**Physical Properties:** Color, brilliant bluish black; under the microscope very pleochroic, γ pale yellow, β violet, α sea blue. Extinction is incomplete in white light, but approaches 40°. Sp. gr., 3.15 to 3.21.

**Occurrence:** A constituent of eruptive alkaline-syenite rocks occurring in the high plateau of Madagascar. In part found in chalcedonic masses, evidently residual from aplite or pneumatolytic veins.

**Unnamed**


**Physical Properties:** Color steel gray, luster metallic, streak black. Sp. gr. 4.2.

**Crystallographic Properties:** A twinned crystal when measured failed to show angles in agreement with any of the minerals thus far described and apparently represents a new species. It is tabular in habit and probably triclinic; a:b:c=3.3425:1.35536; α=90°0', β=102°8', γ=90°0'. Tables record both observed and calculated values.

**Occurrence:** Found loose in a collection of minerals from the Binnenthal, labeled "scleroclase?" W. F. H.

**Doubtful Species**

**Family:** Elements. **Division:** Non-metals

**Daiton-sulfur.**


**Name:** From being a form of sulfur peculiar to the locality, Daiton.

**Properties:** A monoclinic form of sulfur distinct from β and γ sulfurs, described by M. Suzuki, *J. Geol. Soc. Tokyo*, 22, 343, 1915.

**Discussion:** To be classed as a variety of *Sulfur*, monoclinic, now considered a definite mineral species, *J. Wash. Acad. Sci.*, 7, 451, 1917. E. T. W.

**Rubber-sulfur.**


**Name:** From being a form of sulfur with the general properties of rubber.

**Properties:** Amorphous and plastic.

**Discussion:** To be classed as a variety of *Sulfur*, amorphous, now considered a definite mineral species; *op. cit.*, p. 452. E. T. W.

**Family:** Halides. **Division:** ?

**Pseudomendipite.**


**Name:** From pseudo, false, and mendipite.

**Properties:** Said to have the formula 3PbO·PbCl₂, but the analysis quoted does not support this formula.

**Discussion:** Requires confirmation. E. T. W.
FAMILY: OXIDES. SUBFAMILY: HYDROXIDES. DIVISION: 
$R''$: $\text{H}_2\text{O}=1:1$

"Iron-pyrochroite."

G. Flink: Pyrobelonite, a new lead-manganese vanadate from Långbanshyttan. 

NAME: From the composition, an iron-bearing pyrochroite. (The form here used is a translation of the German form, "Eisen-pyrochroit.")

PROPERTIES: Diffs from ordinary pyrochroite in showing acicular habit of its crystals, also in mode of alteration.

DISCUSSION: To be classed as a variety, for which the term ferriferous pyrochroite would seem to be more appropriate.

E. T. W.

FAMILY: SULFATES. DIVISION: $R''': R''$: $\text{H}_2\text{O}=4:1:X$

"Hydro-glockerite."


NAME: From the composition, an apparently excessively hydrous glockerite.

PROPERTIES: Ocher-like; containing approximately 8 molecules of water to one of sulfur trioxide, instead of six as usually ascribed to glockerite.

DISCUSSION: The exact water-content of such materials is of little significance, and this is to be classed as an unimportant variety.

E. T. W.

FAMILY: SILICATES. DIVISION: $R''$: $R'''$: $\text{Si}=2.3:3$ (with $F_2$ replacing $O_2$)

"Fluor-meionite."


NAME: From the composition, a meionite containing fluorine.

PROPERTIES: A suggested isomorph in scapolite, the mineral as a whole containing 2.74% fluorine.

DISCUSSION: If really a member of an isomorphous series, it could be classed as a sub-species; but requires confirmation.

E. T. W.

FAMILY: SILICATES. DIVISION: $R'$: $R''$: $R'''$: $\text{Si}=2.2:2:3$.

"Calciobiotite."


NAME: From the composition, a calcium-rich biotite.

PROPERTIES: Color pale. CaO content 14.33%.

OCCURRENCE: In blocks of metamorphosed limestone, in tuffs on the Campania, Italy.

DISCUSSION: The term calciferous biotite would probably be adequate for this evidently varietal material.

E. T. W.