gravity of separation. When the sample is stirred into the gradient and centrifuged, the light mineral particles spread out loosely through the density gradient and allow the heavy particles to pass through into the lower compartment of the tube. This method has been tested with various heavy liquids and mineral mixtures, and has been shown to be consistently more effective than the normal method using a liquid of uniform specific gravity, in which heavy particles tend to be entrained in the compact mat of light particles which rises to the top of the liquid during centrifugation.

Introduction

Heavy-liquid separation is an important tool of the mineralogist in the concentration of specific minerals or groups of minerals, and facilities for heavy-liquid separation are almost ubiquitous in geological and mineralogical laboratories. The most commonly used liquids are bromoform (sp.gr. 2.89), tetrabromoethane (sp.gr. 2.96), di-iodomethane (sp.gr. 3.32) and Clerici solution (sp.gr. up to 4.3 at room temperature). The first three (organic) liquids can be diluted with acetone, alcohol, or NN-dimethylformamide, among others, whereas Clerici solution is diluted with distilled water. Separation of grains coarser than about 50 μm is normally done statically in a separation funnel or similar device, whereas finer-sized material is normally separated centrifugally, using one of a number of separation tubes or sleeves.

With the advent of the electron-probe microanalyzer the need for separating pure mineral samples for chemical analysis has decreased considerably. However, such samples are still required for geochronology studies, and in beach-sand exploration the proportion of 'heavy minerals' is the first parameter determined on drill-core material. In ore-dressing mineralogical studies, heavy-liquid separation still forms an integral part of the assessment procedure, both with regard to concentrating small proportions of valuable heavy minerals for microscopic study, and for determining the liberation characteristics of the valuable minerals (Muller et al., 1969; Henley et al., 1973). In addition, pure samples of specific minerals may need to be prepared for analysis to determine how closely they meet commercial specifications. In contrast to much of the normal geological and mineralogical heavy-liquid separation work, ore-dressing mineralogical evaluation commonly requires separation of finely-ground material, much of which may lie within the size range 50 to 10 μm. Heavy-liquid separation within this size range requires the use of a centrifuge, and it is the purpose of this note to describe an improved separation procedure for this type of material.

The improved method

The improved method was developed as a result of problems encountered in the centrifugal separation of particles in the size range 50 to 10 μm using a heavy liquid of uniform density. Our normal centrifugal heavy-liquid separation procedure involves the use of a simple necked glass tube (Fig. 1) of about 130 ml capacity in which the angle of necking is very shallow. After centrifugation a conical plunger is inserted gently through the 'floats' to seal off the neck, at which stage 'floats' and 'sinks' can be recovered sepa-
Fig. 1. Necked glass tube and plunger for centrifugal heavy liquid separation.

This procedure has been found to be simpler to use than any of the multiple-tube centrifuge systems, and can be used easily with all heavy liquids, although care has to be taken with high-density Clerici solution because of the danger of shattering the glass if the centrifuge is run at high speed. However, despite its simplicity, repeated separations are required to give good recovery of heavy minerals into ‘sinks,’ because of entrainment of a significant proportion of the heavy minerals in the predominant light fraction. The entrainment problem increases as the particle size decreases (and the number of particles per unit weight increases), and is particularly acute in the $-20+10 \, \mu m$ size range ($10 \, \mu m$ is the approximate practical lower size limit of heavy liquid separation; below this size entrainment and flocculation prevent effective separation).

The new method involves incorporating a suitable density-gradient column in the centrifuge tube above the neck, to spread out the light minerals and prevent the formation of a compact mat of light mineral particles such as is obtained when using a heavy liquid of uniform density. The gradient is chosen to range in specific gravity from that at which the actual separation is required (e.g., 3.3) to a value which is slightly less than the majority of the light minerals present (e.g., 2.4, if quartz, feldspar, and biotite are the major minerals present). On centrifugation, each of the light minerals positions itself at a level corresponding to its density in the gradient, and the mass of light minerals is thus distributed through a significant proportion of the volume of the gradient (Fig. 2). Where a mineral of uniform density (e.g., quartz) is present, it will form a discrete, compact layer which will tend to entrain heavy particles, but for many minerals slight variations in density will tend to spread out the layers vertically and allow the heavy mineral grains to pass through into the ‘sinks.’

Incorporation of a density gradient column into the separation tube is a relatively simple matter. The tube is half-filled with dense liquid and the light liq-

Fig. 2. Density gradient separation of C3 fraction of granite/galena mixture. Note the spreading of the light minerals through the gradient, thereby reducing entrainment of the dense galena.
uid is carefully poured in on top. Rotation of the tube
with a swinging motion of the hand will cause swirling
in the tube which will tend to homogenize the two
liquids at their junction and thereby create a density
gradient. This procedure is continued until the de-
sired gradient is obtained, as indicated by the vertical
separation in the tube of two glass marker beads of
known intermediate densities. The precise profile of
the gradient is generally not critical, the essential
requirement being the spreading apart of the various
light minerals to prevent entrainment of heavy miner-
als. The use of the gradient also facilitates insertion of
the conical plunger to seal off the neck of the tube, as
the mineral grains are loosely in suspension and not
present as a compacted mat. The density gradient is
remarkably stable, as once formed and left undis-
turbed, molecular diffusion is the only mechanism
tending to cause homogenization. As pointed out by
Muller and Burton (1965), density gradients may re-
main stable from several days to several weeks.

Comparison of methods

A comparative study was made of the two separa-
tion methods (i.e., uniform-density liquid and den-
sity-gradient column), using a mixture of pulverized
granite (composed of quartz, albite, microcline, and
biotite and containing 20 ppm Pb and 5 ppm Cu) and
pure galena; subsequently a briefer series of tests was
carried out using a mixture of the pulverized granite
and pure chalcopyrite. The heavy liquid used for the
main tests was di-iodomethane (sp.gr. 3.3); dilution
for the density gradients was with NN-dimethyl-
formamide (Meyrowitz et al., 1960). In addition,
some tests were carried out using tetrabromoethane
as the heavy liquid. Tests were also carried out on
different amounts of sample to determine the effect of
this variable on separation efficiency.

The galena and chalcopyrite were hand-picked
from massive ore, crushed, separated at specific gravity 3.3 to
remove any possible intergrown silicates,
and then pulverized to −53 μm. The granite was
separately pulverized to −53 μm. Separate mixtures
of granite with about 2 percent galena and 2 percent
chalcopyrite respectively were prepared and sized in a
Warman Cyclosizer to give size fractions in the range
53 to 10 μm (equivalent quartz sphere), the −10 μm
fraction not being retained. A number of tests were
carried out using the combined −53+10 μm fractions
and also individual size fractions within this range.

For the tests with uniform-density liquid, a known
weight of sample was stirred into the liquid and any
entrained air removed by vacuum treatment; the
sample was then centrifuged, and the ‘floats’ re-
moved, washed, dried, and weighed. One-eighth of the
‘floats’ was riffled out for analysis for Pb or Cu, the
remainder was returned to a separate tube, and the
whole procedure repeated. In this way representative
‘floats’ material at each stage was obtained for analy-
sis, and by calculating the distribution of Pb or Cu
between ‘floats’ and ‘sinks’ at each separation stage,
it was possible to monitor the progressive change in
separation efficiency.

A similar procedure was adopted for the density-
gradient tests, except that a measured weight of mate-
rial was stirred into a density gradient of known
characteristics (determined using glass beads of
known specific gravity) rather than a liquid of uni-
form density. The results of the initial comparison
test using 10g of −53+10 μm sample showed that,
whereas the uniform-density liquid gave ‘floats’ products
containing 27.1 percent of the galena after one
stage of separation and 6.8 percent after four stages,
the corresponding ‘floats’ products from the density-
gradient separation contained 7.7 and 0.6 percent of
the galena respectively.

<table>
<thead>
<tr>
<th>Sample weight (g)</th>
<th>Number of separation stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5.0</td>
<td>8.0</td>
</tr>
<tr>
<td>2.5</td>
<td>4.9</td>
</tr>
<tr>
<td>1.25</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Table 2. Percentage of galena in size fraction reporting into ‘floats’

<table>
<thead>
<tr>
<th>(a) Separation in liquid of uniform density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size fraction</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>C5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Separation in density gradient column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size fraction</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>C5</td>
</tr>
</tbody>
</table>

*by initial weight of granite-galena mixture.
Density-gradient separation tests on the $-53+10$ \(\mu m\) sample using progressively decreasing sample weight gave the results shown in Table 1, clearly indicating, as would be expected, that decreasing the sample weight increased separation efficiency.

Comparative separation tests on individual Cyclosizer size fractions (C1 to C5) of the granite–galena mixture gave the results shown in Table 2, which indicate that for all size fractions the density-gradient separation method is superior to the uniform-density separation method and that there is a progressive decrease in efficiency with decreasing particle size for both separation methods. The results for the C5 fraction are particularly interesting; with the uniform-density separation method, 18.4 percent of the galena still remains in 'floats' after four stages of separation, whereas the corresponding figure for the density-gradient separation method is only 1.3 percent. The data for the C1, C3, and C5 size fractions are illustrated diagrammatically in Figure 3.

Table 3 summarizes the data for the tests on the granite–chalcopyrite mixture. It is interesting to note that there is generally less difference between the two separation methods and that at most particle sizes the separation has been more efficient than that for the corresponding granite–galena mixture. I suggest that these effects are due to the difference in average par-

Table 3. Percentage of chalcopyrite in size fraction reporting into 'floats'

<table>
<thead>
<tr>
<th>Size fraction</th>
<th>Uniform-density liquid (g)</th>
<th>Density gradient column (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>C2</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>C3</td>
<td>2.3</td>
<td>1.3</td>
</tr>
<tr>
<td>C4</td>
<td>5.3</td>
<td>3.2</td>
</tr>
<tr>
<td>C5</td>
<td>20.9</td>
<td>5.7</td>
</tr>
</tbody>
</table>

3g initial weight of granite-chalcopyrite mixture
particle size of the heavy mineral in the two sets of experiments; in any Cyclosizer fraction the grains of galena are significantly smaller than chalcopyrite because of the difference in density between the two minerals, and the efficiency of separation is greater the less the difference in size between heavy and light minerals.

Tests using tetrabromoethane (sp.gr. 2.96) gave similar results to those obtained using di-iodomethane.

Tests on the $-10+5 \mu m$ (equivalent quartz sphere) fraction of the granite-chalcopyrite mixture showed that both methods of separation were equally ineffective—even after five stages of separation the ‘floats’ still contained about 25 percent of the chalcopyrite in the size fraction.

Conclusions

Overall, the results of the tests indicate that: (a) the density-gradient separation method is more efficient than the uniform-density separation method at all particle sizes down to $10 \mu m$; (b) the difference in efficiency between the two methods increases with increasing density of the heavy fraction; (c) the efficiency of both methods decreases with decreasing particle size and with increasing sample weight; and (d) both methods are relatively ineffective at particle sizes below $10 \mu m$.

Acknowledgments

I thank Manfred Imiela for carrying out most of the experimental work and the Director of Amdel for permission to publish this note.

References

Manuscript received, May 28, 1976; accepted for publication, September 17, 1976.