Superposition model analysis of the near infrared spectrum of Fe$^{2+}$ in pyrope-almandine garnets

DOUGLAS J. NEWMAN, DONALD C. PRICE and W. ALAN RUNCIMAN

Department of Solid State Physics
Research School of Physical Sciences
Australian National University
Canberra, A.C.T. 2600, Australia

Abstract

The superposition model has been used to compare all possible assignments of group theoretical labels appropriate to the near infrared spectral bands of Fe$^{2+}$ in D_2 sites in pyrope garnet. A unique assignment is determined for the optical absorption bands at 7800, 6100 and 4500 cm$^{-1}$ to transitions from an I ground state to B_2, A, and B_1 excited states respectively, contrary to the previous assignments of White and Moore (1972) and Runciman and Sengupta (1974).

Introduction

The near infrared spectrum of Fe$^{2+}$ in silicate garnets consists of three strong bands. These bands exist with only slight change in position for the whole range of pyrope-almandine garnets (White and Moore, 1972, and earlier references in that paper). They are attributed to spin-allowed transitions between the 4D levels of the $3d^6$ configuration split in the crystal field of the slightly distorted cubal, or dodecahedral, site. White and Moore assigned these three bands, in order of decreasing energy, to transitions from the A ground state to the B_2, A, and B_1 excited states respectively, contrary to the previous assignments of White and Moore (1972) and Runciman and Sengupta (1974).

Superposition model

The use of the superposition model to analyze the crystal field parameters of lanthanide ions in D_2 sites of various garnets has been described by Newman and Stedman (1969). In the present work we carry out a similar analysis for the Fe$^{2+}$ spectrum at D_2 sites in pyrope garnet, with the aim of providing a positive identification of the electronic transitions involved in generating the main features observed in the optical spectrum.

The main assumptions of the superposition model are

(i) Only the coordinated ions (or ligands) contribute significantly to the crystal field.

(ii) The contribution of each ligand is axially symmetric and depends only on its distance from the paramagnetic ion.

(iii) The total crystal field can be constructed simply by adding all the separate ligand contributions. This model is more restrictive than the electrostatic model in that it neglects contributions from all but the coordinated ions. At the same time the superposition model makes no assumptions about the
mechanism (or magnitude) of the ligand contributions.

In calculating the individual ligand contributions, angular factors are determined from the ionic positions given by X-ray data. The single ligand contributions are treated as undetermined functions (of the ligand distance R) which must be fitted to the spectroscopic data. We shall assume, as is usual, that these functions $A_n(R)$ take the form of an inverse power law ($1/R^n$). This puts no restriction on the present calculation as only two ligand distances are involved.

The superposition model equation for the crystal field parameters at garnet D_2 sites takes the simple form

$$A_n^m(r^n) = A_n \left\{ K_m^0(1) + \left(\frac{R_1}{R_2} \right)^n K_m^0(2) \right\}$$

where R_1 is the nearest-neighbour distance, R_2 is the next-nearest-neighbour distance and $K_m^0(1)$, $K_m^0(2)$ can be calculated from the angular coordination (Newman and Urban, 1975, p. 816). Stevens' normalization of the crystal-field parameters is employed (Stevens, 1952; Elliott and Stevens, 1952). They are related to the B_n^m parameters of Runciman and Sengupta (1974) by

$$B_2^1 = 2A_2^0(r^2), \quad B_4^1 = \frac{\sqrt{2}}{3} A_2^2(r^2), \quad B_4^2 = 8A_2^0(r^4)$$

$$B_4^2 = 2\frac{\sqrt{2}}{5} A_2^2(r^4), \quad B_4^1 = 4\frac{\sqrt{2}}{35} A_2^4(r^4)$$

Table 1 gives the ionic positions used by Runciman and Sengupta (1974) and the derived coordination factors for pyrope garnet and yttrium aluminium garnet (YAG) compared with the corresponding contributions in cubic symmetry.

<table>
<thead>
<tr>
<th>Identification*</th>
<th>Level not observed</th>
<th>A_2^2</th>
<th>A_2^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_2^1AB_2^1$</td>
<td>$E(B_2^1) = 7800$</td>
<td>1100</td>
<td>596</td>
</tr>
<tr>
<td>$B_2^1B_2^1$</td>
<td>$E(B_2^1) = 6100$</td>
<td>1000</td>
<td>477</td>
</tr>
<tr>
<td>$B_2^1B_2^1$</td>
<td>$E(B_2^1) = 4500$</td>
<td>10100</td>
<td>456</td>
</tr>
<tr>
<td>$B_2^1B_2^1$</td>
<td>$E(B_2^1) = 3500$</td>
<td>9300</td>
<td>625</td>
</tr>
<tr>
<td>$B_2^1B_2^1$</td>
<td>$E(B_2^1) = 2500$</td>
<td>9400</td>
<td>604</td>
</tr>
<tr>
<td>$B_2^1B_2^1$</td>
<td>$E(B_2^1) = 1500$</td>
<td>10100</td>
<td>456</td>
</tr>
<tr>
<td>$B_2^1B_2^1$</td>
<td>$E(B_2^1) = 500$</td>
<td>10100</td>
<td>456</td>
</tr>
<tr>
<td>$B_2^1B_2^1$</td>
<td>$E(B_2^1) = 0$</td>
<td>10100</td>
<td>456</td>
</tr>
</tbody>
</table>

*These give the observed spectral lines in order of decreasing energy, so that $B_2^1B_2^1$ signifies $E(B_2^1) = 7800$ cm$^{-1}$, $E(B_2^1) = 6100$ cm$^{-1}$, $E(B_2^1) = 4500$ cm$^{-1}$, relative to the ground level $E(A) = 0$.

Mössbauer measurements on magnetically-ordered almandine garnets (e.g. Prandl and Wagner, 1971; Dodokin et al., 1972; Routcliffe, 1976) give both the sign and magnitude of the principal components of the electric field gradient at the nucleus of an Fe$^{2+}$ ion in a dodecahedral site. These values indicate unequivocal evidence (e.g., see Stedman, 1969). It is convenient to use $A_2^2(r^2)$ and $A_2^4(r^4)$ as fitting parameters, avoiding the use of the superposition model for $n = 2$, which is expected to be relatively inaccurate in this case because of a larger electrostatic contribution. Although this model makes it possible in principle to obtain the crystal field parameters from the spectrum, in fact sixty distinct sets of parameters can be obtained unless the group theoretical state labels are known.

Table 2. Parameters obtained for the 24 alternative superposition model fits to experimental data based on the assumption of an A ground state. All quantities are given in cm$^{-1}$.
ocally that the ionic ground state is derived predominantly from the $3z^2-r^2$ orbital and transforms as A. This is consistent with the fact that the garnet D_2 sites are only slightly distorted from cubic symmetry, so that the ground state must be either A or B_1 (as the cubic ground state $E \rightarrow A + B_1$). This constraint allows twenty-four different identifications of the remaining levels. The results of fitting the parameters for all these cases are shown in Table 2.

It will be seen from Table 2 that 10 of the 24 cases considered do not provide a consistent fit to the data. We shall seek to discriminate between the remaining fits by means of the following criteria:

(i) $A_4 > 0$, and should take a value similar to that for $3d^n$ ions at cubic sites with oxygen ligands. The work of Manson et al. (1976) on Fe$^{2+}$:MgO provides a value of $A_4 = 701$ cm$^{-1}$, which scales to $A_4 = 564$ cm$^{-1}$ in the garnet with $t_2 = 5$. This prediction should be accurate to within 10 percent.

(ii) The temperature-dependence of the 57Fe nuclear quadrupole splitting in Fe$^{2+}$ ions in dodecahedral sites in almandine and pyrope garnets was measured by Lyubutin and Dodokin (1970) and Amthauer et al. (1976) respectively. In both cases the decrease in the magnitude of the splitting with increasing temperature was interpreted on the assumption that the lowest excited orbital state was B_3, as would be expected for a small distortion from cubic symmetry, and the excitation energy of this state was deduced to be 1070 cm$^{-1}$ and 1150–1200 cm$^{-1}$ respectively. These estimates would remain unchanged if the excited state was the other A level (x^2-y^2), but if either B_3 or B_4 were the lowest excited state then the experimental data show the energy to be considerably less than 1000 cm$^{-1}$. Other factors such as the temperature-dependence of the crystal field and possible effects of vibronic coupling (Price, in preparation) make estimation of the excitation energy of the first excited state to better than about 50 percent difficult. We therefore estimate the energy of the lowest lying level to be 1100 cm$^{-1}$ ±50 percent.

(iii) The coordination factors in Table 1 suggest that $A_4^2 (r^2)$ is positive, which is certainly true in other garnet systems (e.g., see Newman and Edgar, 1976). Similar evidence indicates that $A_4^2 (r^2)$ is negative and smaller in magnitude than $A_2^2 (r^2)$.

Using each of the criteria in turn, we list the acceptable fits as follows:

(i) $B_2AB_3, B_2AB_2, B_2B_3B_1, B_3B_2B_1$

(ii) $B_2AB_3, AB_2B_3, B_2AB_2, AB_2B_2$

(iii) $B_2AB_3, B_2B_3B_3$.

The only fit which satisfies all three criteria is seen to be B_2AB_3, which is the first listed in Table 2. It should be noted, however, that B_2AB_2 satisfies two of the criteria and should therefore not be rejected without further consideration. In this regard it must be emphasised that criterion (iii) is very far from being satisfied by B_2AB_3, as the signs of both $A_2^2 (r^2)$ and $A_2^2 (r^2)$ are incorrect. Also $E(B_1)$ lies near the lowest acceptable value on criterion (ii). These extra factors confirm our rejection of this fit.

To provide an additional check on B_2AB_3, as the only possible identification of the observed excited-state energy levels, we now estimate the superposition model parameters A_2, t_2 in this case. Newman and Edgar (1976) have shown that K_0 is very sensitive to local distortion effects, so we shall ignore the parameter in $A_2^2 (r^2)$ in this analysis. If we assume $t_2 = 3$, the value of $A_2^2 (r^2)$ gives $A_2 = 7060$ cm$^{-1}$, while for $t_2 = 4$, $A_2 = 5590$ cm$^{-1}$. These may be compared with the value of $A_2 = 5507$ cm$^{-1}$ for Co$^{2+}$ in CdCl$_3$ obtained by Edgar (1976).

Conclusion

Use of the superposition model in conjunction with Mössbauer data has allowed us to give a definite assignment of the optical transitions of Fe$^{2+}$ at D_2 sites in pyrope garnet. This identification (B_2AB_3) does not accord with the identification B_2B_3A previously proposed by White and Moore (1972), nor with the identification $B_2B_3B_3$ proposed by Runciman and Sengupta (1974). It is, however, in agreement with the identification proposed, but not substantiated in detail, by Routcliffe (1976).

The superposition model parameter t_4 has been assumed to take the value $t_4 = 5$, allowing us to derive a value $A_4 = 596$ cm$^{-1}$ in good accord with the value extrapolated from the MgO data of Manson et al. (1976), $A_4 = 564$ cm$^{-1}$. The derived value of A_2 is much less certain, but of interest in view of the very few determinations of this quantity that have been made for $3d^n$ systems. Taking the most likely range of t_2 to be $t_2 = 3.5\pm0.5$, we obtain $A_2 = 6300\pm800$ cm$^{-1}$. The ratio A_2/A_4 is greater than that found for lanthanide ions, presumably due to the relatively small effect of electrostatic screening in Fe$^{2+}$.

Acknowledgment

We thank Dr. P. Routcliffe for stimulating our interest in this problem.

References

Manuscript received, November 14, 1977; accepted for publication, April 3, 1978.