The crystal structures and the phase transformation of Zn-Li silicates: reply

SHU-CHENG YU, DEANE K. SMITH

Department of Geosciences, The Pennsylvania State University University Park, Pennsylvania 16802

AND STANLEY B. AUSTERMAN

Electronic Operations, Rockwell International Anaheim, California 92803

The composition of the Zn-Li silicates reported by us (Yu et al., 1978) has been questioned by West (1979) who suggests a composition closer to Li_{1.6}Zn_{1.2}SiO₄. The arguments raised by West require some clarification.

- (1) West identified our β , α , and α' as γ_{11} , γ_0 , and C respectively. West's three phases differ in composition while our β , α , and α' all have essentially the same composition. In addition, our α' is not a single phase but a twinned state of the α form at the atomic scale (Table 1).
- (2) West claimed that the powder pattern of our α phase corresponds fairly well to γ_0 (West and Glasser, 1970) except that the latter has more lines. The two patterns are compared in Table 2 and Figure 1, and it is self-evident that they do not match "fairly well" as claimed. West also mentioned that the larger number of lines observed for γ_0 is probably because a high resolution focusing camera was used in West and Glasser's work to record the powder pattern. As a matter of fact, we also used the focusing camera (Guinier camera) in obtaining our X-ray pattern.
 - (3) West's atomic coordinates of Li₃PO₄ are identi-

cal to those of our Zn-Li silicates except that the former has an extra Li atom. If this extra Li atom in Zemann's Li₃PO₄ (Zemann, 1960) is ignored, it appears that these two structures are similar.

(4) The measured and the calculated density for our Zn-Li silicates are, respectively, 3.53 and 3.51 g/cm³. If West's composition were adopted, the calculated density would be 3.61 g/cm³, which is slightly too high when compared with the experimental value.

Table 2. Comparison of the powder patterns for α and γ_0 Zn–Li silicate

	α			γ,
Yu et a d _o (A)	d _c (A)	Ι	hkl	West & Glasser d _O (A) I hkl
5.45	5.43	10	110	5.50 60 110 5.40 10 020
4.23 4.07	4.52 4.05	10 50	011 120	4.60 10 011 4.09 80 120
3.97	3.92	20	101	3.99 40 101 3.97 60 101
				3.71 20 3.69 100 111,021
				3.19 20 200,121 3.17 10
3.09	3.07	40	130	3.12 40 130,210 2.93 10 071
				2.92 20 031
2.711	2.715	30	220	2.74 60 2.71 80 220
2.658	2 (20	7.0	01.0	2.68 80 040
2.632	2.629 2.611	30	040 131	2.65 40 131 2.64 10 131
				2.60 10 2.58 40 211
2.521 2.452 1.6282 1.5429 1.5179 1.3720	2.506 2.437 1.6118 1.5338 1.5175 1.3721	100 30 20 40 25 25	002 012 103 260 420 342	2.54 80 2.52 60 002

¹ Present address: Institute of Chemical Analysis, 341 Mugar Building, Northeastern University, Boston, Massachusetts 02115.

Table 1. Comparison of chemical compositions reported for Zn-Li silicates

Yu et al.	West					
β	γ_{II}	(Li _{1.6}	Zn _{1.2}	SiO ₄)	X =	0.2
OL.	γ_{\circ}	(Li ₂	Zn	SiO ₄)	X =	0
α'	C	(Li _{1.52}	Zn, 21	SiO,)	Х=	0.24

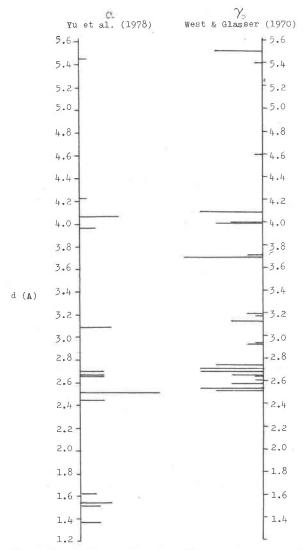


Fig. 1. Graphical comparison of two X-ray powder patterns of α and γ_0 Zn-Li silicate.

In view of the above discussion we conclude that our Zn-Li silicate appears to be a distinct phase from those reported by West. However, we appreciate West's interest and comments, and his calling to our attention to some of his valuable work on Zn-Li silicates which we did overlook in our literature review.

References

West, A. R. (1979) The crystal structures and the phase transformation of Zn-Li silicates: a discussion. Am. Mineral., 65, 1059-1060.

and F. P. Glasser (1970) Crystallisation of lithium zinc silicates. Part 1. Phase equilibria in the system Li₂SiO₄–Zn₂SiO₄. J. Mater. Sci., 5, 557–565.

Yu, S. C., D. K. Smith and S. B. Austerman (1978) The crystal structures and the phase transformation of Zn-Li silicates. Am. Mineral., 63, 1241-1248.

Zemann, J. (1960) Die Kristallstruktur von Lithiumphosphat, Li₃PO₄. Acta Crystallogr., 13, 863-867.

Manuscript received, August 16, 1979; accepted for publication, September 12, 1979.