The unit-cell parameters of an ordered K-Rb alkali feldspar series

PAUL F. MCMILLAN
Department of Chemistry, Arizona State University
Tempe, Arizona 85281

WILLIAM L. BROWN
Laboratoire de Pétrologie et Géochimie
Université Nancy I, CO 140, 54037 Nancy CEDEX, France

AND RONALD E. OPENSHAW
Centre de Recherches Pétrographiques et Géochimiques (CRPG)
15 Rue Notre-Dame des Pauvres, 54500 Vandoeuvres-les-Nancy, France

Abstract

Seven ordered alkali feldspars in the series (K,Rb)AlSi₃O₈ have been synthesized by ion-exchange techniques. Microcline was prepared from a natural low albite by ion exchange. Nearly pure RbAlSi₃O₈ was prepared from this microcline by ion exchange in fused RbCl. Intermediate compositions were prepared by homogenizing mechanical mixtures of microcline and RbAlSi₃O₈. The cell parameters measured at room temperature show that a, c, v, β, and γ increase nearly linearly with Rb-substitution, a decreases and b remains constant.

Plots of lattice parameters against mean ionic radii in the ordered Na-K and K-Rb alkali feldspar series show discontinuities near compositions corresponding to K₀.₃Na₀.₇, K₀.₅Na₀.₅, and to K₁₀₀₀. The first discontinuity occurs at near the same composition as the triclinic/monoclinic transition in disordered Na-K feldspars at room temperature. The second discontinuity occurs at a composition close to that of pure microcline and is probably related to an as yet undetermined type of phase transition at room temperature, recently described for microcline by Openshaw et al. (1979a).

Introduction

The discovery of a new type of phase transition in microcline near room temperature (Openshaw et al., 1979a, b; Wyncke et al., in preparation) led us to examine the variation of the feldspar structures in response to variation in temperature, pressure, and composition (Brown et al., in preparation). No data were previously available in the literature on the effect of substitution of various amounts of Rb for K in microcline; this study fills the gap and helps in understanding the microcline phase transition.

Previous workers have studied the variation of cell parameters with composition in alkali feldspar series. Series have been prepared both by ion-exchange from natural end-members and by hydrothermal synthesis. The synthetic series analbite–sanidine was first studied by Donnay and Donnay (1952). Smith (1956) noted a small systematic error in their data, and all parameters for this series were recalculated (Wright and Stewart, 1968). Orville (1967) and Luth and Querol-Suñé (1970) also obtained cell parameters for synthetic analbite–sanidine series.

The ion-exchange series low albite–microcline was studied by Orville (1967), using Hugo microcline. Wright and Stewart (1968) prepared an ion-exchange series from natural orthoclase P50-56F, and Waldbaum and Robie (1971) studied the low-albite to microcline ion-exchange series, starting with Amelia albite. The series of Waldbaum and Robie (1971) was re-investigated by Hovis and Peckins (1978) to resolve differences between the results of Waldbaum and Robie and those of Orville (1967). The disordered series analbite–sanidine was prepared by ion-exchange (Hovis, 1977) from heat-treated Amelia
low albite, for comparison with synthetic analbite-sanidine series.

In the system KAlSi₃O₈–RbAlSi₃O₈, the disordered series sanidine–RbAlSi₃O₈ was prepared by Ghélis and Gasperin (1970) by hydrothermal synthesis. The ordered end-member RbAlSi₃O₈, reported by Weitz and Viswanathan (1971), was prepared by ion-exchange from a low albite. A full ion-exchange series between microcline and ordered RbAlSi₃O₈ has not previously been reported.

This work concerns the preparation of the ordered series microcline–RbAlSi₃O₈ by ion-exchange from Amelia low albite. Cell parameters were obtained for the series members by refinement of data from high resolution X-ray powder diffraction measurements.

Experimental

The starting material for the ion-exchange series was albite from the Rutherford Mine, Amelia County, Virginia, kindly provided by Professor G. L. Hovis (Lafayette College, Pennsylvania). An analysis of a similar sample may be found in Waldbaum and Robie (1971, p. 387).

Clean, clear fragments were selected and crushed to 170 mesh (0.090 mm). This low albite was ion-exchanged with fused KCl following the method of Waldbaum and Robie (1971) to give a microcline for which the synthesis details, major-element analysis, and cell parameters appear in Tables 1 to 3. No residual albite peaks were observed in the X-ray diffraction pattern, which was checked against the calculated pattern for microcline (Borg and Smith, 1969). The cell parameters calculated from the diffractogram agree with the preferred values for microcline listed in Smith (1974, p. 258). The composition determined by XRF was K₉₇₃Na₂₅₃. (Note on nomenclature: for the sake of brevity, Rb is used for ordered RbAlSi₃O₈, K for microcline, and Na for low albite. Thus for example, Rb₉₂₃K₅₈₇Na₂₁₇ refers to a feldspar of composition: RbAlSi₃O₈ 92.76 mole percent; microcline KAlSi₃O₈ 5.87 mole percent; albite NaAlSi₃O₈ 1.37 mole percent).

This ion-exchanged sample was taken to be maximum microcline and was used as a starting point in the synthesis of the K–Rb exchange series. A sample Rb₉₉₇K₂₈₅Na₁₆₉ by analysis was obtained by ion-exchange between microcline and fused RbCl at 800°C [Exchange B, Table 1(a)]. This was used to prepare the intermediate series members Rb₁₃₉₉₈K₈₃₇Na₃₃₅, Rb₂₇₉₁Rb₆₉₁₉Na₂₈, Rb₃₈₅₉K₅₆₂₂Na₂₂, and Rb₅₅₈K₄₃₁Na₁₈₅. A further run involving multiple exchanges of microcline in molten RbCl [Exchange C, Table 1(a)] yielded a product Rb₉₇₆₇K₄₈₄Na₁₃₇, which was the most rubidium-rich phase obtained.

A previous synthesis of ordered RbAlSi₃O₈ was reported by Weitz and Viswanathan (1971), who used albite as a direct starting material. A repeat of this synthesis was attempted, but little or no exchange was observed between albite and RbCl. The cell parameters obtained by Weitz and Viswanathan (1971) agree closely with those obtained for our most rubidium-rich composition.

Table 1. Synthesis history of samples

<table>
<thead>
<tr>
<th>Exchange Mixture</th>
<th>Duration of run</th>
<th>Temperature</th>
<th>Remarks and final product</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Ab 3.07g KCl 31.72g</td>
<td>24h00</td>
<td>850±10°C</td>
<td>K₀.₉₇₄Na₂.₅₁ for analysis (Table 2)</td>
</tr>
<tr>
<td>B Mi 1.40g RbCl 25.00g</td>
<td>17h40</td>
<td>800±10°C</td>
<td>Rb₀.₆₉₇K₂₈.₅₄Na₁.₆₉ for analysis (Table 2).</td>
</tr>
<tr>
<td>C Mi 0.69g RbCl 25.00g</td>
<td>21h45</td>
<td>800±10°C</td>
<td>Rb₀.₉₂₇K₂.₈₅Na₁.₃₇ for analysis (Table 2).</td>
</tr>
</tbody>
</table>

Note: the products of exchanges A and B were used to prepare the composition series (see Table 2). The most rubidium product (exchange C) was synthesised later.

Table 2. Homogenization experiments

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Duration of run</th>
<th>Temperature</th>
<th>Total time</th>
<th>Average temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 and 3</td>
<td>16h05</td>
<td>1000±10°C</td>
<td>17h20</td>
<td>1000±65°C</td>
</tr>
<tr>
<td>4 and 5</td>
<td>18h45</td>
<td>950±10°C</td>
<td>24h10</td>
<td>950±10°C</td>
</tr>
<tr>
<td>6</td>
<td>18h00</td>
<td>950±10°C</td>
<td>24h15</td>
<td>875±85°C</td>
</tr>
</tbody>
</table>
Two major problems were encountered during the synthesis:

(a) Homogenization: The homogenization process between potassic and rubidic phases required considerable time (more than 200 hours at 950°C on average), with removal from the furnace and grinding at approximately 24-hour intervals. Inhomogeneity was recognized by doubling of various X-ray peaks (e.g. 201, 220), which coalesce as homogenization proceeds. We note that this is not a sufficient test for complete homogeneity, a more sensitive method being scanning of the sample using a microbeam technique (Waldbaum and Robie, 1971). The X-ray peaks observed to coalesce were sharp, and smooth trends in cell parameters were in general noted, hence it was assumed that the compositional error due to inhomogeneity was small relative to other errors. During the homogenization process, a second problem became apparent.

(b) Breakdown: As homogenization proceeded, anomalous peaks appeared in the X-ray patterns, especially for more rubidic compositions heated for longer periods. These peaks persisted unchanged in a sample (Rb23.82K23.83Na21.15) which was back-exchanged to microcline. This suggests the appearance of a non-feldspathic Rb-rich phase, or one which is alkali-deficient. This may occur via breakdown of the RbAlSi3O8 during the prolonged heating at the high temperature necessary for homogenization. By visual estimation from the diffraction pattern intensities, this impurity forms a maximum of 5% of the total sample in the runs most affected due to their high Rb content and length of heating time, i.e., Rb41.98K36.12Na2.03 and Rb23.82K23.83Na21.15. This should not drastically affect the trends under study.

X-ray measurements

Both high-resolution and routine X-ray powder diffraction patterns were run on a Siemens diffractometer at the University of Nancy I, France. Radiation used was CoKa (Ka1 = 1.78892, Ka2 = 1.79278, Ka = 1.79021 Å). For high-resolution runs, a chart speed of 600 mm/hour with motor speed of 1/4°/min was used. Forward and reverse scans were carried out for positive and negative angles over a range of 20° to 56° 2θ.

Peaks were assigned by first indexing the microcline pattern by comparison with the calculated pattern of Borg and Smith (1969), then following the peaks through to more rubidium-rich compositions. Ambiguous RbAlSi3O8 peaks were indexed by first calculating the cell parameters using known peaks, then recalculating peak positions for that phase, followed by a further calculation of cell parameters using all possible peaks. Peak positions were measured by taking an average of three half-width points between 1/2 and 3/4 peak height. Consistent with this, the wavelength value used was the weighted CoKa average (λ = 1.79021 Å). For each sample, the internal standard was semiconductor-grade Si with a cell edge a = 5.430873 Å at 21°C (Hubbard et al., 1975). The data were reduced by least-squares refinement program LCLSQ (Burnham, 1962). The peaks used in each refinement are given in Table 3 along with the lattice parameters obtained. The parameters obtained after back-exchanging sample number 5 [Table 2(b)] in fused KCl did not differ significantly from those of microcline, sample number 1.

Results and discussion

In Figure 1, the cell parameters are plotted vs. mole percent RbAlSi3O8 (ignoring the albite present), while the variation of these cell parameters with
mean cation radius is shown in Figure 2. The values for the cation radii used were Na\(^+\): 1.38, K\(^+\): 1.69, Rb\(^+\): 1.77 Å, as suggested by Shannon (1976) for 9-coordination in oxides. Na\(^+\) is too small to be in 9-coordination in feldspars (e.g. Megaw, 1974, p. 16); this is assumed here as an approximation to the average coordination of the Na\(^+\) sites.

The use of a plot of cell parameters vs. mean cation radius (e.g. Fig. 2) gives a simple two-dimensional diagram which can be used to compare several ion-exchange series, and to take account of small amounts of impurity cations.

From Figure 1, the cell volume is seen to increase linearly with substitution of the larger cation Rb\(^+\). A similar increase is seen in the cell edges \(a\) and \(c\), with \(a\) increasing much faster than \(c\), while \(b\) remains constant. The angle \(\alpha\) decreases slightly from 90.55° to 90.53°, while \(\beta\) and \(\gamma\) increase from 115.93° to 116.20° and 87.64° to 88.01° respectively. Note that \(\alpha\) and \(\gamma\) tend toward 90°, and that RbAlSi\(_3\)O\(_8\) is dimensionally only slightly triclinic due to its Al/Si order. This is consistent with Megaw (1974, p. 16-17), who proposed that the framework geometry is controlled mainly by the relative attitude of tetrahedra within the crankshaft four-rings, and that tetrahedral site occupancy has only a second-order effect on the symmetry.

The results of the microcline-RbAlSi\(_3\)O\(_8\) series alone are not surprising, but when combined with data for the low albite-microcline series (Orville, 1967; Hovis and Peckins, 1978), several interesting features become apparent (Fig. 2). Two major discontinuities in the slopes of the cell parameters vs. cation size may be seen. Not all of the individual cell parameters show both changes in slope, but all show at least one. The discontinuities in the cell edges appear sharp, and occur at 1.50-1.52 and 1.67-1.69 Å. The cell angles do not appear to change abruptly in slope; instead, a gradual change is observed in the region of the discontinuities in the cell edges.

The first discontinuity occurs near the composition K\(_{40-45}\)Na\(_{60-55}\). It is well known that the variation of
linear relations of b and c vs. composition for five Na–K series, and showed that for both ordered and disordered series, the deviation from linearity was maximized near $K_{0.5}Na_{0.5}$. On the basis of their analysis, they concluded that regardless of the structural state of the alkali feldspars, they consist of at least two separate families (Vogel et al., 1973, p. 908). They also noted that the structural rearrangements causing the triclinic–monoclinic transition in the disordered series must also occur in the ordered case. Stewart (1975, p. St6) assigned a probable cause of the change in parameter behavior to a change in the oxygen coordination around the alkali cation, but did not extend this to consider the effect on the framework as a whole.

The second discontinuity occurs at a radius of 1.67–1.69 Å, near microcline, K_{100}. Bruno and Pentinghaus (1974) listed many end-member feldspars, including $NaAlSi_3O_8$, $KAlSi_3O_8$, and $RbAlSi_3O_8$, with both ordered and disordered Al/Si distributions. They plotted unit-cell parameters vs. mean cation radius, and observed a change in slope of cell edges a, b, and c near K_{100} for all framework types. Since they plotted only end-member compositions, the discontinuity near $K_{0.5}Na_{0.5}$ was not observed. From the trends observed, they proposed that the alkali feldspar lattice expanded in a regular fashion when Na, K, and Rb are substituted for each other, and the existence of a discontinuity at K_{100} was not discussed. The authors considered that for such an isostructural series with a constant anion $AlSi_3O_8^-$, the cell volume should be proportional to the cation volume, following Shannon and Prewitt (1969). This assumption must be carefully considered before being applied to a non-isotropic framework structure such as the feldspars.

The two discontinuities separate three regions in the graph of cell dimensions vs. mean cation size, characterized in Figure 2 and Table 4. Both discontinuities appear more marked for the cell edges a, b, and c than for the angles a, b, and c. This may be due to the relative precision of the data points involved, or to the nature of the changes themselves. No single explanation is yet apparent. The first discontinuity at $K_{0.5}Na_{0.5}$ affects only edges b and c, but both parameters change in the same direction by a similar degree. Thus no discontinuity is observed on a b–c plot, and b and c may be said to be coupled. The second discontinuity involves a change in the slope of a, and the coupling between b and c is removed. We consider that this second discontinuity...
Fig. 2. Variation of the cell parameters as a function of average alkali cation radius in the ordered Na–K feldspar series (▼ from Orville, 1967; △ from Hovis and Peckins, 1978) and K–Rb feldspar series (○ from Table 3).

may be related to a new type of phase transition recently described for microcline at room temperature (Openshaw et al., 1979a, b; Wyncke et al., in preparation). We propose that these discontinuities are a result of the expansion behavior of a framework of feldspar architecture, and will be discussed in another paper (Brown et al., in preparation) in terms of the expansion of feldspar structures in general.

Table 4. Behavior of cell parameters in the three regions distinguished in Fig. 2

<table>
<thead>
<tr>
<th>Region (nm)</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>α</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.138 - 0.151</td>
<td>increases</td>
<td>increases</td>
<td>increases</td>
<td>decreases with greatest negative slope</td>
<td>decreases</td>
<td>decreases</td>
</tr>
<tr>
<td>0.151 - 0.168</td>
<td>increases as before with no change in slope</td>
<td>increase slightly, but with lesser slope</td>
<td>increases, but with lesser slope</td>
<td>decreases but slope diminishes (curvature)</td>
<td>remains nearly constant</td>
<td>remains nearly constant</td>
</tr>
<tr>
<td>0.168 - 0.176</td>
<td>increases but with greater slope</td>
<td>remains constant</td>
<td>increases with greater slope</td>
<td>decreases very slightly</td>
<td>increases</td>
<td>increases</td>
</tr>
</tbody>
</table>
Acknowledgments

We thank R. Montanari, Y. Perrin, and M. Vernet for chemical analyses, and J. Hilly and G. Even for use of their X-ray facilities. We also thank J. R. Holloway, A. Navrotsky, and G. V. Gibbs for reading the original manuscript, and G. L. Hovis for an excellent review.

References

Manuscript received, March 29, 1979; accepted for publication, November 30, 1979.