Mixing properties of aluminosilicate garnets: constraints from natural and experimental data, and applications to geothermo-barometry: Clarifications

JIBAMITRA GANGULY
Department of Geosciences
University of Arizona, Tucson, Arizona 85721

AND SUREN德拉 K. SAXENA
Department of Geology
Brooklyn College, C.U.N.Y., Brooklyn, New York 11210

In this paper (Ganguly and Saxena, 1984) we have developed a restricted formulation for garnet–biotite geothermometry by introducing certain corrections for compositional effects on the $K_0(\text{Fe–Mg})$ vs. T calibration of Ferry and Spear (1978) in the Fe–Mg system. To use this formulation, one needs to evaluate, according to (14), the compositionally dependent interaction parameter W_{FeMg} in equations (12) and (13) for the garnet composition in the sample of interest and for that (Al$_{90}$Py$_{10}$) maintained in the experimental work of Ferry and Spear, respectively. Thus, W_{FeMg} (eqn. 13) \approx 2270 cal, and consequently, the term A (eqn. 12) \approx 1175 + 9.45 P(kbar). The term W_{Al} in equation (12) is to be read as ΔW_{Al}.

The W parameters in equations (A.1) and (A.2) in the Appendix are W_{G}’s (see eqn. 5). The equation (A.3) is for 1 bar, $T \cdot R \ln \gamma_{\text{G}}(\text{Gt})$ at $P > 1$ bar can be calculated through the relation $RT \partial \ln \gamma_{\text{G}}/\partial P = (\bar{V}_{\text{G}} - V_{\text{G}})$. The volume data for grossular are given in Newton and Haselton (1981), and those for pyrope in Haselton and Newton (1980).

Acknowledgments
Thanks are due Drs. Michael Holdaway and Barbara Dutrow for checking the clarity of the ‘clarifications’, and to Dr. Dexter Perkins for drawing attention to the eqns. (A.1) and (A.2).

References