Redox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO-MgO-Al₂O₃-SiO₂-Fe-O: relationships between redox equilibria, melt structure and liquidus phase equilibria

BJÖRN O. MYSEN, DAVID VIRGO, ELSE-RAGNHLID NEUMANN, AND FRIEDRICH A. SEIFERT

Geophysical Laboratory, Carnegie Institution of Washington
Washington, D.C. 20008

Abstract

Relationships between melt structure and redox equilibria of iron in CaO-Al₂O₃-SiO₂-Fe-O and MgO-Al₂O₃-SiO₂-Fe-O melts with Ca/Al and Mg/Al ≥ 0.5 have been determined with Mössbauer spectroscopy at 1 atm pressure. These data and published phase equilibria in iron-free systems were used to calculate liquidus equilibria involving iron-bearing melts and iron-free minerals.

Ferrous iron is a network modifier (probably in octahedral coordination) in all compositions studied. Ferric iron is tetrahedrally coordinated in melts with Fe³⁺/ΣFe > 0.5, and undergoes a gradual coordination transformation in the Fe³⁺/ΣFe range between 0.5 and 0.3. In this Fe³⁺/ΣFe-range, tetrahedrally- and octahedrally-coordinated ferric iron may coexist. The temperature-dependence of the Mössbauer hyperfine parameters and the temperature-independence of the intensity of the absorption envelope are consistent with a local structural unit that may be stoichiometrically similar to Fe₃O₄. The Fe²⁺/Fe³⁺ is linearly correlated with polymerization (nonbridging oxygens per tetrahedrally coordinated cations, NBO/T) and Al/(Al + Si) of the melt. There are linear relationships between log (Fe²⁺/Fe³⁺) and log Φ₀, and between log (Fe²⁺/Fe³⁺) and 1/T (absolute temperature). The standard-state free energy of reduction of ferric to ferrous iron, calculated from these lines, decreases with increasing Z/lz (ionization potential) of the alkaline earth metal cation, with decreasing bulk melt NBO/T (more polymerized melts) and with decreasing Al/(Al + Si) of the melt.

In magnesium aluminosilicate melts with NBO/T = 0.6 and Al/(Al + Si) = 0.2 (typical values for quartz tholeiite and basaltic andesite) with 10 wt.% iron oxide added as Fe₂O₃, the liquidus phase is tridymite when equilibrated with air. Calculations indicate that at Φ₀ between 10⁻² and 10⁻³ atm the liquidus phase changes to protoenstatite, and then to forsterite at even lower oxygen fugacities. Substitution of Ca (or Na) for Mg results in expansion of the metasilicate (pyroxene) liquidus field and contraction of that of tridymite. Fractional crystallization trends of magmatic liquids are, therefore, significantly dependent on oxygen fugacity, degree of polymerization of the magma (NBO/T), Al/(Al + Si) and the relative abundance of alkali metals and alkaline earths.

Introduction

Crystal-liquid equilibria of natural magmatic liquids depend on the structures of both the melt and the minerals. The liquidus phase equilibria in the systems CaO-Al₂O₃-SiO₂ (Osborn and Muan, 1960a) and CaO-Fe₂O₃-SiO₂ (Osborn and Muan, 1960b) indicate that the influence of Fe³⁺ and Al³⁺ on the phase relations at 1 atm pressure are similar (Fig. 1). These available data suggest that the influence of Al³⁺ and Fe³⁺ on the anionic structure of the melts in these two ternary systems may resemble each other. With the same degree of polymerization of the melts (recalculated as nonbridging oxygens per tetrahedrally coordinated cations, NBO/T), re-
placement of Si^{4+} by Al^{3+} or Fe^{3+} leads to a rapid reduction of the silica-polymorph liquidus temperature and a transition from tridymite to pseudowollastonite on the liquidus at approximately the same temperature and the same $M^{3+}/(M^{3+} + \text{Si}^{4+})$ ($M^{3+} = \text{Al}^{3+}$ or Fe^{3+}) (Fig. 1). These trends indicate that the activity of the SiO_2 component decreases and that of the metasilicate increases at nearly the same rate as the $M^{3+}/(M^{3+} + \text{Si}^{4+})$ increases both for $M^{3+} = \text{Al}^{3+}$ and Fe^{3+}. Aluminum is in tetrahedral coordination provided that there is sufficient alkali or alkaline earths for charge-balance of Al^{3+} in the melts (Taylor and Brown, 1979a,b; Hess and Wood, 1982; Seifert et al., 1982). Ferric iron may also be in tetrahedral coordination at least in iron-bearing melts equilibrated with air (see also Mysen and Virgo, 1978; Brown et al., 1978; Dickenson and Hess, 1981; Calas and Petiau, 1983). These liquidus phase equilibria in the systems $\text{CaO} - \text{Al}_2\text{O}_3 - \text{SiO}_2$ and $\text{CaO} - \text{Fe}_2\text{O}_3 - \text{SiO}_2$ differ dramatically, however, from those with all iron as Fe^{2+} (Fig. 1; see also Osborn and Muan, 1960c), where replacement of Si^{4+} by Fe^{2+} (and a concomitant decrease in Ca^{2+}) to maintain a constant NBO/T results in an increase in the temperature of the cristobalite liquidus and the appearance of two liquids as the composition approaches the join FeO-SiO_2. It is suggested, therefore, that both ferric and ferrous iron have an important influence on the melt structure but that the effect of the two cations is quite different.

In addition to the seemingly important impact of iron oxides on the structure of silicate melts relevant to magmatic liquids (and, thus, properties that are affected by melt structure), redox equilibria of iron are also of intrinsic interest because such data may be used to deduce temperature-oxygen fugacity histories of magma (e.g., Haggerty, 1978; Haggerty and Tompkins, 1983; Sato and Valenza, 1980). It is necessary, therefore, to calibrate $\text{Fe}^{3+}/\Sigma \text{Fe}$ as a function of intensive and extensive variables (see, e.g., Sack et al., 1980; Thornber et al., 1980; Kilinc et al., 1983, for empirical calibration of redox ratios of magmatic liquids). The physicochemical principles that govern the redox equilibria must be established before such data will have general applicability to natural magmatic processes.

The present study was conceived to address some of the principal features of redox equilibria of iron oxides that are interrelated with the structure of silicate melts and equilibria between melts and minerals. In this report, relationships between $\text{Al}/(\text{Al} + \text{Si})$, NBO/T, types of charge-balancing metal cations and oxygen fugacity have been evaluated. Inasmuch as peraluminous magmatic liquids are comparatively rare, the compositions of the melts were chosen so that $(\text{Al} + \text{Fe}^{3+})$ is always less than the sum of alkaline earth metal cations.

Experimental methods

Starting materials in the systems $\text{CaO} - \text{Al}_2\text{O}_3 - \text{SiO}_2 - \text{Fe}_2\text{O}_3$ and $\text{MgO} - \text{Al}_2\text{O}_3 - \text{Fe}_2\text{O}_3$ were prepared from spectroscopically pure SiO_2, Al_2O_3, Fe_2O_3, MgO and CaCO_3 in batches of 200 mg and ground under alcohol for 1 hr before use. The Fe_2O_3 was isotopically enriched with ^{57}Fe to about $^{57}\text{Fe}/^{56}\text{Fe} = 0.1$ to facilitate Mössbauer spectroscopic analysis. The aluminosilicate compositions are denoted MAS and CAS for the MgO- and CaO-bearing systems, respectively. The weight percentage of Fe_2O_3 added to the starting materials is indicated by the symbols F5 and F10 (5 and 10 wt.% Fe_2O_3, respectively). Roman numerals (I to XIII) refer to iron-free compositions where NBO/T and Al/(Al + Si) are similar (Fig. 2). In each system there is a series with variable Al/(Al + Si) (0.14–0.43) and constant NBO/T (0.67) and a series with constant Al/(Al + Si) (0.334) and changing NBO/T (0.17–1.33). In the system CAS, there is an additional composition line with different but constant NBO/T (0.86) and changing Al/(Al + Si) (0.05–0.43). Finally, there is a composition line that covers a range of compositions where both Al/(Al + Si) and NBO/T are variable (in the ranges 0.08–0.43 and 0.16–0.86, respectively). These compositional ranges were chosen to cover those commonly observed in natural magmatic liquids.

Sintered 20–25 mg pellets of the oxide starting materials were suspended on single loops of 0.004-in.-diameter Pt wire with the weight ratio of the sample to Pt about 100. These pellets were transformed to a melt in MoSi$_2$-heated, vertical quench furnaces. The samples were quenched in water at a quenching rate exceeding 500°C/sec. The oxygen fugacity was controlled with CO–CO$_2$ gas mixtures where the f_{O_2} was monitored with a Y$_2$O$_3$-doped ZrO$_2$ oxygen sensor (Sato, 1972), supplied by Oxide Fabricators, Inc., Victoria, Australia. The oxygen fugacity, as calibrated against nickel–nickel oxide and iron–wustite oxide buffers (Chou, 1978) and calculated CO/CO$_2$ (Deines et al., 1974), is accurate to within 0.05 log unit. Precision is better than ±0.02 log unit. The temperatures were monitored with one thermocouple 1 cm above the sample and one within the oxygen sensor (displaced 1 cm horizontally from the sample). The temperatures, as checked against the melting point of Au (1062.5°C), are accurate to within ±5°C and precise to ±1°C.

Electron microprobe analyses show that the compositions of the run products are in accord with nominal compositions within analytical uncertainty (approximately 2%, relative) except for iron. As much as a 5% iron-loss to the Pt wire-loop (relative to the total amount added) was encountered in experimental charges under the most reducing f_{O_2} conditions. Electron microprobe
analyses of the run products are available from the authors upon request.

The redox ratio of iron and structural information on Fe$^{2+}$ and Fe$^{3+}$ in the quenched samples were obtained with 57Fe resonant absorption Mössbauer spectroscopy. The spectra are fitted with least-squares minimization (Davidon, 1959) to one ferric doublet and one or two ferrous doublets. Several alternative fitting methods, using quenched melts in the systems Na$_2$O·SiO$_2$·FeO, BaO·SiO$_2$·FeO, CaO·SiO$_2$·FeO, MgO·SiO$_2$·FeO, Na$_2$O·Al$_2$O$_3$·SiO$_2$·FeO, CaO·Al$_2$O$_3$·SiO$_2$·FeO and MgO·Al$_2$O$_3$·SiO$_2$ have been evaluated and will be discussed in detail in a separate paper (Virgo and Mysen, 1985). Only a brief summary of the principles and the most important conclusions will, therefore, be presented here.

These fitting routines include those in which it is assumed that the cumulative envelope of the absorption spectra consists of a number of overlapping elementary doublets of Lorentzian shape, and those in which it is assumed that the hyperfine parameters (isomer shift and quadrupole splitting) are linearly correlated (Wivel and Morup, 1981; Danckwerth and Virgo, 1982; Danckwerth et al., 1982; Virgo and Mysen, 1985). Another method, in which a variable number of doublets, of pure Lorentzian shape, have been proposed for fitting of both Fe$^{2+}$ and Fe$^{3+}$, has been predominantly used in the present analysis of the spectra. This method of deconvolution results in fits that on statistical grounds are comparable to those obtained by fitting hyperfine parameter distributions. As discussed in more detail elsewhere (Virgo and Mysen, 1985), the velocities of the component peaks of the quadrupole split doublets of Fe$^{3+}$ and Fe$^{2+}$ are within 5% (relative) of each other. Furthermore, in choosing between, for example, single or multiple Fe$^{3+}$ and Fe$^{2+}$ doublets when fitting separate doublets of Lorentzian line shape (Virgo and Mysen, 1985, see also Mysen et al., 1984), the average values of the hyperfine parameters (isomer shift and quadrupole splitting) in the simplest two-doublet (one ferric and one ferrous) fits are within 5% of the weighted averages from fits of multiple doublets.

It may be argued that the Mössbauer spectra of silicate glasses theoretically are best described in terms of a distribution of the hyperfine field. The simpler fitting routine, using a limited number of ferrous and ferric doublets of Lorentzian line shape was, however, employed. This decision was made partly because of the excessive CPU time required for the least-squares fitting of the hyperfine parameters, and partly (and for the present purpose more important) because the structural information discussed in the present paper and the Fe$^{3+}$/ΣFe obtained from these fits are consistent with those obtained with the more complex fits of the spectra (Danckwerth et al., 1982; Virgo and Mysen, 1985) and also with independently obtained information.

It is proposed here that the melt structural correlations with doublets of pure Lorentzian shape are also compatible with a more realistic model of melt structure in which information from Raman (Brawer, 1975; Furukawa et al., 1981; Mysen et al., 1980a,b, 1982a), infrared (Domine and Piriou, 1983), transmission electron microscopy (Gaskell, 1975) and 29Si NMR spectroscopic techniques (Kirkpatrick et al., 1982) indicate the existence of distinct (20-100Å) chemical and structural units in silicate melt structures.

In using this fitting method, all doublets were constrained to have equal areas. For ferric iron, the halfwidths were also constrained to be equal. The cumulative envelope of highly reduced glasses (no Fe$^{3+}$ present) is, however, typically asymmetric (e.g., Mao et al., 1973; Mysen and Virgo, 1978; Levitz et al., 1980). Thus, in the fitting procedure, the half-widths were not constrained for the Fe$^{2+}$ doublets.

The Fe$^{3+}$/ΣFe [or Fe$^{2+}$/Fe$^{3+}$ = (1 - Fe$^{3+}$/ΣFe)/(Fe$^{3+}$/ΣFe)] is obtained from relative areas of doublets. The redox ratio thus obtained is within 7% (relative) of the results from wet chemical analysis (Table 1). With an approximately 3-5% relative uncertainty in the Mössbauer data (as indicated by replicate analyses, replicate experiments and measurements at two different absorber temperatures, 77 and 298 K) and a 6% uncertainty reported (Sack et al., 1980) for the wet chemical method, it is considered that a 7% difference is within the cumulative analytical uncertainty of
Table 1: Comparison of Fe$^{3+}$/ΣFe determined by wet-chemical and Mössbauer spectroscopic methods

<table>
<thead>
<tr>
<th>Sample</th>
<th>Wet chemistry</th>
<th>Mössbauer spectroscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>001*</td>
<td>0.80 ± 0.05</td>
<td>0.86 ± 0.04</td>
</tr>
<tr>
<td>002*</td>
<td>0.88 ± 0.05</td>
<td>0.96 ± 0.05</td>
</tr>
<tr>
<td>004*</td>
<td>0.60 ± 0.04</td>
<td>0.65 ± 0.03</td>
</tr>
<tr>
<td>010*</td>
<td>0.89 ± 0.05</td>
<td>0.96 ± 0.05</td>
</tr>
<tr>
<td>FeAb*</td>
<td>0.75 ± 0.05</td>
<td>0.62 ± 0.04</td>
</tr>
<tr>
<td>M78H*</td>
<td>0.68 ± 0.04</td>
<td>0.71 ± 0.04</td>
</tr>
</tbody>
</table>

*Sample provided by Dr. I. S. E. Carmichael, University of California, Berkeley. Redox data are from No et al. (1982) and Carmichael (personal communication, 1983).

The two methods (wet chemistry and Mössbauer resonant absorption).

Results

Oxygen coordination around ferric and ferrous iron

Representative 57Fe Mössbauer spectra are shown in Figure 3, and a complete set of calculated Fe$^{3+}$/ΣFe and hyperfine parameters from all spectra is given in Table 2. The hyperfine parameters in Table 2 are calculated from the statistically best fits (whether with one or two ferrous doublets). Except for the most oxidized samples, the inclusion of the Fe$^{2+}$ (II) doublet results in a 20–25% improvement in the values of χ², and the residual distribution becomes more random. When its inclusion was not justified statistically, the second doublet was not included.

Topologically, changes in the spectra as a function of Al/(Al + Si), NBO/T and f_0, are similar in both systems. The spectra have been interpreted to consist of one ferric and generally two ferrous doublets except under the most reducing conditions (f_0 = 10$^{-6}$ – 10$^{-9}$ atm), where there is no indication of ferric iron. When either one or two ferrous doublets were statistically permissible, the velocities of the ferric iron component peaks were independent of the number of ferrous doublets.

The high-velocity component of ferric iron shifts from −0.7 mm/sec to 0.9–1.0 mm/sec as Fe$^{3+}$/ΣFe is reduced below 0.3 (Fig. 3, Table 2). The low-velocity component of the Fe$^{3+}$ doublet is shifted from ~ −0.5 mm/sec to ~0 mm/sec in the same Fe$^{3+}$/ΣFe range. A transition occurs in the Fe$^{3+}$/ΣFe range between 0.5 and 0.3, within which range intermediate velocities were obtained. Within this transition range there is an increase in line width of the Fe$^{3+}$ component peaks (from ~0.7 mm/sec to ~1.0 mm/sec). The velocity changes are reflected in an increase in the isomer shift (IS) [from ~0.3 mm/sec (relative to Fe metal) in the most oxidized samples to between 0.6 and 0.65 mm/sec for samples with Fe$^{3+}$/ΣFe < 0.3–0.4]. The increase in IS$_{Fe^{3+}}$ is associated with a general decrease in quadrupole splitting (QS) (Fig. 4) although the QS$_{Fe^{3+}}$ trend is considerably more scattered than that of the IS$_{Fe^{3+}}$. Similar relationships between IS$_{Fe^{3+}}$, QS$_{Fe^{3+}}$, and Fe$^{3+}$/ΣFe have been observed in the analogous sodium aluminosilicate system (Virgo et al., 1983; Mysen and Virgo, 1983a; Virgo and Mysen, 1985) and in the aluminum-free Ca- and Mg-silicate systems (Mysen and Virgo, 1983b; Mysen et al., 1984). These results may indicate the existence of a second ferric iron doublet. This hypothetical doublet could not be inserted in the fits without imposed constraints on its quadrupole splitting. Without independent information on the values of the quadrupole splitting, insertion of such a doublet with the quadrupole splitting constrained was not attempted. It is noted, however, that in the analogous Fe$^{3+}$/ΣFe transition range in the system Na$_2$O–Al$_2$O$_3$–SiO$_2$–Fe–O, it has been found (Virgo and Mysen, 1985) that with those somewhat more resolved spectra, a second ferric doublet could be included. The present spectra are, however, merely consistent with such a possibility.

In the more oxidized samples (Fe$^{3+}$/ΣFe > 0.5) the values of IS$_{Fe^{3+}}$ and QS$_{Fe^{3+}}$ are generally similar to those observed for tetrahedrally coordinated ferric iron in crystalline silicates (e.g., Hafner and Huckenholz, 1971; Annersten and Halenius, 1976; Mysen et al., 1980a; Amthauer et al., 1977; Waychunas and Rossman, 1983). Moreover, these values are similar to those found for iron-bearing glasses where other spectroscopic data (exafs, epr, fluorescence and Raman spectroscopy) also suggest that Fe$^{3+}$ (IV) exists (Brown et al., 1978; Calas et al., 1980; Fox et al., 1982; Virgo et al., 1981, 1982; Calas and Petiau, 1983; Mysen and Virgo, 1983b; Mysen et al., 1980a, 1984).

The gradual increase in IS$_{Fe^{3+}}$ from values near 0.3 mm/sec (298K) with Fe$^{3+}$/ΣFe ≥ 0.5 to values between 0.6 and 0.7 mm/sec at Fe$^{3+}$/ΣFe < 0.4 (Fig. 4) (with a concomitant decrease in QS$_{Fe^{3+}}$) may indicate a significant change in the structural position of ferric iron in these aluminosilicate melts as a function of Fe$^{3+}$/ΣFe. Similar changes in hyperfine parameters for ferric iron as a function of Fe$^{3+}$/ΣFe have been observed in the systems Na$_2$O–SiO$_2$–Fe–O, CaO–SiO$_2$–Fe–O, MgO–SiO$_2$–Fe–O and Na$_2$O–Al$_2$O$_3$–SiO$_2$–Fe–O (Mysen et al., 1984a; Virgo and Mysen, 1985). Raman spectra of quenched melts in the system CaO–SiO$_2$–Fe–O (Mysen et al., 1984) and Na$_2$O–SiO$_2$–Fe–O (Virgo et al., 1982, 1983; Mysen and Virgo, 1983c) indicate that this increase in IS$_{Fe^{3+}}$ was associated with a systematic decrease in the intensity of Fe$^{3+}$ (IV)–O stretch bands in those spectra. This decreased intensity was interpreted to reflect the disappearance of tetrahedrally-coordinated ferric iron in a ferric iron-concentration range that was considerably greater than the sensitivity of the Raman spectra to Fe$^{3+}$ (IV)–O bonds in the quenched melts (Virgo et al., 1983; Mysen et al., 1984). Further support for this suggestion is found in the values of isomer shifts of octahedrally coordinated ferric iron (IS$_{Fe^{3+}}$ = 0.4–0.65 mm/sec) in crystalline materials (Annersten and Halenius, 1976; Annersten and Olesch, 1978; Nolet and Burns, 1979; Evans and Amthauer, 1980; Huggins et al., 1975; Annersten et al., 1978; Amthauer et al., 1980). This IS$_{Fe^{3+}}$ range is similar to that of the present...
melts with Fe$^{3+}$/ΣFe < 0.5. Thus, the correlation of the systematic changes of isomer shifts of ferric iron with published Raman data as well as the correlation with hyperfine parameters of octahedrally-coordinated ferric iron in crystalline materials lead to the conclusion that the gradual and systematic increase in IS$_{Fe^{3+}}$ (and decrease in QS$_{Fe^{3+}}$) as the Fe$^{3+}$/ΣFe is lowered below about 0.5 results from a coordination change of Fe$^{3+}$ from four-fold to six-fold.

There is a ferric/ferrous range where the isomer shifts and quadrupole splitting are intermediate between about 0.3 and 0.65 mm/sec, and with continuous change in this value as a function of decreasing Fe$^{3+}$/ΣFe. This behavior
Table 2. Experimental results

<table>
<thead>
<tr>
<th>Comp</th>
<th>Temp, °C</th>
<th>Fe(^{3+})</th>
<th>Fe(^{2+}) (I)</th>
<th>Fe(^{2+}) (II)</th>
<th>Fe(^{2+})/Fe(^{3+})</th>
<th>Fe(^{2+})/Fe(^{3+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASIIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.791 1.319 1.079 2.142 1.026 1.594 0.556 0.678</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASIIIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.791 1.337 1.093 2.246 1.037 1.646 0.500 1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASIIIIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.801 1.321 1.048 2.128 1.020 1.625 0.523 0.793</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASIVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.792 1.148 0.941 2.016 0.911 1.498 0.561 0.782</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.789 1.363 0.997 1.925</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.789 1.307 1.049 2.133 1.034 1.635 0.610 0.639</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.817 2.255 2.069 5.809 0.978 1.316 0.504 0.733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.737 2.377 1.772 2.010 0.923 1.807 0.739 0.317</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.794 2.158 1.068 2.128 1.020 1.625 0.612 0.839</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.747 1.324 1.057 2.228 1.046 1.986 0.603 0.673</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.778 1.282 0.970 1.914</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.692 1.523 1.100 2.923</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.772 1.360 1.129 2.167 0.937 1.569 0.630 0.839</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.618 1.408 1.041 2.303 1.012 1.627 0.518 0.929</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.723 1.336 0.965 2.096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.728 1.391 1.050 2.236 0.989 1.374 0.687 0.431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.302 1.221 1.342 2.054 0.933 1.797 0.650 0.530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.285 1.262 1.387 2.877 0.928 1.908 0.658 0.619</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.636 0.671 0.947 2.343 0.936 1.798 0.291 2.436</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.487 1.030 0.962 2.446 0.985 1.669 0.382 2.210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.570 0.420 0.895 2.053 0.995 1.810 0.390 2.225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.499 1.505 1.046 2.193 1.014 1.610 0.319 51.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.386 2.130 1.049 2.196 1.012 1.753 0.155 5.372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.722 0.663 1.018 2.178 1.016 1.644 0.072 12.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.725 0.484 0.995 1.490 0.000 0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>1.253 1.170 0.986 1.672 0.000 0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.305 1.287 1.024 1.909</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.283 1.302 0.998 1.968</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.270 1.381 0.974 1.917</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.295 1.286 1.018 1.947</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.290 1.311 0.993 1.897</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.284 1.373 0.982 1.949</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.267 1.331 0.938 1.916</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.277 1.316 0.984 1.953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.440 1.037 1.137 2.142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.265 1.319 1.001 1.894</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.275 1.282 1.075 2.144 0.996 1.658 0.758 0.319</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.762 1.635 1.167 1.962 0.864 1.171 0.138 1.116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>0.762 1.632 1.028 2.293 1.003 1.706 0.004 21.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASVIF5</td>
<td>1625</td>
<td>0.68</td>
<td>1.021 1.822 0.994 1.600 0.000 0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Fe}^{3+} \text{Fe}^{2+} \text{Fe}^{2+} / \text{Fe}^{3+} \]
could be the result of coexisting tetrahedral and octahedral ferric iron, or it could be the result of localized electron hopping between adjacent “sites” for Fe$^{2+}$ and Fe$^{3+}$ as observed, for example, in the Mössbauer spectra of some iron-bearing silicate minerals (e.g., Nolet and Burns, 1979; Amthauer et al., 1980; Coey et al., 1982). Localized electron hopping is, however, inconsistent with the observed temperature-independence of the ferric doublet (see Table 2, additional discussion will be presented by Virgo and Mysen, 1985). Moreover, as noted above, in melts in the system Na$_2$O-Al$_2$O$_3$-SiO$_2$-Fe-O, two ferric doublets could be fitted in the spectra from samples in this intermediate Fe$^{3+}$/ΣFe-range. One doublet resulted in hyperfine parameters consistent with tetrahedrally-coordinated Fe$^{3+}$ and one with octahedrally-coordinated Fe$^{3+}$ (Virgo and Mysen, 1985). In the alkaline earth aluminosilicate samples discussed here, there is a significant broadening of the component peaks of the fitted ferric iron doublet in the Fe$^{3+}$/ΣFe range between 0.5 and 0.3, a broadening that is consistent with the existence of at least two ferric doublets. The resolution of the Mössbauer spectra of these samples does not appear, however, to permit a fit without severe constraints (quadrupole split).

It is concluded, therefore, that in highly oxidized (Fe$^{3+}$/ΣFe > 0.5) aluminosilicate melts with Ca$^{2+}$ or Mg$^{2+}$ for electrical charge-balance, ferric iron is in tetrahedral coordination. Similar observations have been made for melts in the systems Na$_2$O-SiO$_2$-Fe-O (Virgo et al., 1982, 1983), CaO-SiO$_2$-Fe-O, MgO-SiO$_2$-Fe-O (Mysen et al., 1984) and Na$_2$O-Al$_2$O$_3$-SiO$_2$-Fe-O (Mysen and Virgo, 1983a; Virgo and Mysen, 1985). From the Raman spectra of the alkali and alkaline earth silicate melts, the Raman spectra indicate that this ferric iron was highly ordered (either constant Si/Fe$^{3+}$, or no Si in those tetrahedra). Similar conclusions may apply to the aluminosilicate systems.

In all systems and with different iron contents, a gradual increase in IS$_{Fe^{2+}}$ (and a decrease in QS$_{Fe^{2+}}$) began to take place with Fe$^{3+}$/ΣFe decreasing below 0.5. This latter observation leads to the conclusion that the coordination transformation of ferric iron appears tied to the relative proportion of ferric and ferrous iron in the melts. Thus, a melt complex involving an association between these two cations (e.g., Fe$_{2}$O$_{3}$) may be suggested. Magnetic properties of glasses in the system CaO-SiO$_2$-Fe-O as a function of Fe$^{3+}$/ΣFe (O’Horo and Levy, 1978) are also consistent with this suggestion. As additional ferrous iron is formed with further reduction of Fe$^{3+}$/ΣFe, this additional Fe$^{2+}$ most likely occurs as a network-modifying cation linking the non-bridging oxygens in the various coexisting units.

Ferrous iron is commonly considered to be a network modifier in silicate melts. Coordination polyhedra with six oxygens are consistent with the values of isomer shifts and quadrupole splitting of both ferrous iron doublets (e.g., Mao et al., 1973; Bell and Mao, 1974; Nolet et al., 1979; Mysen and Virgo, 1978; Calas and Petiau, 1983; Mysen et al., 1980a).

Redox relations

The Fe$^{2+}$/Fe$^{3+}$ values are positively correlated with decreasing NBO/T and Al/(Al + Si) at the same temperature and oxygen fugacity (Fig. 5). Similar correlations have been
reported from several Al-free alkali and alkaline earth silicate systems (e.g., Larson and Chipman, 1953; Paul and Douglas, 1965; Goldman, 1983; Mysen et al., 1984). There is a near linear relation between redox ratio and NBO/T in the NBO/T range between about 0.3 and 1.0 (see also Fig. 5) in both the system CaO·Al₂O₃·SiO₂·FeO and the system Na₂O·Al₂O₃·SiO₂·FeO (data also from Mysen and Virgo, 1983a; Virgo and Mysen, 1985). In the MgO·Al₂O₃·SiO₂·FeO system the linear correlation between Fe²⁺/Fe³⁺ and NBO/T obtained for Ca- and Na-aluminosilicate glasses no longer exists (Fig. 5). This different behavior of the Fe²⁺/Fe³⁺ versus NBO/T results from the fact that even for MAS melts with NBO/T < 0.4 equilibrated with air at 1550°C, the Fe³⁺/ΣFe is less than 0.5, and some of the ferric iron no longer is in tetrahedral coordination. Inasmuch as the activity coefficients of Fe³⁺(IV) and Fe³⁺(VI) most likely differ from each other, the Fe²⁺/Fe³⁺ will depend on Fe³⁺(IV)/Fe³⁺(VI) as also indicated by the data in Figure 5.

In the Al-free alkali- and alkaline-earth-bearing end-member systems the Fe²⁺/Fe³⁺ is a linear function of Z/r² (ionization potential) of the alkaline earth and alkali metal cation (Mysen et al., 1984), and NBO/T has no apparent effect on this relationship. In the present aluminous systems, the Fe²⁺/Fe³⁺ also increases with increasing Z/r² (Fig. 6), but the relationship is distinctly nonlinear and the dependence of Fe²⁺/Fe³⁺ on Z/r² is more pronounced the more polymerized the melt (smaller NBO/T).

With ferric iron in tetrahedral coordination, log (Fe²⁺/Fe³⁺) is linearly correlated with 1/T (absolute temperature) and log fO₂ (Figs. 7 and 8). The nonlinearity of the MAS/MAS curve (Fig. 7c) results from a coordination transformation of Fe³⁺ in this composition as the temperature is increased from 1550°C to 1650°C (see Table 2).

For melts with Fe³⁺(IV) and Fe²⁺(VI), the Fe²⁺/Fe³⁺ decreases with decreasing degree of polymerization (increasing NBO/T) of the melts (e.g., Larson and Chipman, 1953; Douglas et al., 1965; Virgo et al., 1982; Goldman, 1983; Mysen et al., 1984). As a result, it has been suggested (Holmquist, 1966; see also Goldman, 1983) that the redox equilibria may be illustrated with a simplified expression of the form:

\[
4\text{Fe(IV)}\text{O}_2^- = 4\text{Fe}^{2+}(\text{VI}) + 6\text{O}^{2-} + \text{O}_2. \tag{1}
\]
With the assumption of a linear relationship the standard-state free energy of reduction of ferric to ferrous iron expressed with equation (1) can be estimated as the lines (Fig. 7) conform to the expression

$$
\ln K = -\Delta G^0/RT,
$$

(2)

where the equilibrium constant, K, is that of equation (1). Strictly speaking, the concentration ratio, Fe^{2+}/Fe^{3+} should be the activity ratio, $a_{Fe^{2+}}/a_{Fe^{3+}}$. The linear relationship between $\log (Fe^{2+}/Fe^{3+})$ and $1/T$ indicates, however, that the activity coefficient ratio, $\gamma_{Fe^{2+}}/\gamma_{Fe^{3+}}$, is temperature independent in the temperature-range studied here. The standard free energies of reduction are given in Table 3. It is evident that at the same NBO/T and Al/(Al + Si), the ΔG^0 of reduction is greater for Ca-aluminosilicate melts than for Na-aluminosilicate melts with Fe^{3+} in tetrahedral coordination and Fe^{2+} in octahedral coordination. Furthermore, the free-energy changes decrease with decreasing bulk melt NBO/T and with decreasing Al/(Al + Si) for both Na and Ca systems. The relationship of ΔG^0 to Al/(Al + Si) is less pronounced for higher values of bulk melt NBO/T (Table 3).

There is a near linear relation between $\log (Fe^{2+}/Fe^{3+})$ and oxygen fugacity at 1550°C as a function of the same bulk compositional variables as the data in Fig. 7. Dashed lines for system Na$_2$O-Al$_2$O$_3$-SiO$_2$-Fe-O are from Mysen and Virgo (1983a) and Virgo and Mysen (1985).

Table 3. Standard free energies of reduction (kcal/mol) of ferric to ferrous iron

<table>
<thead>
<tr>
<th>Composition</th>
<th>NBO/T*</th>
<th>Al/(Al + Si)</th>
<th>ΔG^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASVFS</td>
<td>0.65</td>
<td>0.334</td>
<td>7.7</td>
</tr>
<tr>
<td>CASXIF5</td>
<td>0.65</td>
<td>0.138</td>
<td>5.1</td>
</tr>
<tr>
<td>CASXIF5</td>
<td>0.17</td>
<td>0.334</td>
<td>6.9</td>
</tr>
<tr>
<td>CASVFS</td>
<td>0.85</td>
<td>0.429</td>
<td>5.7</td>
</tr>
<tr>
<td>CASVFSF5</td>
<td>0.85</td>
<td>0.261</td>
<td>3.8</td>
</tr>
<tr>
<td>CASVFSF5</td>
<td>0.85</td>
<td>0.148</td>
<td>3.7</td>
</tr>
<tr>
<td>CASVFSF5</td>
<td>0.85</td>
<td>0.050</td>
<td>3.8</td>
</tr>
<tr>
<td>CASVFSF5</td>
<td>0.85</td>
<td>0.529</td>
<td>7.7</td>
</tr>
<tr>
<td>NASIVFS+</td>
<td>0.65</td>
<td>0.334</td>
<td>3.9</td>
</tr>
<tr>
<td>NASIVFS+</td>
<td>0.37</td>
<td>0.334</td>
<td>3.9</td>
</tr>
<tr>
<td>NASIVFS+</td>
<td>0.65</td>
<td>0.138</td>
<td>3.4</td>
</tr>
</tbody>
</table>

*Nonbridging oxygens per tetrahedral cations in the iron-free end-member system.

Data from Mysen and Virgo (1983a).
and log \(f_0 \) (Fig. 8). Similar relationships have been obtained in complex natural magmatic liquids (e.g., Thornber et al., 1980) as well as in numerous simpler binary and ternary silicate systems (e.g., Seifert et al., 1979; Goldman, 1983; Virgo et al., 1983; Mysen et al., 1984). In contrast to Na-bearing systems, where the slopes of the log \(f_0 \) vs. log \((Fe^{2+}/Fe^{3+})\) are about \(-0.25\) for a range of bulk melt NBO/T values, in the alkaline earth aluminosilicate melt systems the slopes range from \(-0.15\) to \(-0.37\). The slopes generally become steeper with increasing \(Z_{lr}^{2+} \) of the alkaline earth cation. No clear trend emerges for the relations between NBOII or Al/(Al + Si) and the slopes of the redox curves. This observation differs from the data reported in the Al-free end-member system, where, for example, the absolute value of the slope increases with decreasing bulk melt NBO/T (Mysen et al., 1984). Evidently, this simple relationship is affected by the presence of significant proportions of Al\(^{3+}\) in the melts.

Discussion

Polymerization and redox equilibria

Ferrous iron is a network modifier in the silicate melts studied here. Ferric iron, on the other hand, can be both a network former and a network modifier. Its coordination polyhedron is principally a function of \(Fe^{3+}/\Sigma Fe \). The degree of polymerization (NBO/T) of the iron-bearing silicate melt depends, therefore, on the same intensive and extensive variables that affect \(Fe^{3+}/\Sigma Fe \). A possible exception to this rule may be peralkaline aluminosilicate melts where Dickenson and Hess (1981) found \(Fe^{2+}/Fe^{3+} \) to be essentially independent of NBO/T. Some calculations used to illustrate the extent of changes of NBO/T in the systems \(Na_2O-Al_2O_3-SiO_2 \) (Mysen and Virgo, 1983a; Virgo and Mysen, 1985), \(CaO-Al_2O_3-SiO_2 \) and \(MgO-Al_2O_3-SiO_2 \) are shown in Figure 9.

The \(Fe^{3+}/\Sigma Fe \) is a simple function of temperature (Fig. 7). Thus, the NBO/T (degree of polymerization) of melts in the systems NAS, CAS and MAS at the same Al/(Al + Si) and oxygen fugacity increases with increasing temperature. Because the bulk melt NBO/T increases with decreasing \(Fe^{3+}/\Sigma Fe \) as long as \(Fe^{3+} \) is in four-fold and \(Fe^{2+} \) is in six-fold coordination, the NBO/T will increase with increasing temperature, with decreasing \(f_0 \) and with decreasing Al/(Al + Si). Inasmuch as the temperature dependence of \(Fe^{3+}/\Sigma Fe \) is greater the greater the \(Z/r^2 \) of the alkaline earth or alkali metal cation, the NBO/T of iron-bearing melts becomes more distinctly dependent on the type of metal cation in the order Na < Ca < Mg.

Lowering of the oxygen fugacity reduces the \(Fe^{3+}/\Sigma Fe \) and thus results in enhanced polymerization of NBO/T. For the three systems \(MgO-Al_2O_3-SiO_2-Fe-O \), \(CaO-Al_2O_3-SiO_2-Fe-O \) and \(Na_2O-Al_2O_3-SiO_2-Fe-O \) at 1550°C, \(Fe^{3+} \) will undergo a coordination transformation at some \(f_0 \) less than that of air (Figs. 4 and 8). It can be seen from the results in Figure 9B that the NBO/T of iron-bearing melts becomes more distinctly dependent on the type of metal cation in the order Na < Ca < Mg.

Fig. 9. Variations in melt polymerization (NBO/T) as a function of \(Fe^{3+}/\Sigma Fe \) calculated as a function of temperature (A), oxygen fugacity (B) and Al/(Al + Si) (C). Reference points, (NBO/T)\(_{\text{ref}}\), are at 1450°C (A), \(-\log f_0 = 0.68\) (air) (B) and Al/(Al + Si) = 0.0 (C).

The negative (and generally linear) correlation between \(Fe^{2+}/Fe^{3+} \) and Al/(Al + Si) also results in increasing bulk melt NBO/T as a function of decreasing Al/(Al + Si). Consequently, even though the structural positions of Al\(^{3+}\) and Si\(^{4+}\) in aluminosilicate melts most probably remain unaltered by the changes in Al/(Al + Si) (divalent metal cations charge-balance Al\(^{3+}\) in four-fold coordination), the bulk melt NBO/T of the iron-bearing MAS, CAS and NAS samples decreases systematically with increasing Al/(Al + Si).
+Si). Inasmuch as $\text{Fe}^{3+}/\Sigma\text{Fe}$ is more sensitive to $\text{Al}/(\text{Al} + \text{Si})$ in the iron-bearing magnesium aluminosilicate system than in the other systems (Fig. 5), the NBO/T variations resulting from the change in $\text{Fe}^{3+}/\Sigma\text{Fe}$ are also more sensitive to $\text{Al}/(\text{Al} + \text{Si})$ in the system $\text{MgO}-\text{Al}_2\text{O}_3-\text{SiO}_2-\text{Fe}_2\text{O}_3$ than in the systems $\text{CaO}-\text{Al}_2\text{O}_3-\text{SiO}_2-\text{Fe}_2\text{O}_3$ and $\text{Na}_2\text{O}-\text{Al}_2\text{O}_3-\text{SiO}_2-\text{Fe}_2\text{O}_3$ (Fig. 9).

Liquidus equilibria and the structure of iron-bearing aluminosilicate melts

Liquidus phase-equilibrium relations and melt–mineral element partitioning depend on the bulk compositions (structure) of both the mineral and the coexisting liquid. For example, a survey of REE partition coefficients between garnet and magmatic liquids (Irving and Frey, 1978) indicates that the partition coefficients may vary by more than an order of magnitude as a function of magma composition alone. Compositional variables, recast to atomic ratios such as Si/O of the melt, have been used to obtain a correlation between this ratio and partition coefficients between olivine and such melts (Watson, 1977; Hart and Davis, 1978). The Si/O is a simplified expression of melt polymerization, but does not take into account other tetrahedrally coordinated cations (e.g., Al^{3+}, Fe^{3+}, P^{5+} and Ti^{4+}), distribution of such cations between different structural units in the melt (e.g., Mysen et al., 1981, 1982b, 1985) and the possible complexing of the trace element with specific elements in the melt (Watson, 1976; Ryerson and Hess, 1980). It has been found for Ni, Mn and several REE that the polymerization parameter, NBO/T, which does not, however, consider cation distribution or complexing, is linearly correlated with olivine liquid and diopside–liquid partition coefficients in aluminosilicate systems such as $\text{CaMgSi}_2\text{O}_6-\text{NaAlSi}_2\text{O}_6-\text{SiO}_2$ and $\text{Mg}_2\text{SiO}_4-\text{NaAlSi}_2\text{O}_6-\text{CaAl}_2\text{Si}_2\text{O}_6$ (Mysen and Virgo, 1980). The linear correlations at constant temperature are valid whether or not Ca^{2+}, Mg^{2+} or Na^+ acts as a charge-balancing cation of tetrahedrally coordinated Al^{3+} at least in the NBO/T range from 0.2–1.0.

One may therefore relate changes in melt–mineral partition coefficients that result from the relationship between redox ratio and NBO/T of the melt to intensive and extensive variables that govern the values of $\text{Fe}^{3+}/\Sigma\text{Fe}$ (Fig. 9). For example, the variations in NBO/T as a function of j_{02} or $\text{Al}/(\text{Al} + \text{Si})$ with 5 wt.% iron added as Fe_2O_3 to a melt with NBO/T = 0.6 are well within the NBO/T ranges of linear correlation between partition coefficients and NBO/T in the systems summarized by Mysen and Virgo (1980). As mentioned briefly above [see equation (1)], ferric iron as a network former more likely forms separate ferrite complexes (Fox et al., 1982; Virgo et al., 1982; Mysen et al., 1984). These complexes may be described with the generalized expression $\text{FeO}_2^{(2-2n)^+}$ (Holmquist, 1966; Goldman, 1983). Virgo et al. (1982) and Mysen and Virgo (1983b) concluded from Mössbauer and Raman data that most likely $n = 2$ in alkali and alkaline earth silicate melts. Virgo et al. (1982) concluded from the Raman data, for example, that the character of this complex does not depend on the amount of tetrahedly-coordinated Fe^{3+}. Only the relative abundance of the ferrite complex changes with ferric iron concentration. The relative abundance of FeO_2^- complexes (which are analogous to the three-dimensionally interconnected aluminate or silicate complexes found in these and other melts) in a melt will affect the bulk melt NBO/T but not the character of the bridging and non-bridging oxygens in the silicate anionic units. Equation (1) may be combined with any polymerization reaction for the silicate such as, for example,

\[
\text{SiO}_3^- = \text{SiO}_2 + \text{O}^{2-},
\]

(4)

to illustrate the relationship between $\text{Fe}^{3+}(\text{IV})+\text{Fe}^{2+}(\text{VI})$ and the NBO/T of the melt:

\[
6\text{SiO}_3^-(2) + 4\text{Fe}^{2+}(\text{VI}) + \text{O}_2 = 6\text{SiO}_2(0) + 4\text{Fe}(\text{IV})\text{O}_2^-.
\]

(5)

In equation (5), the numbers in parentheses represent the NBO/T (or NBO/Si) of that particular melt structural unit. The Roman numerals represent the oxygen coordination number around Fe^{3+} and Fe^{2+}.

The changes in olivine–liquid Ni and Mn partition coefficients in the system $\text{Mg}_2\text{SiO}_4-\text{NaAlSi}_2\text{O}_6-\text{CaAl}_2\text{Si}_2\text{O}_6$ at 1550°C have been calculated (Fig. 10). The Ni and Mn data are from Hart and Davis (1978) and Watson (1977), respectively. The 1550°C results are calculated by extrapolation of partition coefficients that are linearly correlated (r is a correlation coefficient) with NBO/T at constant temperature from 1250°C to 1540°C. The correlations at the different temperatures are as follows:

\[
K_{\text{Ni}}^{1250°C-1540°C} = -24.1(\text{NBO/T}) + 23.6, r = 0.95,
\]

(6)

![Fig. 10. Calculated changes in hypothetical olivine-liquid manganese and nickel partition coefficients in the system MgO-Al2O3-SiO2-Fe2O3 with 5 wt.% iron oxide added as Fe2O3 relative to values at Al/(Al + Si) = 0.0 and -log fO2 = 0.68, respectively. Base element partitioning data from Watson (1977) and Hart and Davis (1978). See text for details of data extrapolation.](image-url)
which at 1550°C yields

1550°C: $K = -4.52(NBO/T) + 8.72$, $r = 0.99$. (9)

The liquidus phase equilibria of Fe-free minerals in iron-bearing aluminosilicate systems can be correlated with the structure of the coexisting iron-bearing aluminosilicate melt. A few calculated examples of liquidus equilibria in the system MgO-Al₂O₃-SiO₂ with 10 mol% iron oxide as Fe₂O₃ with Fe₃⁺/ΣFe between 1.0 and 0.0 to Al/(Al + Si) : 0.2 as defined by the total iron content and Fe₃⁺/ΣFe.

In both systems the addition of 10 wt.% Fe₂O₃ shifts the composition from the metasilicate–tectosilicate liquidus boundary into the liquidus field of a silica polymorph. The temperatures are between 70° and 100°C higher than those at the liquidus boundaries of the iron-free compositions. The metasilicate–tectosilicate liquidus boundary is reached at Fe³⁺/ΣFe between 0.65 and 0.45. This liquidus boundary is encountered at a greater value of NBO/T and, thus, at higher Fe³⁺/ΣFe in the system MAS than in the system CAM. This difference probably results from the greater dispersion of anionic units in magnesium aluminosilicate than in calcium aluminosilicate melts (see Liebau, 1981; Mysen et al., 1982a,b). That is, even at the same bulk melt NBO/T, the abundance of SiO₄⁻ and SiO₂⁻ units relative to Si₂O₅⁻ units is greater in the magnesium system than in the calcium system. Such differences are consistent with the melt structure data in the systems CaO-SiO₂ and MgO-SiO₂ (Mysen et al., 1982a). This liquidus boundary represents a minimum temperature as further lowering of Fe³⁺/ΣFe is manifested by metasilicate on the liquidus with increasing thermal stability. The steeper slope of the liquidus surface in the Ca system is a direct consequence of the topology of the liquidus surfaces of pseudowollastone in the system CaO-Al₂O₃-SiO₂ (Osborn and Muan, 1960a,d). The inflection of the metasilicate liquidus surfaces and thermal maximum at Fe³⁺/ΣFe ~0.3 (Fig. 11A and B) is due to the coordination transformation of Fe³⁺. This transformation results in a maximum value of NBO/T at this Fe³⁺/ΣFe and thus the topological features shown in Figure 11. The dashed lines [denoted Fe³⁺/ΣFe] represent the slopes of the metasilicate liquidus calculated for a hypothetical situation with Fe³⁺ in tetrahedral coordination in the entire Fe³⁺/ΣFe range.

The liquidus phase equilibria in these systems may also be displayed as a function of recalculated Al/(Al + Si) along lines of constant Fe³⁺/ΣFe and, therefore, constant NBO/T. The shaded areas in Figure 11 (E and F) represent the compositional ranges obtained by adding 10 wt.% iron oxide as Fe₂O₃ with Fe³⁺/ΣFe between 1.0 and 0.0 to aluminosilicate melts with NBO/T = 0.6. The topologies of the liquidus surfaces along composition lines with Fe³⁺/ΣFe = 1.0, 0.5 and 0.0 are also shown in Figure 11 (C and D).

The addition of ferric iron, and a concomitant increase in polymerization (from NBO/T = 0.6 to ~0.42), result in an increase in the liquidus temperature relative to the iron-free solvent across most of the Al/(Al + Si) range (0.0–0.5) (Fig. 11C and D). A silica polymorph is on the liquidus to Al/(Al + Si) ≥ 0.1. For a given Fe³⁺/ΣFe, this range in Al/(Al + Si) is 30–60% wider in the magnesium aluminosilicate system than in the calcium aluminosilicate system.
The value of Al/(Al + Si) at the tectosilicate–metasilicate liquidus boundary decreases and the temperature increases as ferric iron is reduced to ferrous iron (Fig. 11C and D). These changes result from the increased bulk melt NBO/T with reduction of Fe$^{3+}$ to Fe$^{2+}$. This same reduction in Fe$^{3+}$/ΣFe is also accompanied by rapid expansion of the metasilicate liquidus volume in the calcium system and by the appearance of orthosilicate (forsterite) in the magnesium system. There is no aluminosilicate liquidus phase in the magnesium system, and spinel is a liquidus phase as the Al/(Al + Si) is increased further. In the calcium aluminosilicate system, a further increase in Al/(Al + Si) results in the appearance of anorthite with a thermal maximum on the liquidus surface. Thus, merely increasing Al/(Al + Si) at constant NBO/T of the melt results in a transition first from a tectosilicate to a metasilicate liquidus phase (decreased polymerization of the liquidus phase), then to a completely polymerized aluminosilicate phase. The liquidus volume of anorthite shrinks with further reduction of ferric iron. Finally, the highly depolymerized pyrosilicate, gehlenite, instead of anorthite, occurs on the liquidus for compositions with nearly all iron as Fe$^{2+}$ and Al/(Al + Si) about 0.5. Mysen et al. (1982a,b, 1985) noted the existence of analogous liquidus phase relations in the system Na$_2$O–Al$_2$O$_3$–SiO$_2$ (see also Osborn and Muan, 1960e). They related these changes in liquidus phase equilibria to a strong preference of Al$^{3+}$ for three-dimensional network units in the melt. As a result, increasing Al/(Al + Si) is accompanied by greater relative abundance of TO$_2$ (T = Al + Si) units. In order to maintain mass-balance (constant NBO/T), the relative abundance of silicate anionic units with their NBO/T greater than that of the melt bulk must also increase. These abundance changes in the melts are, then, reflected in the changes in liquidus phase equilibria as a function of Al/(Al + Si) of the system.

It is evident from the above discussion that in the ranges of Al/(Al + Si), NBO/T, Fe$^{3+}$/ΣFe and total iron content of natural magmatic liquids, major changes in the liquidus equilibria of iron-free minerals take place simply as a function of the oxidation state of iron. The transition from anorthite to gehlenite as a liquidus phase is the most extreme example (NBO/T contrast of 3 across the liquidus boundary). In a tholeiitic liquid, the NBO/T typically is in the range 0.6–0.8 and the Al/(Al + Si) is 0.2–0.3 (see Mysen et al., 1982a, for calculations). From the model system calculations (Fig. 11) one may suggest, therefore, that a highly oxidized basalt could have tridymite (or quartz) on the liquidus. Reduction of ferric iron would result in the appearance of a metasilicate phase (pyroxene) and complete reduction in the stabilization of an orthosilicate (olivine) liquidus phase. It is clear, therefore, that the relationship between redox equilibria and melt structure is of major importance to the understanding of the liquidus equilibria of magmatic systems.

Acknowledgments

Critical reviews by H. S. Yoder, Jr. and two anonymous reviewers are appreciated.
References

Manuscript received, February 7, 1984; accepted for publication, November 19, 1984.