An X-ray and neutron diffraction study of hydrous low cordierite

Janet P. Cohen, ${ }^{1}$ Fred K. Ross ${ }^{2}$ and G. V. Gibbs
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Abstract

The structure of low cordierite, $\left(\mathrm{Na}_{0.05} \mathrm{~K}_{0.02} \mathrm{Ca}_{0.02}\right)\left(\mathrm{Mn}_{0.01} \mathrm{Mg}_{1.91} \mathrm{Fe}_{0.08}\right)\left(\mathrm{Si}_{5.01} \mathrm{Al}_{3.95}\right.$ $\left.\mathrm{O}_{18.01}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.58} ; a=17.079(3), b=9.730(2), c=9.356(2) \AA$; Ccm, from White Well, Australia (Pryce, 1973), was refined by least-squares methods using X-ray and neutron diffraction data. A site-refinement with the neutron data indicates an ordered arrangement of Al and Si in the tetrahedral framework. Neutron $\Delta \rho$ maps calculated around the point at $(0,0,1 / 4)$ indicate that the $\mathrm{H}_{2} \mathrm{O}$ molecules in the cavity at $z=1 / 4$ are disordered into four different orientations with the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ plane of each nearly parallel to (001). This result disagrees with the possible orientation parallel to (100) proposed from infrared absorption spectra and confirmed by an NMR study. A neutron site refinement showed no evidence for substitution of H^{+}for Al and Si in the tetrahedral framework, and a $\Delta \rho$ map calculated over the whole unit cell shows no residual negative peaks that may be ascribed to H^{+}. The alkaline atoms are centered about ($0,0,0$). Mulliken population analyses calculated for the tetrahedral framework using constant bond lengths and the observed angles within and between the tetrahedral ions indicate that the bond length variations in the framework may be ordered in terms of bonding and antibonding Mulliken overlap populations. As expected, the bond length variations in the framework correlate linearly $(r=0.9)$ with the valence angles within and between the tetrahedra. Calculations for 4 -membered $\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{12}$ rings like those in cordierite result in a lower electronic energy when Al- and Si-containing tetrahedra alternate than when "the aluminum avoidance rule" is violated. Calculations for the 6 -membered $\mathrm{Al}_{2} \mathrm{Si}_{4} \mathrm{O}_{18}$ rings like those in cordierite predict a higher energy when AlO_{4} tetrahedra are adjacent, but predict identical energies when the two AlO_{4} tetrahedra are separated by one or two SiO_{4} tetrahedra.

Introduction

The location and the role of water in cordierite, $(\mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn})_{2} \mathrm{Al}_{4} \mathrm{Si}_{5} \mathrm{O}_{18} \cdot n \mathrm{H}_{2} \mathrm{O}$, has been the subject of considerable study and debate in the last few years (Smith and Schreyer, 1960; Schreyer and Yoder, 1964; Newton, 1966, 1972). According to Sugiura (1959) and Iiyama (1960), there are two types of water in cordierite. Evidence for this was obtained in heating experiments, from which they proposed that a gradual weight loss below $500^{\circ} \mathrm{C}$ represents a loss of loosely bound molecular $\mathrm{H}_{2} \mathrm{O}$ from the channels, whereas a rapid weight loss above $500^{\circ} \mathrm{C}$ represents a loss of water replacing silicate tetrahedra by one of three possible substitutions: $\mathrm{O}^{-2} \rightarrow 2(\mathrm{OH})^{-} ; \mathrm{SiO}_{4} \rightarrow$

[^0]$4(\mathrm{OH})^{-}$; or $\mathrm{Si}^{+4} \rightarrow 4 \mathrm{H}^{+}$. However, no evidence for this type of substitution was observed in a later study using infrared absorption spectroscopy (Schreyer and Yoder, 1964). On the other hand, evidence for molecular $\mathrm{H}_{2} \mathrm{O}$ in the channels has been provided by broad low maxima centered at $(0,0,1 / 4)$ in electron density maps of hydrous cordierite (Gibbs, 1966; Meagher, 1967). An X-ray determination of the orientation of the $\mathrm{H}_{2} \mathrm{O}$ molecule within the channel is difficult because hydrogen atoms are poor scatterers of X-rays. Therefore, Farrell and Newnham (1967) resorted to infrared absorption spectroscopy to determine a possible orientation of the water molecule in the (100) of the Guilford cordierite with the $\mathrm{H}-\mathrm{H}$ vector parallel to [001]. This orientation was later confirmed in a nuclear magnetic resonance study of a cordierite from Madagascar (Tsang and Ghose, 1972).

The present X-ray and neutron diffraction study of
hydrous Mg-rich low cordierite (Cohen, 1975; Cohen et al. 1975) was undertaken to determine (1) the location and orientation of the water molecule in the channel, (2) whether H^{+}substitutes for Al and Si in tetrahedral coordination, (3) the degree of $\mathrm{Al} / \mathrm{Si}$ order in the tetrahedral framework, and (4) whether the steric details and the ordered configuration of Al and Si in the tetrahedral framework may be rationalized in terms of semi-empirical molecular orbital theory.

Experimental

The pale-blue translucent cordierite crystals used in this study were kindly supplied by M. W. Pryce, who described their occurrence in a phlogopite schist near White Well, Western Australia. The chemical formula of this cordierite, here called the White Well corderite, is
$\left(\mathrm{Na}_{0.05} \mathrm{~K}_{0.02} \mathrm{Ca}_{0.02}\right)\left(\mathrm{Mn}_{0.01} \mathrm{Mg}_{1.91} \mathrm{Fe}_{0.08}\right)$

$$
\left(\mathrm{Si}_{5.01} \mathrm{Al}_{3.95} \mathrm{O}_{18.01}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.56},
$$

$Z=4$ (Pryce, 1973), being close to the end-member composition of the Mg -cordierite. Since Be was not listed in Pryce's chemical analysis, an emission spectroscopic analysis was undertaken because Be is a common constituent in many cordierites. The analysis, completed by courtesy of the Union Carbide Central Scientific Laboratories at Tarrytown, New York, showed the White Well cordierite to contain no Be. The cell parameters and the distortion indices of the cordierite determined by least-squares refinement of X-ray and neutron diffraction data are compared with those determined by Pryce as follows:

Pryce (1973) Neutron study X-ray study

a	$17.055(5)$	$17.086(10)$	$17.079(3)$
b	$9.724(5)$	$9.737(6)$	$9.730(2)$
c	$9.350(1)$	$9.356(6)$	$9.356(2)$
Δ	0.23°	0.24°	0.25°

The cell parameters obtained in the least-squares analysis of X-ray data were considered most precise and were used in all subsequent calculations. The density, $2.56 \mathrm{~g} / \mathrm{cm}^{3}$, calculated from the observed cell parameters and composition compares well with that [2.57(1)] measured by Pryce (1973). The refractive indices, $\alpha=1.536, \beta=1.540, \gamma=1.543$, and the optic axial angle, $2 V_{\alpha}=80^{\circ}$, were measured using plane polarized white light (Pryce, 1973). Precession photographs of the White Well cordierite (MoK_{α} radiation) confirm the space group Cccm for cordierite as determined by Byström (1942).

The reader is referred to Cohen (1975) for a discussion of the experimental procedures used in recording the neutron and X-ray diffraction data, for a listing of the observed and calculated structural amplitudes, and for an interpretation of the $\Delta \rho$ maps used in determining the orientation of the water molecules in the channel. The final positional and thermal parameters are given in Table 1; the interatomic distances and angles are given in Tables 2, 3 and 4 ; and the orientations and magnitudes of the root mean square (r.m.s.) displacements are given in Table 5.

Table 1. Final fractional coordinates and thermal parameters $\left(\times 10^{5}\right)$ of the White Well cordierite

Table 2. Interatomic distances $[\AA(\hat{\AA})]$ and angles $[(\hat{\sigma})]$ in White Well cordierite

Nomenclature

The labels assigned to the T and O atoms in the White Well cordierite follow a scheme designed to facilitate a comparison between the crystal structures of the hexagonal and orthorhombic polymorphs of cordierite (Meagher and Gibbs, in preparation). The subscript of each atom label given in Tables 1-5 and in the upper quarter of Figure 1 identifies those atoms that are equivalent in hexagonal cordierite $T_{1}=$ $\left\{T_{1} 1, T_{1} 6\right\}, T_{2}=\left\{T_{2} 1, T_{2} 6, T_{2} 3\right\}, \mathrm{O}_{1}=\left\{\mathrm{O}_{1} 1, \mathrm{O}_{1} 6, \mathrm{O}_{1} 3\right\}$ and $\mathrm{O}_{2}=\left\{\mathrm{O}_{2} 1, \mathrm{O}_{2} 6, \mathrm{O}_{2} 3\right\}$, whereas the third symbol of each atom label denotes the symmetry operation $(1=$ identity map, $6=$ sixth-turn, $3=$ third-turn) that relates the atoms in the equivalent sets. For example,
the identity symbol, 1 , is attached to the atom labels of hexagonal cordierite $T_{1}, T_{2}, \mathrm{O}_{1}$, and O_{2} to denote that $T_{1} 1, T_{2} 1, \mathrm{O}_{2} 1$, and $\mathrm{O}_{2} 1$ are related to $T_{1}, T_{2}, \mathrm{O}_{1}$, and O_{2} by the identity mapping. Similarly, the sixthturn symbol, 6 , is attached to the labels $T_{1}, T_{2}, \mathrm{O}_{1}$, and O_{2} to denote that $T_{1} 6, T_{2} 6, \mathrm{O}_{1} 6$, and $\mathrm{O}_{2} 6$ are related to $T_{1}, T_{2}, \mathrm{O}_{1}$, and O_{2} by a sixth-turn. Finally, the symbol for a third-turn, 3 , is attached to the labels to denote that $T_{2} 3, \mathrm{O}_{1} 3$, and $\mathrm{O}_{2} 3$ are related to T_{2}, O_{1}, and O_{2} by a third-turn. In terms of this nomenclature, the labels used by Gibbs (1966) for the T and O atoms of low cordierite correspond as follows: $T_{1} 1=$ $T_{1} ; T_{1} 6=T_{2} ; T_{2} 1=T_{3} ; T_{2} 6=T_{5} ; T_{2} 3=T_{4} ; \mathrm{O}_{1} 1=\mathrm{Ol} ;$ $\mathrm{O}_{1} 6=\mathrm{O} 2 ; \mathrm{O}_{1} 3=\mathrm{O} 3 ; \mathrm{O}_{2} 1=\mathrm{O} 5 ; \mathrm{O}_{2} 6=\mathrm{O} 4 ; \mathrm{O}_{2} 3=\mathrm{O} 6$.

Table 3. Nearest neighbor cation-cation distances and interatomic angles at oxygen atoms

		N		X	
		Distance between cations	Angle at oxygen atom	Distance between cations	Angle at oxygen atom
Six-membered rings					
$\mathrm{T}_{2}{ }^{1-0} 2_{2}{ }^{-T} \mathrm{~T}^{6}{ }^{\text {* }}$	[2]**	3.298(2)	176.1(1)	3.298(1)	176.0 (2)
$\mathrm{T}_{2}{ }^{1-0} 2_{2}{ }^{\prime}-\mathrm{T} \mathrm{S}^{3}$	[2]	$3.220(2)$	179.1 (1)	3.220 (1)	$179.5(2)$
$\mathrm{T}_{2}{ }^{3-0} 2^{6-T} 2^{6}$	[2]	$3.250(2)$	163.7 (1)	3.250 (1)	163.5 (2)
Mean		3.256 (1)	173.0(1)	3.256 (1)	173.0(1)
Four-membered rings					
$\mathrm{T}_{1}{ }^{6-0} 1^{6-T} \mathrm{~T}_{2}{ }^{6}$	[2]	3.116 (1)	132.6(1)	3.117 (1)	132.9(1)
$\mathrm{T}_{1}{ }^{1-0}{ }_{1} 1-\mathrm{T}_{2}{ }^{1}$	[2]	3.044 (2)	127.2(1)	3.042 (1)	127.2(1)
$\mathrm{T}_{1} 1-\mathrm{O}_{1}{ }^{3-\mathrm{T}_{2}}{ }^{3}$	[2]	$3.050(2)$	128.0(1)	$3.053(1)$	128.2(1)
Mean		3.070 (1)	129.3(1)	3.071 (1)	129.4(1)
Octahedron					
$\mathrm{T}_{2} \mathrm{l-O} 1^{1-\mathrm{M}}$	[2]	$3.488(2)$	137.7 (1)	3.488 (2)	137.7(1)
$\mathrm{T}_{1} 1-\mathrm{O}_{1} 1-\mathrm{M}$	[2]	$2.854(1)$	94.9(1)	2.855 (1)	95.0 (1)
$\mathrm{T}_{2}{ }^{3-0} \mathrm{C}^{3-M}$	[2]	3.497 (2)	137.1(1)	3.495 (2)	137.0 (1)
$\mathrm{T}_{1} 1-\mathrm{O}_{1} 3-\mathrm{M}$	[2]	2.854 (1)	94.6(1)	2.855 (1)	94.5 (1)
$\mathrm{T}_{2} 6-\mathrm{O}_{1} 6-\mathrm{M}$	[2]	3.550 (1)	$131.9(1)$	3.550 (1)	131.8(1)
$\mathrm{T}_{1} 6-\mathrm{O}_{1} 6-\mathrm{M}$	[2]	2.777 (2)	95.0 (1)	2.777 (2)	94.9(1)
Mean		3.170 (1)	$115.2(1)$	3.170 (1)	115.2(1)

Discussion

Basic structure and classification of cordierite

The present study confirms the basic structure of cordierite proposed by Gossner and Mussgnug (1928), Takane and Takeuchi (1936), and Byström (1942), and the order configuration of A1- and Si-rich tetrahedra in low cordierite determined by Gibbs (1966). The structure may be viewed as a tetrahedral framework consisting of chains of 4 -membered rings of alternating AlO_{4} and SiO_{4} tetrahedra cross-linked into 6 -membered rings of $\mathrm{Al}_{2} \mathrm{Si}_{4} \mathrm{O}_{18}$ composition [See Fig. 1; see also Gibbs' (1966) Fig. 7]. The M-atoms ($\mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn}$) are located in the framework in slightly flattened octahedra that share three edges, two with AlO_{4} tetrahedra and one with a SiO_{4} tetrahedron. When present, $\mathrm{H}_{2} \mathrm{O}$ occurs as zeolitic water in the large cavities formed between the 6 -membered rings (Smith and Schreyer, 1960; Gibbs, 1966; Meagher, 1967), whereas alkaline atoms occur at the center of the ring (Meagher, 1967). According to Zoltai (1960), cordierite should be classified as a framework silicate
because its SiO_{4} and AlO_{4} tetrahedra share corners in perfect alternation throughout the structure with SiO_{4} tetrahedra sharing corners in the 6 -membered ring. Zoltai's classification has since been borne out by structural analyses of cordierite, which indicate that the polymorphism of cordierite involves all the tetrahedral atoms in the structure rather than just those in the 6 -membered ring as previously believed. Nevertheless, Strunz et al. (1971) continue to classify cordierite as a ring silicate because they believe that its cation-containing octahedra disqualify it as a "real framework or tecto-silicate such as feldspar in its various forms." If we accept their rule then the feldspar anorthite, which also contains cation-filled octahedra (Phillips et al., 1973), should also be disqualified as a framework silicate. Their rule appears to be inconsistent and we urge that they reconsider their classification of cordierite.

Si-Al ordering in the tetrahedral framework

Gibbs (1966) has concluded from the individual mean tetrahedral $T-\mathrm{O}$ bond lengths, $\langle T-\mathrm{O}\rangle$, and the

Table 4. Approximate interatomic distances (\AA) of channel atoms*

Atoms	Distance
$\mathrm{H1}(1)-\mathrm{O}_{2} 6$	3.26
$-0_{2} 1$	3.08
$-\mathrm{O}_{2}{ }^{3}$	3.38
$\mathrm{H} 2(1)-\mathrm{O}_{2}{ }^{6}$	2.47
$-\mathrm{O}_{2} \mathrm{i}$	3.16
$-\mathrm{O}_{2}{ }^{3}$	3.11
H1 (1)-OW (1)	1.04
H2 (1) -OW (1)	0.97
$\mathrm{H} 1(1)-\mathrm{H} 2(1)$	1.57
NaKCa-OW	2.38
-H1 (1)	2.33
-H1 (2)	2.52
- $\mathrm{H} 2(1)$	2.02
-H2 (2)	2.98
$-\mathrm{O}_{2} 6$	2.52
$-\mathrm{O}_{2}{ }^{1}$	2.75
$-\mathrm{O}_{2}{ }^{3}$	2.92
$-\mathrm{T} 21$	3.38
$-\mathrm{T}_{2}{ }^{3}$	3.26
$-\mathrm{T}_{2} 6$	3.12

For numbering system see Fig. 8.

Bragg-Williams equation for predicting long-range order that the Guilford cordierite is about 90 percent ordered. A neutron tetrahedral site refinement of the White Well cordierite shows it to be completely ordered within the statistical error. Since the $\langle T-0\rangle$ for the Guilford and the White Well cordierites are statistically identical, we may conclude that both cordierites are completely ordered within the experimental error.

To determine whether the ordered configuration of Al and Si in low cordierite may be rationalized in terms of semiempirical molecular orbital theory, calculations of the total Hückel electronic energies were completed for all possible ordered configurations of AlO_{4} and SiO_{4} tetrahedra in 4-membered rings of $\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{12}$ composition and 6 -membered rings of $\mathrm{Al}_{2} \mathrm{Si}_{4} \mathrm{O}_{18}$ composition, assuming ideal geometries (Fig. 2). Calculations for the 4 -membered rings (like those paralleling c of cordierite) result in a lower electronic energy, implying a more stable configuration, when AlO_{4} and SiO_{4} tetrahedra alternate (case la) than when AlO_{4} tetrahedra are adjacent and share
a common oxygen (case 2 a). This result agrees with the aluminum avoidance rule proposed by Loewenstein (1954) and by Goldsmith and Laves (1955). Calculations for 6 -membered rings like those in cordierite resulted in practically identical electronic energies when the AlO_{4} tetrahedra in the ring are separated either by one (case 1b) or by two (case 2b) silicate tetrahedra. In agreement with the aluminum avoidance rule, adjacent corner-sharing AlO_{4} tetrahedra (case 3 b) result in a higher energy, less stable configuration. In an attempt to rationalize low cordierite's preference for the configuration similar to case 1 b in terms of electrostatic considerations, the Coulombic attractive potential between all atoms in the $\mathrm{Al}_{2} \mathrm{Si}_{4} \mathrm{O}_{18}$ ring for cases Ib and 2 b was calculated using the electric charges provided by the EHMO calculations. However, identical values resulted, suggesting that the observed configuration may not be predicted in terms of total Hückel electronic energies or Coulombic potentials for ideal geometries.

Mulliken population analysis for the atoms of tetrahedral framework

EHMO calculations were also completed for the AlO_{4} and SiO_{4} tetrahedra in cordierite to learn whether the steric details of the tetrahedral frameworks of the Guilford and the White Well cordierites may be rationalized in terms of tetrahedral bond overlap populations, $n(T-\mathrm{O})$, and geminal nonbonded repulsions, $n b(T-\mathrm{O})$, obtained in a Mulliken population analysis. These calculations were made for $\left(T_{5} \mathrm{O}_{16}\right)^{n-}$ ions using the procedure outlined by Gibbs et al. (1974) and a minimum $s p$ basis set of atomic orbitals. All the $\mathrm{O}-T-\mathrm{O}$ and $T-\mathrm{O}-T$ angles were clamped at their observed values, but the $T-\mathrm{O}$ bond lengths were clamped at fixed values ($1.61 \AA$ for SiO_{4} and $1.75 \AA$ for AlO_{4} tetrahedra). Clamping the $T-\mathrm{O}$ bond lengths at a constant value probably removes the bias of $n(T-O)$ being a direct function of the observed T-O bond lengths. However, since the observed valence angles were assumed in the calculations, the $n(T-\mathrm{O})$ values should reflect the angular distortions impressed on the tetrahedral framework by the nontetrahedral cations to satisfy packing and bonding requirements. The values of $n(T-O), n b(T-O)$ and the electrical charges on oxygen, $Q(O)$, used to prepare our figures are given in Table 6.

The $n(T-O)$ values calculated for the AlO_{4} and SiO_{4} tetrahedra are plotted against observed Al-O and $\mathrm{Si}-\mathrm{O}$ bond lengths, $d(T-\mathrm{O})_{\text {obs }}$, in Figure 3. As observed for the feldspars, the correlations ($r=0.9$) between $d(T-\mathrm{O})_{\text {obs }}$ vs. $n(T-\mathrm{O})$ are well-developed,

Table 5. Magnitudes and orientations of principal axes of thermal ellipsoids in White Well cordierite

Atom, Axis		$\begin{gathered} \text { rms displacement } \\ \AA(\hat{o}) \end{gathered}$		$\begin{aligned} & \text { Angle, in degrees, with respect to } \\ & +\alpha(\hat{\sigma}) \end{aligned}+b(\hat{\sigma}) \quad \text { to }(\hat{\sigma})$					
		N	X	N	X	N	X	N	X
$\mathrm{T}_{1} 1$	1	0.070(5)	$0.070(3)$	110(9)	90	$20(9)$	90	90	0
	2	.081 (6)	. 076 (3)	90	64 (5)	90	154 (5)	180	90
	3	.090(4)	. 095 (2)	20(9)	26(5)	$70(9)$	64 (5)	90	90
$\mathrm{I}_{1} 6$	1	.079(5)	.066(4)	0	90	90	90	90	0
	2	.088(7)	.076(3)	90	180	90	90	180	90
	3	.098(4)	. 084 (3)	90	90	0	0	90	90
$\mathrm{T}_{2}{ }^{1}$	1	.068(4)	. 062 (3)	$33(48)$	107 (7)	123 (48)	17 (7)	90	90
	2	. 072 (4)	.072(3)	123 (48)	90	146 (48)	90	90	180
	3	. 094 (4)	.076(2)	90	17 (7)	90	73(7)	0	90
$\mathrm{T}_{2} 6$	1	.075(5)	. 065 (3)	$29(69)$	24 (9)	119 (69)	114 (9)	90	90
	2	.078(5)	.076(3)	119 (69)	90	150(69)	90	90	180
	3	. 083 (6)	.078(3)	90	65 (9)	90	24 (9)	0	90
$\mathrm{T}_{2} 3$	1	. $070(4)$. 064 (3)	43 (16)	55 (7)	133(16)	145 (7)	90	90
	2	. 080 (4)	.068(3)	133(16)	90	137(16)	90	90	0
	3	. 086 (5)	.078(2)	90	35 (7)	90	55 (7)	180	90
0,1	1	. 086 (2)	.079(4)	75 (12)	113(12)	165 (13)	115 (27)	$88(12)$	145 (14)
	2	.092(2)	.086(4)	134 (7)	112 (13)	102(17)	28(25)	134 (3)	$106(24)$
	3	. 117 (2)	. 112 (3)	48(3)	33 (5)	81 (3)	78(5)	136(3)	$120(5)$
$0_{1} 6$	1	.082(3)	.073(4)	83(20)	74 (11)	136(2)	127 (4)	134 (6)	$138(7)$
	2	. 087 (2)	.088(4)	168(13)	$158(10)$	89(15)	88(8)	101(14)	112 (10)
	3	. 118 (2)	. 113 (3)	99 (3)	104 (6)	134 (2)	143 (4)	46 (2)	57 (4)
$\mathrm{O}_{1}{ }^{3}$	1	. $084(3)$.082(4)	$72(12)$	$39(14)$	126(9)	$92(15)$	138(3)	129(13)
	2	. 091 (2)	.091(4)	145(9)	116(17)	124 (10)	138(8)	84 (9)	120(15)
	3	. 120 (2)	. 107 (3)	62 (3)	63 (6)	65 (2)	132(8)	49 (2)	53 (7)
$\mathrm{O}_{2}{ }^{1}$	1	.076(3)	. 082 (6)	41 (2)	40 (5)	131(5)	130(5)	90	90
	2	. 127 (2)	. 124 (4)	131(2)	130 (5)	139(2)	140 (5)	90	90
	3	. 139 (3)	. 131 (4)	90	90	90	90	0	0
0,6	1	$.075(3)$	$.084(6)$					90	90
	2	. 129 (2)	. 121 (5)	102(2)	90	12 (2)	90	90	180
	3	. 135 (3)	. 123 (4)	90	83 (5)	90	163 (5)	0	90
$\mathrm{O}_{2} 3$	1	$.074(3)$				$162(3)$	158(5)	90	90
	2	.121(2)	. 121 (4)	18(3)	22 (5)	108(3)	112 (5)	90	90
	3	. 137 (3)	. 126 (4)	90	90	90	90	0	0
M	1.	. 075 (3)	. 082 (3)	180	90	90	O(15)	90	$90(15)$
	2	.089(3)	.084(3)	90	0	171(18)	90	81 (18)	90
	3	. 097 (3)	. 090 (2)	90	90	81 (18)	$90(15)$	$9(18)$	O(15)

shorter bonds tending to involve larger $n(T-\mathrm{O})$ values. Since the observed valence angles were used in the calculation of $n(T-\mathrm{O})$, which in turn correlate with $d(T-\mathrm{O})_{\text {obs }}$, it follows that $d(T-\mathrm{O})_{\text {obs }}$ should correlate with both $\angle T-O-T$ and $\angle O-T-O$. To test this assertion a multiple linear regression was calculated for $d(T-\mathrm{O})_{\text {obs }}$ as a function of $-1 / \cos (\angle T-\mathrm{O}-T)$ and $\langle\mathrm{O}-T-\mathrm{O}\rangle_{3}$, the average of the three $\mathrm{O}-T-\mathrm{O}$ angles common to the observed T-O bond length. Both of these independent parameters were found to make a significant contribution to the regression sum of squares. The observed $T-\mathrm{O}$ bond lengths are plotted against the bond lengths, $d(T-\mathrm{O})_{\text {calc }}$, calculated from the regression equations in Figure $4(r=0.9)$. The shorter $\mathrm{Si}-\mathrm{O}$ and $\mathrm{Al}-\mathrm{O}$ bonds in low cordierite are
observed to involve the two-coordinated oxygen atoms while the longer ones involve the three-coordinated oxygen atoms. As the sum of the valence bond strengths, $\zeta(\mathrm{O})$ (Baur, 1970), to the three-coordinated oxygens is larger than that to the two-coordinated oxygen atoms (Table 6), $\zeta(\mathrm{O})$ correlates with $n(\mathrm{Si}-\mathrm{O})$ and $n(\mathrm{Al}-\mathrm{O})$ as expected (Fig. 5). Because $\zeta(\mathrm{O})$ may be related to the number of valence electrons shared by an oxygen atom and its coordinating metal atoms, the correlation between $n(\mathrm{Si}-\mathrm{O})$ and $n(\mathrm{Al}-\mathrm{O})$ vs. $\zeta(\mathrm{O})$ is consistent with the claim by Pauling (1960) that his electrostatic valence rule may be rationalized in terms of a model based on covalent bonding. In other words, it appears that part of the electrostatic bond strengths for the $\mathrm{Al}-\mathrm{O}$ and $\mathrm{Si}-\mathrm{O}$ bonds may be re-

Fig. 1. The crystal structure of low cordierite viewed down the c axis with the T atoms in the 6 -membered rings located at $z=0.0$. The small open circles represent oxygen atoms, the open circles centering M octahedra represent Mg and Fe atoms, the large shaded circles centering the $T_{1} 1$ and $T_{2} 6$ tetrahedra represent Al atoms, and the open circles centering the $T_{1} 6, T_{2} 1$, and $T_{2} 3$ tetrahedra represent Si atoms. The nomenclature of the oxygen atoms is given next to the small open circles. The values indicated between atoms refer to selected bond lengths calculated from the neutron diffraction.
flecting some covalent aspect of a bond such as bond overlap population, particularly for bonds having 50 percent or more covalent character.

As stated earlier, the neutron site refinement of the White Well cordierite shows it to be completely ordered within the experimental error. On the other hand, the mean $T-\mathrm{O}$ bond lengths, $\langle T-\mathrm{O}\rangle$, recorded for the Si-containing tetrahedra show the $T_{1} 6$ tetrahedron $(1.628 \AA)$ to be significantly larger than $T_{2} 1$ and $T_{2} 3(1.616 \AA)$. In light of this evidence, it is tempting to ascribe this larger size to a small amount of A1 replacing Si (Smith and Bailey, 1963). However, when the mean bond overlap populations, $\langle n(T-O)\rangle$, of these tetrahedra are compared with their $\langle T-O\rangle$
(a)

Fig. 2. Drawings of the possible arrangements of AlO_{4} and SiO_{4} tetrahedral ions in (a) 4-membered rings of $\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{12}$ composition ($D_{4 h}$ symmetry) and (b) 6-membered rings of $\mathrm{Al}_{2} \mathrm{Si}_{4} \mathrm{O}_{18}$ composition ($D_{8 h}$ symmetry). The large solid circles represent Al , the large open circles represent Si , the small open circles represent oxygen, and the small double circles represent two oxygen atoms in superposition. Cases 1 a and lb represent configurations topologically identical to those in low cordierite. EHMO calculations predict case la to be more stable than $2 a$ and cases $1 b$ and $2 b$ to be of practically identical stability and case $3 b$ to be of significantly lower stability.
values, we see that the $\langle n(T-\mathrm{O})\rangle$ value for the $T_{1} 6$ tetrahedron (0.518) is smaller than that calculated for the other two tetrahedra (0.521). Hence, the larger size of the $T_{1} 6$ tetrahedron is predicted by the population analysis. In addition, the $\langle T-\mathrm{O}\rangle$ values recorded for the two Al-containing tetrahedra show the $T_{2} 6$

Table 6. Observed tetrahedral bond lengths $[d(T-O) \AA]$, bond overlap populations [$n(T-O)$], geminal nonbonded overlap populations $[n b(T-O)]$, the sum of the electrostatic bond strengths received by oxygen $[\zeta(\mathrm{O})]$, and the charges on the oxygen atoms as calculated by EHMO $[Q(\mathrm{O})]$ for the Guildord (G) and White Well
(WW) cordierites

Bond	$d(T-0)$		$n(T-0)$		$n b(T-0)$		$\zeta(0)$	Q(0)
	WW	G	WW	G	WW	G		
$\mathrm{T}_{1} 1-\mathrm{O}_{1} \mathrm{l}$	1.761	1.750	0.326	0.327	-0.0696	-0.0693	2.08	-1.40
$\mathrm{T}_{1} 1-0{ }_{1}{ }^{3}$	1.754	1.756	. 328	. 329	-0.0695	-0.0694	2.08	-1.40
$\mathrm{T}_{1} \mathrm{CbO}_{1}{ }^{6}$	1.628	1.621	. 518	. 521	-0.0868	-0.0873	2.08	-1.38
$\mathrm{T}_{2} 1-\mathrm{O}_{2} \mathrm{l}$	1.586	1.583	. 539	. 545	-0.0745	-0.0755	1.75	-1.34
$\mathrm{T}_{2}{ }^{1-0} 3_{3}{ }^{\prime}$	1.606	1.603	. 520	. 524	-0.0809	-0.0848	2.00	-1.22
$\mathrm{T}_{2}{ }^{1-0}{ }_{1}{ }^{1}$	1.636	1.629	. 512	. 516	-0.0854	-0.0867	2.08	-1.39
$\mathrm{T}_{2}{ }^{3-0}{ }_{2}{ }^{6}$	1.574	1.568	. 535	. 537	-0.0743	-0.0752	1.75	-1.34
$\mathrm{T}_{2}{ }^{3-0} \mathrm{O}^{3}$	1.639	1.631	. 513	. 517	-0.0826	-0.0859	2.08	-1.39
$\mathrm{T}_{2}{ }^{3-0} \mathrm{O}^{3}$	1.614	1.619	. 523	. 524	-0.0850	-0.0880	2.00	-1.22
$\mathrm{T}_{2} \mathrm{CrO}_{1}{ }^{6}$	1.773	1.767	. 334	. 336	-0.0644	-0.0639	2.08	-1.39
$\mathrm{T}_{2} 6-0{ }_{2}{ }^{\text {a }}$	1.710	1.719	. 368	. 368	-0.0577	-0.0574	1.75	-1.34
$\mathrm{T}_{2} 6-\mathrm{O}_{2}{ }^{3}$	1.714	1.718	. 366	. 368	-0.0572	-0.0564	1.75	-1.34

Fig. 3. Mulliken bond overlap populations, $n(T-\mathrm{O})$, plotted against observed tetrahedral bond lengths, $\mathrm{d}(T-\mathrm{O})_{\mathrm{oba}}$. In the calculation of $n(T-\mathrm{O})$ for the tetrahedral framework, all bond lengths were clamped at $1.61 \AA$ for SiO_{4} tetrahedra and $1.75 \AA$ for AlO_{4} tetrahedra with observed angles maintained. The diad symbols refer to bonds involved in two-coordinated oxygen atoms, and the triad symbols refer to bonds involved in three-coordinated oxygen atoms. Data from Table 6.
tetrahedron to be significantly smaller ($1.742 \AA$) than $T_{1} 1(1.758 \AA$), suggesting a replacement of a small amount of Al by Si in $T_{1} 1$. A comparison of the $\langle n(T-\mathrm{O})\rangle$ and $\langle T-\mathrm{O}\rangle$ values for these tetrahedra shows
that the $\langle n(T-O)\rangle$ value for the $T_{2} 6$ tetrahedron (0.351) is larger than that for the $T_{1} 1$ tetrahedron (0.327). Again we see that the apparent size discrepancy is predicted by the population analysis. Since

Fig. 4. Observed tetrahedral bond lengths, $d(T-\mathrm{O})_{\text {obs }}$, plotted against the tetrahedral bond lengths, $d(T-\mathrm{O})_{\text {calc }}$, calculated as a function of the mean tetrahedral angle, $(\mathrm{O}-T-\mathrm{O})_{3}$, and $-\mathrm{I} / \cos (L T-\mathrm{O}-T)$ where the equations of the lines are:

$$
\begin{gathered}
d(\mathrm{Al}-\mathrm{O})_{\text {calc }}=2.544+0.055\left(-1 / \cos (L T-\mathrm{O}-T)-0.008\left((\mathrm{O}-\mathrm{Al}-\mathrm{O})_{3}\right)\right. \text { and } \\
d(\mathrm{Si}-\mathrm{O})_{\text {calc }}=2.915+0.035\left(-1 / \cos (L T-\mathrm{O}-T)-0.012\left((\mathrm{O}-\mathrm{Si}-\mathrm{O}\rangle_{3}\right) .\right.
\end{gathered}
$$

See Fig. 5 for explanation of symbols used.
the $n(T-\mathrm{O})$ values are strongly dependent upon the $T-\mathrm{O}-T$ angles, theory predicts that tetrahedra with identical Al, Si contents should be larger when they are involved in T-O- T angles narrower than average. The structures of both the White Well and the Guilford cordierities are consistent with this prediction. A recent study of coesite (Gibbs et al., 1976) shows that the larger of its two nonequivalent silicate tetrahedra is also involved in the narrower $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angles. In addition, the mean Si-O bond overlap populations are consistent with the mean $\mathrm{Si}-\mathrm{O}$ bond lengths:

tetrahedron	$\langle\mathrm{Si}-\mathrm{O}\rangle$	$\langle n(\mathrm{Si}-\mathrm{O})\rangle$
Sil	1.601	0.504
Si 2	1.612	0.501

In summary, it is apparent that caution should be exercised in concluding that the Al, Si contents of two tetrahedra are different just because their mean $T-\mathrm{O}$ bond lengths differ by $\sim 0.01 \AA$; the environment around the tetrahedra may also be a factor.

Another parameter which may contribute to our understanding of the stereochemistry of the cordierite structure is the geminal nonbonding overlap populations, $n b(T-O)$, which give a measure of the intramolecular forces that tend to stretch bonds (Bartell et al., 1970) as the overlap populations decrease. The geminal nonbonded overlap populations for a bond may be calculated by taking the algebraic sum of all negative interactions around the bond as discussed in Figure 8. Since overlap populations were calculated only for the tetrahedral framework, the repulsion term for the octahedral cation M, $n(T \ldots M)$, was not included in our $n b(T-O)$ values (Table 6). However, if $n(T \ldots M)$ were included, $n b(T-\mathrm{O})$ would increase giving us a semiquantitative basis for the observation that bond lengths tend to increase as coordination number of the oxygen atom increases. For example, in cordierite, the T - O bonds involved with two-coordinated oxygens involve smaller repulsion terms and shorter bonds, whereas those involved with three-coordinated oxygens involve larger repulsion terms and longer bonds (Table 6). Despite the utter neglect in the calculations of the nontetrahedral cations, it is clear that smaller $n(T-\mathrm{O})$ and larger $n b(T-O)$ values were calculated for the $T-\mathrm{O}$ bonds to the three-coordinated oxygen atoms. This result agrees with the assertion that the valence angles observed within and between the tetrahedral ions incorporate part of the extrinsic effects of the nontetrahedral cations (Gibbs et al., 1974). As expected, linear regression analysis for $d(T-\mathrm{O})_{\text {obs }}$ calcu-

Fig. 5. Mulliken bond overlap populations, $n(T-O)$, plotted against the sum of the electrostatic bond strengths received by oxygen, $\zeta(\mathrm{O})$. In the calculation of $n(T-\mathrm{O})$ for the tetrahedral framework, all bond lengths were clamped at $1.61 \AA$ for SiO_{4} tetrahedra and $1.75 \bar{\AA}$ for SiO_{4} tetrahedra with observed angles maintained. Data from Table 6.

Fig. 6. Example calculation of the geminal nonbonded overlap population, $n b(T-O)$, obtained by taking the algebraic sum of all nonbonded interactions across the bond as follows;

$$
\begin{aligned}
n b(T 1-03)= & n(03 \ldots .01)+n\left(03 \ldots .03^{\prime}\right)+n\left(03 \ldots .01^{\prime}\right) \\
& +n(T 1 \ldots T 3)+n(T 1 \ldots M)
\end{aligned}
$$

The nonbonded repulsion term involving the octahedral cation, $n(T \ldots M)$, is not included in the $n b(T \ldots O)$ values listed in Table 5 , since overlap populations were calculated for the tetrahedral framework alone. However, it may be seen that inclusion of the nonbonded repulsions involving the M cation would increase the value of the nonbonded overlap population for the bonds to O 3 , predicting that T-O bonds to three-coordinated oxygens should be longer than those to two-coordinated oxygen atoms.

Fig. 7. Geminal (negative) nonbonded overlap populations, $n b(T-\mathrm{O})$, plotted against the observed tetrahedral bond lengths, $d(T-\mathrm{O})_{\text {obs. }}$. A sample calculation of $n b(T-\mathrm{O})$ is given in Fig. 6. Symbols are explained in Fig. 3, and data is from Table 6.
lated as a function of $[n b(T-\mathrm{O})]$ show these correlations ($r=0.8$) to be highly significant (Fig. 7).

Orientation of the water molecules

The orientation of the water molecule within the channels of cordierite was determined from X-ray and neutron $\Delta \rho$ maps (Cohen, 1975). The geometry of the water molecule $[d(\mathrm{H} 1-\mathrm{Ow})=1.04 \AA$ A, $\left.d(\mathrm{H} 2-\mathrm{Ow})=0.97 \AA, L \mathrm{H} 1-\mathrm{Ow}-\mathrm{H} 2=102.4^{\circ}\right]$ agrees reasonably well with an "idealized" $\mathrm{H}_{2} \mathrm{O}$ geometry $\left[d(\mathrm{H}-\mathrm{O}) \sim 1.0 \AA, L \mathrm{H}-\mathrm{O}-\mathrm{H}=104.5^{\circ}\right]$. The plane of the $\mathrm{H}_{2} \mathrm{O}$ molecule lies closely parallel to (001) at $z=$ $1 / 4$. However, this result disagrees with the possible orientation of the molecule parallel to (100) as proposed by Farrell and Newnham (1967) for the Guilford cordierite and confirmed by Tsang and Ghose (1972) for a cordierite from Madagascar. The elongation of the peaks associated with Ow and H on Xray and neutron $\Delta \rho$ maps is assumed to result from a space averaging of the disordered $\mathrm{H}_{2} \mathrm{O}$ molecule in four different orientations occurring within the cavities throughout the crystal (Fig. 8). Figure 9 illustrates one of the four possible orientations in relation to the 6 -membered rings above and below. In this orientation H 2 is bonded to $\mathrm{O}_{2} 6$ in the ring below, while H 1 forms a weaker bond with $\mathrm{O}_{2} 1$ in the ring above. This configuration may be rationalized in terms of EHMO electrical charges calculated for the oxygen atoms, $Q(\mathrm{O})$, in the 6 -membered rings where
$Q\left(\mathrm{O}_{2} 6\right)>Q\left(\mathrm{O}_{2} 1\right)>Q\left(\mathrm{O}_{2} 3\right)$ (Table 6). The $\mathrm{H}_{2} \mathrm{O}$ molecule is then not totally disordered within the cavity but is oriented such that it forms the shortest bond with $\mathrm{O}_{2} 6$, which has the largest electrical charge, and forms the longest bond with the $\mathrm{O}_{2} 3$, which has the smallest electrical charge. Accepting Farrell and Newnham's (1967) possible orientation of $\mathrm{H}_{2} \mathrm{O}$ in the channel, Stout (1975) has argued that the $\mathrm{O}_{2} 6$ is pulled into the open channel because of its coordination with molecular water. Since the $\mathrm{H}_{2} \mathrm{O}$ is quite loosely bound $\left[d\left(\mathrm{H} 2-\mathrm{O}_{2} 6\right)=2.47 \AA ; d\left(\mathrm{H} 1-\mathrm{O}_{2} 1\right)\right.$ $=3.08 \AA$ § , it seems unlikely that electrostatic interactions of $\mathrm{H}_{2} \mathrm{O}$ are responsible for a significant part of the bending of the $T_{2} 6-\mathrm{O}_{2} 6-T_{2} 3$ angle.

Results of the neutron site refinement show no evidence for hydrogen replacing Si or Al in any tetrahedra in the framework, as suggested by Iiyama (1960) and Sugiura (1959). In addition, a neutron $\Delta \rho$ map calculated for the entire unit cell showed no large residual negative peaks attributable to hydrogen. A possible explanation for the rapid weight loss in cordierite above $500^{\circ} \mathrm{C}$, from which Sugiura and

Fig. 8. Composite drawing of the four possible water molecule orientations in the channels of low cordierite. Elongation of the peaks associated with hydrogen in the y direction in neutron $\Delta \rho$ maps reflect this disordered model. Solid lines connect the 6 membered ring at $z=0$ while dashed lines connect the 6 -membered ring at $z=1 / 2$. Shaded circles represent A1, large open circles represent Si , medium-sized open circles represent O and small solid circles represent H . Values indicated between H and O atoms refer to approximate bond lengths calculated from neutron diffraction data (Table 4).

Iiyama inferred the presence of tetrahedral hydrogen, may be the loss of alkaline atoms above $500^{\circ} \mathrm{C}$.
X -ray and neutron $\Delta \rho$ maps confirm the location of the alkaline atoms at the center of the 6 -membered rings as found by Meagher (1967) for the Haddam cordierite. However, elongation of the peak associated with the 0.09 alkaline atoms in the direction of the $\mathrm{O}_{2} 6$ oxygen in the 6 -membered ring suggests that the alkaline atoms, like the water molecule, are disordered within the channel but oriented toward $\mathrm{O}_{2} 6$. Because of the small amounts of these atoms present in the White Well cordierite (0.63 weight percent), it was difficult to refine on a model for their occurrence. Nevertheless, the distances between the alkaline atoms at ($0,0,0$) and the O_{2} oxygen atoms (Table 4) suggest possible electrostatic interactions between the alkaline atoms and $\mathrm{O}_{2} 6$, and between the alkaline atoms and Ow , which may influence the distribution of $\mathrm{H}_{2} \mathrm{O}$ in the structure. A crystal structure analysis on a cordierite with a larger amount of alkaline atoms may provide more information on this subject and their possible role in the polymorphism of cordierite.

Orientation of the thermal ellipsoids

Tables 1, 2, and 3 compare the results of neutron (N) and X-ray (X) final positional and thermal parameters and interatomic distances and angles. The close agreement between positional parameters is characteristic of symmetric electron distributions about atoms. The differences in thermal parameters probably reflect the nonspherical nature of real electron distributions, which will be examined in a future study of $\mathrm{X}-\mathrm{N}$ maps for the White Well cordierite. Table 5 shows the r.m.s. displacements of the atoms obtained from neutron and X-ray data to be similar. The disagreement of angular relationships for the thermal ellipsoids (Table 5) of the nearly spherically vibrating tetrahedral and octahedral atoms may be explained by the fact that the more spherical an ellipsoid becomes, the more ill-defined its orientation becomes. The axes of more elongate oxygen atoms are more easily defined, and agreement between the X and N data is improved. While the cations show little anisotropy, a stereographic plot of the thermal ellipsoids of oxygens in relation to the bonds in which they are involved show two trends.
(1) The two-coordinated O_{2} oxygens in the ring vibrate as oblate spheroids with their short directions parallel to the $T-O-T$ bonds and two long perpendicular thereto.

Fig. 9. Drawing of one of the four possible water molecule orientations located at the center of the cavity. The positions of $\mathrm{Ow}, \mathrm{H} 1$ and H 2 were determined by X -ray and neutron $\Delta \rho$ maps. In this example, H 2 forms a bond with $\mathrm{O}_{2} 6$ in the ring below while H 1 forms a weaker bond with $\mathrm{O}_{2} 1$ in the ring above. Symbols are explained in Fig, 8.
(2) The three-coordinated oxygens O_{1} outside of the ring vibrate as prolate spheroids with their short r.m.s. displacements in the plane formed by coordination with Mg, Al, and Si and their long r.m.s. displacement approximately perpendicular thereto.

In other words, the oxygen atoms in cordierite vibrate about their equilibrium positions in conformity with the spatial requirements of their first coordination sphere of cations.

Acknowledgments

Professors F. D. Bloss, E. P. Meagher and P. H. Ribbe read the manuscript and made a number of valuable suggestions and constructive criticisms. We thank Mr. M. W. Pryce of the Government Chemical Laboratories, Perth, Western Australia, for donating the White Well cordierite, Mr. Elwin Yoder of the Argonne National Laboratories for cutting the cube of cordierite used in the neutron diffraction study, the Central Scientific Laboratory of Union Carbide Corporation, Tarrytown, New York, for the emission spectroscopic analysis for Be, Mr. A. Prunier for running a number of the EHMO calculations, Mrs. Ramonda Haycocks for typing the manuscript and Mrs. Sharon Chiang for drafting the figures. We are particularly grateful to Dr. Jack Williams for making available use of the Chemistry Division's single-crystal neutron diffractometer facilities at the CP-5 Reactor at the Argonne National Laboratories. This study was supported with N.S.F. grant DES75-14912.

References

Bartell L. S., L. S. Su and H. Yow (1970) Lengths of phosphorusoxygen and sulfur-oxygen bonds. An extended Hückel molecular orbital examination of Cruickshank's $d_{\pi}-p_{\pi}$ picture. Inorg. Chem., 9, 1903-1912.
Baur, W. H. (1970) Bond length variation and distorted coordination polyhedra in inorganic crystals. Trans. Am. Crystallogr. Assoc. 6, 125-155.
Brown, I. D. and R. D. Shannon (1973) Empirical bond-strength-bond-length curve for oxides. Acta Crystallogr, A29, 266-282.
Byström, A. (1942) The crystal structure of cordierite, Ark. Kemi Mineral Geol., 15B (No. 12), 1-5.
Cohen, J. P. (1975) An X-ray and Neutron Diffraction Study of Hydrous Low Cordierite. M. S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
, F. K. Ross and G. V. Gibbs (1975) X-Ray and neutron diffraction study of low cordierite. (abstr.). Abstr. Prog. 1975 Annu. Meet. Geol, Soc. Am., 7, 1031.
Farrell, E. F. and R. E. Newnham (1967) Electronic and vibrational absorption spectra in cordierite. Am. Mineral., 52, 380-388.
Gibbs, G. V. (1966) The polymorphism of cordierite: 1. The crystal structure of low cordierite. Am. Mineral. 51, 1068-1087.
-—, S. J. Louisnathan, P. H. Ribbe and M. W. Phillips (1974) Semi-empirical molecular orbital calculations for atoms of the tetrahedral framework in anorthite, low albite, maximum microcline and reedmergerite. In, W. S. MacK enzie and J. Zussman, Eds., The Feldspars. Manchester University Press, Manchester. p. 49-67.
C. T. Prewitt and K. J. Baldwin (1976) A study of the structural chemistry of coesite. Z. Kristallogr., in press.
Goldsmith, J. R. and F. Laves (1955) Cation order in anorthite $\left(\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right)$ as revealed by gallium and germanium substitutions. Z. Kristallogr, 106, 213-226.
Gossner, B. and F. Mussgnug (1928) Vergleichende röntgenographische Untersuchung von Magnesiumsilikaten. Neues Jahrb. Mineral., A58, 213-252.
Iiyama, T. (1960) Recherches sur le role de l'eau dans la structure et la polymorphisme de la cordierite. Bull. Soc. Fr. Mineral., 83 , 155-178.

Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral., 39, 92-96.
Meagher, E. P. (1967) The Crystal Structure and Polymorphism of Cordierite. Ph.D. Thesis, The Pennsylvania State University, University Park, Pennsylvania.
Newton, R. C. (1966) BeO in pegmatitic cordierite. Mineral. Mag., 35, 920-927.
-(1972) An experimental determination of the high-pressure stability limits of magnesium cordierite under wet and dry conditions. J. Geol., 80, 398-420.
Pauling, L. (1960) The Nature of the Chemical Bond. 3rd ed. Cornell University Press, Ithaca, New York.
Phillips, M. W., P. H. Ribbe and G. V. Gibbs (1973) Tetrahedral bond length variation in anorthite. Am. Mineral., 58, 495-499.
Pryce, M. W. (1973) Low-iron cordierite in phlogopite schist from White Well, Western Australia. Mineral. Mag., 39, 241-243.
Schreyer, W. and H. S. Yoder (1964) The system Mg -cordierite- $\mathrm{H}_{2} \mathrm{O}$ and related rocks, Neues Jahrb, Mineral. Abhand. 101, 271-342.
Smith, J. V. and S. W. Bailey (1963) Second review of Al-O and Si-O tetrahedral distances. Acta Crystallogr., 16, 801-811.
——and W. Schreyer (1960) Location of argon and water in cordierite. Mineral. Mag., 33, 226-236.
Stout, J. (1975) Apparent effects of molecular water on the lattice geometry of cordierite. Am. Mineral., 60, 229-234.
Strunz, H., C. Tennyson and P.-J. Uebel (1971) Cordierite morphology, physical properties, structure, inclusions and oriented intergrowth. Minerals Science and Engineering, April 1971, 3-18.
Sugiura, K. (1959) The water problem of cordierite. Bull. Tokyo Inst. Tech., Ser. B. 1, 1-26.
Takane, K. and T. Takeuchi (1936) The crystal structure of cordierite. Jap. Assoc. Mineral. Petrol. Econ. Geol. J., 116, 101-127 (in Japanese).
Tsang, T. and S. Ghose (1972) Nuclear magnetic resonance of ${ }^{1} \mathrm{H}$ and ${ }^{27} \mathrm{Al}$ and Al -Si order in low cordierite, $\mathrm{Mg}_{2} \mathrm{Al}_{4} \mathrm{Si}_{5} \mathrm{O}_{18} \cdot n \mathrm{H}_{2} \mathrm{O}$. J. Chem. Phys., 56, 3329-3332.

Zoltai, T. (1960) Classification of silicates and other minerals with tetrahedral structures. Am. Mineral., 45, 960-973.

[^1]
[^0]: ${ }^{1}$ Present address: Union Carbide Corporation, Tarrytown, New York.
 ${ }^{2}$ Argonne National Laboratory C.E.A. Participant, 1973 and 1974.

[^1]: Manuscript received, February 1, 1976; accepted for publication, July 16, 1976.

