Geometry of the octahedral coordination in micas: a review of refined structures

Zdeněk Weiss
Coal Research Institute
71607 Ostrava-Radvanice, Czechoslovakia

Milan Rieder
Institute of Geological Sciences, Charles University
12843 Praha 2, Czechoslovakia

Marta Chmielová and Jan Krajíček
Coal Research Institute
71607 Ostrava-Radvanice, Czechoslovakia

Abstract

Data for 66 refined crystal structures of micas were used to obtain several functions representing the octahedral sheet that served as variables in a statistical analysis: metal-anion bond lengths, two ratios of anion-anion octahedral edges, ${ }^{1}$ MEFIR (mean fictive ionic radius), octahedral angle ψ, and counter-rotation of top and bottom anion triads.

All octahedra are flattened, those around larger cations usually more than those around smaller ones. Flattening dominates over counter-rotation in octahedra with large cations and vice versa, as required by the sheet's uniform thickness. Mean counter-rotation in a sheet increases as cation-anion bond lengths are less uniform, suggesting that it results from interactions in the whole sheet. Consequently, both counter-rotation and octahedral angle ψ for individual octahedra can be predicted by regression equations from cation-anion bond lengths or ${ }^{1}$ MEFIR for all octahedra in the 1 M subcell. Thus the octahedral geometry can be checked or predicted from chemistry and an anticipated cation ordering.

Multiple linear regressions yielded a set of cation-anion bond lengths and effective ionic radii for octahedral cations and the vacancy.

Introduction

Since the late twenties and early thirties, when the essential features of the crystal structure of micas were described, the micas continued to receive considerable attention. As the technique of crystal structure analysis improved and as more structures were determined and refined, it became clear that the arrangement of coordination polyhedra is less regular than first thought and that the coordination polyhedra themselves are not ideal. The number of refinements now available provides a sound basis for a synthesis that should give us a better idea about how and why the coordination polyhedra get distorted and how and why they rotate and tilt. Apart from its intrinsic value, such information might be useful to researchers contemplating structural investigations of micas or other layer silicates by permitting them to define their objectives more deliberately or to predict the results more accurately.

We excerpted data from 66 structure refinements published between 1960 and 1984. The set includes 46 trioctahedral and twenty dioctahedral micas of which 51 are natural and fifteen synthetic. Fifty-four structures were re-
fined from X-ray diffraction data, nine from electron and three from neutron diffraction experiments. Most micas belong to the 1 M polytype (space group $C 2 / m: 37$ micas, space group $C 2$: four micas), seventeen are $2 \mathrm{M}_{1}$, four $2 \mathrm{M}_{2}$, and four 3 T polytypes. The R factors have a mean at 7.4%, standard deviation of 3.7%, and range from 2.0% to 17.0%. A list of important data for the micas included appears in Table 1.

Treatment of data

Atomic coordinates taken from the original papers were transformed from fractional to absolute and to orthogonal (where nonorthogonal), with the vertical axis parallel to \mathbf{c}^{*}. This included all atoms needed for the construction of complete polyhedra around M1, M2, and M3 cations. (Octahedra with M1 have OH, F, Cl atoms in a trans, M2 and M3 in a cis arrangement; separate positions M2 and M3 exist in structures without a plane of symmetry, but merge to M2 in others.) Centers of vacancies were defined as lying at one-sixth of the sums of, respectively, the x, y, z coordinates of the six surrounding anions.

There are five functions to which we reduced the geometry of the octahedral sheet: (1) The metal-anion bond lengths $d(\mathrm{M}-\mathrm{A})_{\text {obs }}$

Table 1. List of mica structures

No.	Designation	Polytype	R	Type	Method	Material	Reference
1	Dioctahedral mica	1M	10.9	he-di *	E**	M ***	Sidorenko et al. (1975)
2	Dioctahedral Al-mica	1M	16.0	me-di	E	M	Soboleva and Zvyagin (1968)
3	Muscovite	1M	7.0	me-di	E	M	Tsipurskil and Drits (1977)
4	Muscovite	$2 \mathrm{M}_{1}$	3.5	me-d1	X	M	Güven (1971)
5	Muscovite	${ }_{2} \mathrm{M}_{1}$	17.0	me-di	X	M	Radoslovich (1960)
6	Muscovite	$2 \mathrm{M}_{1}$	12.0	me-di	X	M	Birle and Tettenhorst (1968)
$?$	Muscovite	$2 \mathrm{M}_{1}$	5.0	me-di	E	M	Tsipurski1 and Drits (1977)
8	Muscovite	2 M	2.7	me-di	N	M	Rothbauer (1971)
9	Muscovite	$2 \mathrm{M}_{1}$	9.9	me-di	X	M	Richardson and Richerdson (1982)
10	Dioctahedral mica	$2 \mathrm{M}_{2}^{1}$	11.7	me-di	E	M	Zhoukhllstov et al. (1973)
11	Muscovite	$3 T^{2}$	6.4	he-di	X	M	Güven and Burnham (1967)
12	Phengite	${ }^{2} \mathrm{M}_{1}$	4.5	me-di	X	M	Güven (1971)
13	Fe-celadonite	1 M	10.8	me-di	E	M	Zhukhlistov et al. (1977)
14	Paragonite	1M	12.1	me-di	E	S	Soboleva et al. (1977)
15	Paragonite	${ }_{2} \mathrm{M}_{1}$	11.1	me-di	E	M	
16	Paragonite	$3{ }^{-}$	13.0	he-di	E	M	Sidorenko et al. (1977)
$1 ?$	Margarite	${ }^{2} \mathrm{M}_{1}$	16.8	me-di	X	M	Takeuch1 (1965)
18	Margarite	$2 \mathrm{M}_{\mathrm{L}}$	7.5	me-di	X	M	Guggenheim and Bailey (1975)
19	F-polylithionite	IM	5.1	me-tri	X	s	Takeda and Burnham (1969)
20	Lepidolite	1M	6.7	me-tri	X	M	Sartori (1976)
21	Lepidolite	1M	3.5	me-try	X	M	Guggenheim (1981)
22	Lepidolite	1 M	6.2	me-tri	x	M	Guggenhe1m (1981)
23	Lepidolite	1 M	7.3	he-tri	X	M	Backhaus (1983)
24	Lepidolite	$2 \mathrm{M}_{1}$	11.3	me-tri	X	M	Sartori (1977)
25	Lepidolite	$\mathrm{2M}_{1}$	9.0	me-tri	X	M	Swanson and Bailey (1981)
26	Lepidolite	$2 \mathrm{M}_{2}$	7.2	me-tri	X	M	Takeda et al. (1971)
27	Lepidolite	$2 \mathrm{M}_{2}$	10.6	me-tri	X	M	Sartori et al. (1973)
28	Lepidollte	$2 \mathrm{M}_{2}^{2}$	4.8	me-tri	X	M	Guggenheim (1981)
29	Lepidolite	$3 \mathrm{I}^{2}$	4.7	he-tri	X	M	Brown (1978)
30	Protolithionite	37	3.8	he-tri	X	M	Pavlishin et al. (1981)
31	Zinnwaldite	1M	5.7	ne-tri	X	M	Guggenheim and Bailey (1977)
32	Phlogopite	1M	4.1	ho-tri	X	M	Hazen and Burnham (1973)
33	Phlogopite	1 M	13.1	ho-tri	X	M	Steinfink (1962)
34	Phlogopite	1M	5.0	ho-tri	N	M	Rayner (1974)
35	Phlogopite	1M	2.0	ho-tri	N	M	Joswlg (1972)
36	Mg-mica	IM	2.9	ho-tri	X	5	Toraya et al. (1978)
37	Tetraferriphlogopite	1M	4.2	no-tri	X	M	Semenova et al. (1977)
38	F-phlogopite	1M	6.1	ho-tri	X	S	McCauley et al. (1973)
39	Li, F-phlogopite	IM	7.3	no-try	X	S	Takeda and Donnay (1966)
40	Mn , Ba-phlogopite	1M	8.1	ho-tri	X	M	Kato et al. (1979)
41	Mn , Ba-phlogopite	1M	10.6	ho-tri	X	M	Kato et al. (1979)
42	Mn , Ba-phlogopite	1M	6.0	ho-tri	X	M	Kato et al. (1979)
43	Kinoshitalite	1 M	7.8	ho-tri	X	M	Kato et al. (1979)
44	F-mica	1M	3.8	no-tri	X	S	Toraya et al. (1976)
45	Trioctahedral mica	1M	3.0	no-tri	X	M	Hazen et al. (1981)
46	Blotite	1M	4.4	me-tri	X	M	Takeda and Ross (1975)
47	Blotite	$2 \mathrm{M}_{1}$	5.6	me-tri	X	M	Takeda and Ross (1975)
48	Mn-biotite	$1 \mathrm{M}^{1}$	12.1	ho-tri	X	M	Kato et al. (1979)
49	Oxybiotite	1M	4.4	me-tri	X	M	
50	Oxybiotite	${ }_{2} \mathrm{M}_{1}$	3.9	me-tri	X	M	Ohta et al. (1982)
51	Annite	IM ${ }^{1}$	4.4	me-tri	X	M	Hazen and Burnham (1973)
52	Trioctahedral Fe-mica	1 M	9.3	no-tri	X	S	Donnay et al. (1964)
53	Taeniolite	1M	2.4	me-trí	X	S	Toraya et al. (1977)
54	Mg -mica	1 M	9.2	me-tri	X	S	Tateyame et al. (1974)
	$\mathrm{Ge}-\mathrm{mica}$	1M	3.8	me-tri	X	S	Toraya et al. (1978)
56	$\mathrm{Ge}-\mathrm{mica}$	1M	5.5	me-tri	X	S	Toraya et al. (1978)
$5 ?$	Ge-mica	1M	3.7	ho-tri	X	S	Toraya et al. (1978)
58	Xanthophyllite	1M	10.8	me-tri	X	M	Takeuchi (1965)
59	Bityite	${ }_{2} \mathrm{M}_{1}$	11.5	me-tri	X	M	Sokolova et al. (1979)
60	Ephesite	1M	11.5	me-tri	X	M	Sokolova et al. (1979)
61	Ba-mica	IM	7.1	ho-tri	X	s	McCauley and Newnham (1973)
62	Hendricksite	1M	7.2	ho-tri	X	M	Robert and Gasperin (1984)
63	Chernykhite	$2 \mathrm{M}_{1}$	12.0	me-di	X	M	Rozhdestrenskaya and Frank-Kamenetski1 (1974)
64	$\mathrm{Mn}, \mathrm{F}-\mathrm{mica}$	1 M	4.3	no-tri	X	5	Toraya et al. (1983)
65	$\mathrm{Ge}-\mathrm{mica}$	1M	4.2	me-tri	X	S	Toraya and Marumo (1983)
66	Paragonite	$2 \mathrm{M}_{1}$	4.5	me-di	X	M	Lin and Bailey (1984)

[^0]Except for 'Type', all information is taken over from the original papers.
given in the original papers were checked and supplemented with those for vacancy-anion in structures containing vacant sites. (2) The lengths of anion-anion edges, checked and corrected, were used to compute ratios $\mathrm{R}_{1}=$ mean unshared edge/mean shared edge (Toraya, 1981) and $\mathbf{R}_{2}=$ mean of longer shared edges/mean of shorter shared edges. (3) The ${ }^{1}$ MEFIR, mean fictive ionic radius of Hoppe (1979) was calculated for each cation from fictive ionic radii (FIR), which are defined as bond lengths divided in proportion to the radii of cation (r_{M}) and anion (r_{A}):

$$
\mathrm{FIR}_{\mathrm{j}}=d(\mathrm{M}-\mathrm{A})_{\text {obs }} \cdot \mathrm{T}_{\mathrm{M}} /\left(\mathrm{r}_{\mathrm{M}}+\mathrm{r}_{\mathrm{Aj}}\right)
$$

The ${ }^{1}{ }^{\text {MEFIR }}{ }_{\text {obs }}$ is a weighted mean of FIR $_{j}$:

$$
{ }^{1} \text { MEFIR }_{\text {obs }}=\sum_{j=1}^{j=6} w_{j} \cdot \text { FIR }_{j} / \sum_{j=1}^{j=6} w_{j}
$$

where $w_{j}=\exp \left[1-\left(\text { FIR }_{j} / \text { FIR }_{\text {min }}\right)^{6}\right]$, FIR $_{\text {min }}$ being the smallest FIR $_{\mathrm{j}}$ in an octahedron. Hoppe's (1979) formula is a sum from one to infinity, but we limited the summation to the six nearest neighbors because the second coordination sphere did not affect the values obtained. (4) The octahedral angle ψ and (5) the counter-rotation δ are defined and illustrated in Figure 1 (note that δ is not identical with ω of Appelo, 1978). The thickness of the octahedral sheet $t_{\text {oct }}$, which is used to compute ψ, is the difference between mean vertical coordinates for, respectively, the top and bottom anion triads in an octahedron. These data appear in Table 2.
Among the above functions, \mathbf{R}_{1} and \mathbf{R}_{2} are easier to calculate than ψ and δ. Fortunately, there is an excellent relation between ψ and R_{1} permitting an easy conversion $\left(\psi=37.96 \mathbf{R}_{1}+16.95\right.$, correlation coefficient $r=0.999$, number of data $n=198$). Practically the same holds for δ and \mathbf{R}_{2} (Fig. 2), where two relations appear, one for larger and one for smaller cations (there is one larger cation per two smaller in muscovite-type structures, the inverse holds for xanthophyllite-type). Data for homooctahedral micas, which are a trivial case common to both series, cluster near the origin, but yield a good regression relation. The δ values required can be obtained from \mathbf{R}_{2} by means of appropriate equations in Figure 2. For the sake of lucidity we preferred ψ and δ throughout this paper.

Multiple linear regressions of bond lengths and ${ }^{1}$ MEFIR are based on equations of the type

$$
d(\mathbf{M}-\mathrm{O})_{\mathrm{obs}}=\sum_{\mathrm{i}} d(\mathrm{M}-\mathrm{O})_{\mathrm{i}} \cdot X_{\mathrm{i}}
$$

where the atomic fractions $X_{\mathrm{i}} \varepsilon<0.0 ; 1.0>$ and $\sum_{\mathrm{i}} X_{i}=1.0$. Bond lengths metal-oxygen $d(\mathrm{M}-\mathrm{O})_{i}$ or ${ }^{1} \mathrm{MEFIR}_{1}$ obtained by regression will be referred to as partial, to differentiate them from experimental ones for octahedra occupied by one cation only. This

Fig. 1. Octahedral angle ψ and counter-rotation δ represent distortions of the octahedral sheet. Angles ε_{i} are measured in projection onto the ab plane, $\bar{d}(\mathrm{M}-\mathrm{A})_{\text {obs }}$ is the mean cation-anion bond length in an octahedron.
is because these quantities are equal to partial derivatives of $d(\mathrm{M}-\mathrm{O})_{\text {obs }}$ with respect to atomic fractions $\boldsymbol{X}_{\mathrm{i}}$. Correlation coefficients were computed as

$$
r^{2}=1.0-\sum_{i}\left(y_{i}-y_{\text {calc }}\right)^{2} / \sum_{i}\left(y_{i}-\bar{y}\right)^{2}
$$

Several computer programs were written and used to perform these and other calculations.

Results

Regression analysis of bond lengths and ${ }^{1}$ MEFIR

These results are in fact by-products. In order to be able to calculate ${ }^{1} \mathrm{MEFIR}_{\text {obs }}$ for individual octahedra, we needed a radius of the vacancy. The most straightforward way was to subtract $1.26 \AA$ (crystal radius of oxygen in coordination VI, Shannon, 1976) from the partial vacancyoxygen "bond length" obtained by multiple linear regression of bond lengths, $d(\mathbf{M}-\mathrm{O})_{\text {obs. }}$. The resulting radius of $0.97 \AA$ was combined with the crystal radii of Shannon (1976) to yield FIR $_{\mathrm{j}}$ and ${ }^{1}$ MEFIR ${ }_{\text {obs }}$ reflecting proportions of cations on individual sites. The ${ }^{1}$ MEFIR ${ }_{\text {obs }}$ thus obtained, in turn, were subjected to multiple linear regression yielding a set of partial ${ }^{1} \mathrm{MEFIR}_{\mathrm{i}}$.

Our partial bond lengths (Table 3) compare fairly well to bond lengths of Drits (1975) based on various layer silicates (correlation coefficient 0.91). There is also a good agreement between partial ${ }^{1} \mathrm{MEFIR}_{\mathrm{i}}$ and the crystal radii of Shannon (1976) (correlation coefficient $0.95, \mathrm{Na}^{+}, \mathrm{Ca}^{2+}$, V^{3+} and V^{4+} not included).

A few points merit mentioning. First, the partial "bond length" for vacancy-oxygen and the partial ${ }^{1}$ MEFIR $_{\mathrm{i}}$ for vacancy calculate with small errors. True, the vacancy is among the most frequent "cations", which increases the precision; but the main cause must be the tendency of the octahedral sheet to impose a constant size on vacant sites. By the same token, the presently obtained $0.96 \AA$ applies to the octahedral sheet of micas, but not necessarily even to the same coordination in different structures (Barry and Roy, 1967). Second, Table 3 has entries for $\mathrm{Na}^{+}, \mathrm{Ca}^{2+}$, $\mathrm{Zn}^{2+}, \mathrm{V}^{3+}$ and V^{4+}, which were reported in only a few octahedra. The partial ${ }^{1} \mathrm{MEFIR} \mathrm{i}_{\mathrm{i}}$ for Na^{+}and Ca^{2+}, although exhibiting the biggest difference from Shannon's radii, is the largest of all and cannot be confused; thus the presence of Na^{+}and Ca^{2+} in octahedral sheets must be real. Third, the bond lengths are a product of crystal structure refinements only, but the ${ }^{1}$ MEFIR ${ }_{\text {obs }}$ are calculated from bond lengths and input radii. As a check of consistency, we calculated apparent ionic radii of oxygen by subtracting partial ${ }^{1} \mathbf{M E F I R}_{\mathbf{i}}$ from the corresponding partial $d(\mathrm{M}-\mathrm{O})_{\mathrm{i}}$. A weighted mean with weights proportional to the reciprocals of estimated variances equals $1.25 \AA$, which is acceptably close to the $1.26 \AA$ (Shannon, 1976) used at the outset. Consequently, the ${ }^{1} \mathrm{MEFIR}_{\text {obs }}$ and the partial ${ }^{1} \mathrm{MEFIR}_{\mathrm{i}}$ are directly comparable to ionic radii.

Distortions of octahedra

The relationships obtained in the present review did not warrant a separate treatment of dioctahedral and triocta-

Fig. 2. Relations between ratio \mathbf{R}_{2} (mean of longer shared edges/ mean of shorter shared edges) and counter-rotation δ, permitting an estimation of δ from \mathbf{R}_{2}. For more clarity, homooctahedral micas are not plotted; however, the corresponding regression equation is included.
with Al). There is no self-apparent reason why octahedra combined in a sheet should be geometrically ideal, but it is interesting to note that a regression line through all data points reaches the ideal geometry for ${ }^{1} \mathrm{MEFIR}_{\text {obs }} \approx 0.52 \AA$. Second, the plot suffers from more scatter than one would expect from such precise data. It does not diminish if just structures with a small R factor are plotted or if we plot only data for octahedra lying on a plane of symmetry ($\delta=0^{\circ}$, all open and most solid circles in Fig. 3). Hence the
scatter is not a matter of the precision of refinement nor is it associated with the magnitude of counter-rotation δ. Third, and most interesting, there is an overall tendency for larger cations to occupy more flattened octahedra. In fact, there might be one relationship for cis octahedra and another, moderately different, for trans (see regression lines in Fig. 3).

The last point is at variance with the conclusion of Hazen and Wones (1972, Fig. 7) based on micas with octahedral sheets fully occupied with $\mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Cu}^{2+}$, $\mathbf{M g}^{2+}$, and Ni^{2+}, respectively. Hazen and Wones (1972) used the formula derived by Donnay et al. (1964)

$$
\sin \psi=\frac{b}{3 \sqrt{3} \bar{d}(\mathbf{M}-\mathbf{A})}
$$

obviously unsuitable for micas with different cations in different octahedra whose contributions to the b parameter tend to cancel each other. Although more general, our formula (used e.g. by Guggenheim and Bailey, 1977) must give practically the same results as that of Hazen and Wones for their micas. This is seen on homooctahedral micas in Figure 3, which outline a poorly correlated trend similar to that of Hazen and Wones (1972). The only safe conclusion that can be drawn from Figure 3 is that the octahedral angle ψ is not a simple function of the size of the cation inside an octahedron (see also Lin and Guggenheim, 1983).
A plot of counter-rotation δ vs. ${ }^{1}$ MEFIR ${ }_{\text {obs }}$ indicates no meaningful relationship at all. There is very little improvement even if octahedra with $\delta=0^{\circ}$ (lying on a plane of symmetry) are left out. More strikingly than ψ, δ of an octahedron is in no simple relation to the size of its occupant.

Both distortion functions could still be related to each

Table 3. Partial bond lengths and partial ${ }^{1}$ MEFIR for octahedral cations in micas, and distribution of cations between larger and smaller octahedra

	m*	$\begin{aligned} & d(M-0)_{1} \\ & \text { present } \\ & \text { works } \end{aligned}$	$\begin{aligned} & d(M-0) \\ & \text { Drits } \\ & (1975) \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\text {MEFIR }_{1}} \\ & \text { present } \\ & \text { work } \end{aligned}$	$\begin{aligned} & \text { Crystal radii VI } \\ & \text { Shannon } \\ & (1976) \end{aligned}$	```Mean composition of cetions in octahedra** larger smaller```	
Al^{3+}	105	1.914(4) 8	1.922 \%	$0.671(2) 8$	0.675 \%	0.033	0.627
Fe^{2+}	56	$2.113(11)$	2.120	$0.792(4)$	0.75 ***	0.066	0.044
Mg^{2+}	123	$2.085(4)$	2.075	0.847 (2)	0.86	0.190	0.159
Li^{+}	55	2.116(8)	2.160	$0.885(3)$	0.90	0.266	0.080
Mn^{2+}	38	$2.194(24)$		$0.843(9)$	0.81	0.008	0.002
Fe^{3+}	46	$2.057(27)$	1.990	$0.724(11)$	0.69 **	0.013	0.036
Ti ${ }^{4+}$	29	2.271(68)		$0.715(27)$	0.745	0.005	0.014
$\mathrm{Na}^{+}, \mathrm{Ca}^{2+}$	7	2.424 (243)		$0.916(95)$	$1.16,1.14$	0.002	0.000
Zn^{2+}	3	2.033(89)		$0.874(35)$	0.88	0.000	0.000
$\mathrm{V}^{3+}, \mathrm{v}^{4+}$	2	$2.025(24)$		$0.772(9)$	$0.78,0.72$	0.000	0.019
vacancy	79	$2.233(6)$		$0.963(2)$		0.417	0.019
n		396		198		53	85
r		0.924		0.993			

[^1]

Fig. 3. Relation between ${ }^{1}$ MEFIR $_{\text {obs }}$ (cation radius) and octahedral angle ψ. Angle ψ for a geometrically ideal octahedron would be realized for ${ }^{1} \mathrm{MEFIR}_{\mathrm{obs}} \approx 0.52 \AA$.
other. To test if they are, we transformed ψ and δ values to dimensionless and mutually comparable ψ_{tr} and δ_{tr} by subtracting the respective means and dividing by corresponding standard deviations. When plotted against ${ }^{1}$ MEFIR $_{\text {obs }}$,

Fig. 4. The difference between transformed octahedral angle ψ_{tr} and counter-rotation $\delta_{\text {tr }}$ plotted as a function of ${ }^{1} \mathrm{MEFIR}_{\text {obs }}$.

Fig. 5. Differences of ψ in a sheet, that is $|\psi(\mathrm{M} 1)-\psi(\mathrm{M} 2)|$, $|\psi(\mathrm{M} 2)-\psi(\mathrm{M} 3)|,|\psi(\mathrm{M} 3)-\psi(\mathrm{M} 1)|$, plotted against corresponding differences of δ. Inasmuch as both variables are a function of a common cause rather than of one another, no lines were fitted through the data points. A total of 198 points is shown, 59 of which plot at the origin.
the sum $\psi_{\mathrm{tr}}+\delta_{\mathrm{tr}}$ shows no functional dependence. The points concentrate about $\psi_{\mathrm{tr}}+\delta_{\mathrm{tr}}=0$ and spread parallel to the ${ }^{1}$ MEFIR $_{\text {obs }}$ axis. Even though there is considerable scatter, the pattern is that corresponding to a case where $\psi_{t r}$ and δ_{tr} in an octahedron compensate each other. Therefore, we plotted $\psi_{\mathrm{tr}}-\delta_{\mathrm{tr}}$ vs. ${ }^{1}$ MEFIR ${ }_{\text {obs }}$ (Fig. 4). The result is a fairly tight positively sloping linear relation. Inasmuch as positive values of ψ_{tr} and δ_{tr} correspond to larger-thanaverage octahedral angles (fiatter octahedra) or counterrotations, respectively, positive $\psi_{\mathrm{tr}}-\delta_{\mathrm{tr}}$ represents octahedra with more flattening than counter-rotation, while negative $\psi_{\mathrm{tr}}-\delta_{\mathrm{tr}}$ marks more upright octahedra with considerable counter-rotation. Puzzling at first sight, the result is a predictable consequence of the octahedral sheet's uniform thickness.

An important hint comes from the plot of $\Delta \delta$ vs. $\Delta \psi$ (Fig. 5). Despite some recalcitrant points belonging to heterooctahedral micas, the plot shows an impressive correlation between the differences of δ and ψ in the octahedral sheet. It supports the conclusion anticipated when interpreting relations between ψ, δ, and ${ }^{1} \mathrm{MEFIR}_{\mathrm{obs}}$: both distortions in a particular octahedron are due to interaction in the whole sheet rather than the octahedron alone (analogous conclusions were drawn from 26 refinements by Lin and Guggenheim, 1983, who approached the problem from a different angle). Consequently, to unravel the causes of distortions, variables representing the whole sheet have to be employed.

One such variable is a measure of scatter (we opted for the esd divided by the mean), the mean is another. In Figures 6 and 7 the abscissae represent the scatter of bond lengths $d(\mathbf{M}-\mathrm{A})_{\text {obs }}$ and the scatter of ${ }^{1} \mathrm{MEFIR}_{\text {obs }}$ in individ-

Fig. 6. Measure of scatter of ψ angle in a sheet, esd $(\psi) / \bar{\psi}$, plotted against the same function of bond length $d(\mathrm{M}-\mathrm{A})_{\text {obs }}$ (a) and ${ }^{1}$ MEFIR $_{\text {obs }}$ (b).
ual octahedral sheets. Along the ordinate is plotted the scatter of ψ (Fig. 6) and $\bar{\delta}$ (Fig. 7). Inasmuch as uniformity of bond lengths or ${ }^{1} \mathrm{MEFIR}_{\text {obs }}$ (no scatter) signifies a $\bar{\delta}=$ 0°, Figure 7 yields a nonzero $\bar{\delta}$ if there is scatter; $\bar{\delta}$, in turn, is easily converted to δ for individual octahedra in homooctahedral and mesooctahedral micas. However, uniformity of bond lengths or ${ }^{1}$ MEFIR ${ }_{\text {obs }}$ does not spell an unequivocal $\bar{\psi}$ and therefore the plot in Figure 6 is as far as we can go without introducing another variable.
Several valuable general conclusions can be drawn from Figures 6 and 7. First, the correlations including scatter of $d(\mathrm{M}-\mathrm{A})_{\text {obs }}$ are considerably better behaved than those including scatter of ${ }^{1}$ MEFIR $_{\text {obs. }}$. This has to do with the fact
that ${ }^{1} \mathrm{MEFIR}_{\text {obs }}$, a mere scalar, implies a spherical entity, while the bond lengths allow for the more realistic anisotropism. Second, Figure 7a indicates that once there is an ordering among the octahedral cations, bond lengths are its direct consequence and they, in turn, determine the counter-rotation δ. A different form of the same was observed by Lin and Guggenheim (1983) who correlated counter-rotation ω (Appelo, 1978) with the ratio $\bar{d}(\mathrm{M} 1-\mathrm{A}) / \bar{d}(\mathrm{M} 2-\mathrm{A})$. Finally, the fact that correlations between pairs of independent variables as good as those in Figures $6 a$ and $7 a$ can be obtained signifies that the octahedral sheet cannot be under much stress from both the interlayer and the tetrahedral sheet. In other words, the octahedral sheet must be the most rigid element in the

Fig. 7. Mean counter-rotation $\bar{\delta}$ in a sheet plotted against the measure of scatter (esd/mean) of bond lengths $d(\mathrm{M}-\mathrm{A})_{\text {obs }}$ (a) and ${ }^{1} \mathrm{MEFIR}_{\text {obs }}$ (b).

Table 4. Constants in regression equations for predicting octahedral angle ψ from mean bond lengths $\bar{d}(\mathrm{M} \text {-A })_{\text {obs }}$ and ${ }^{1} \mathrm{MEFIR}_{\text {obs. }}$ *

	Heterooct	ral (7)**	$\begin{gathered} \text { Micas (} n \text {) } \\ \text { Mesooctahedral (39) } \end{gathered}$	Homooctahedral (20) \#*
Equation for	$\begin{aligned} & \text { Regressic } \\ & \text { 1 }_{\text {MEFIR }}^{\text {obs }} \end{aligned}$	sed on $\bar{d}(M-A)_{\circ b s}$	Regression based on ${ }^{\mathrm{I}_{\text {MEFIR }}}{ }_{\text {obs }} \quad \bar{d}(\mathrm{M}-\mathrm{A})_{\text {obs }}$	Regression based on $\mathrm{I}_{\text {MEFIR }}^{\text {obs }} \text { } \quad \bar{d}(M-A)_{\text {obs }}$
$\psi(M 1) \quad \begin{aligned} & a_{1} \\ & a_{2} \\ & a_{3} \\ & a_{4} \\ & r \end{aligned}$	$\begin{gathered} 4.8 \\ -35.7 \\ -4.8 \\ 84.3 \\ 0.998 \end{gathered}$	$\begin{gathered} 8.1 \\ -11.8 \\ -2.9 \\ 71.8 \\ 0.998 \end{gathered}$	8.6 8.3 -10.2 -11.9 $* * *$ $* * *$ 60.3 66.2 0.844 0.916	-2.7 -15.8 $* * *$ $* * *$ $* * *$ $* * *$ 60.9 91.5 0.078 0.519
$\psi(\text { M2 }) \quad \begin{aligned} & a_{1} \\ & a_{2} \\ & a_{3} \\ & a_{4} \\ & r \end{aligned}$	$\begin{gathered} 1.7 \\ 44.7 \\ 5.5 \\ 21.0 \\ 0.943 \end{gathered}$	$\begin{gathered} -7.5 \\ 6.2 \\ -2.7 \\ 66.8 \\ 0.996 \end{gathered}$	-7.3 -7.4 5.9 5.1 $* * *$ $* * *$ 60.0 63.4 0.828 0.793	***
$\text { 4 (M3) } \begin{aligned} & a_{1} \\ & a_{2} \\ & a_{3} \\ & a_{4} \\ & r \end{aligned}$	$\begin{gathered} 0.3 \\ 4.0 \\ 20.2 \\ 40.3 \\ 0.979 \end{gathered}$	$\begin{gathered} -7.7 \\ -11.9 \\ 13.4 \\ 71.2 \\ 0.999 \end{gathered}$	\#**	***
** Some of the errors (not shown) exceed the associated constants, apparently due to paucity of data. *** M3 is not defined in homooctahedral and mesooctahedral micas, and M2 is geometrically identical with M1 in homooctahedral micas.				

structure of micas, subject to only subordinate influence from the rest of the structure (see also Radoslovich and Norrish, 1962).

Spurred by the preceding, we performed a final set of calculations to obtain regression equations suitable for predicting octahedral angle ψ and counter-rotation δ in octahedra M1, M2, and M3 (where defined) from either bond lengths or ${ }^{1}$ MEFIR $_{\text {obs }}$ (or cation radii) for all octahedra in a sheet. The size constraints inherent in the definition of mesooctahedral and homooctahedral micas dictate the number of constants necessary: it is highest in heterooctahedral micas and lowest in homooctahedral. For heterooctahedral micas an approach was adopted according to which M3 is always the larger cis cation. Although the group of heterooctahedral micas would benefit from more data, the equations (Tables 4,5) afford realistic estimates of octahedral geometry for detected (e.g., Mössbauer) or anticipated ordering schemes and allow the user to fathom octahedral distortions before the results of a structural refinement are available. Possible ordering in micas other than homooctahedral, which must be decided upon before the equations in Tables 4, 5 are applied, can be devised
according to the distribution of individual elements between larger and smaller octahedra (Table 3). Better predictions should make better results easier to obtain, improving thus our understanding of the structural details in this important mineral group.
In conclusion let us observe that although plots with impressive correlations have been obtained, in some there is more scatter than one would expect. Of course, scatter may be a liability of the site-size approach in which charges are ignored. Also, the definitions of all functions representing distortions embody some oversimplification. Unable to fully express the complexity of individual polyhedra, these functions must introduce some scatter. Another possible cause may be the practice of refining structures in supergroup rather than subgroup symmetries (see Guggenheim and Bailey, 1977). As a consequence, possible octahedral orderings in some micas may have been suppressed or overlooked and the distortion functions may have become somewhat unrealistic. No correction short of a new refinement is possible here, but future projects should benefit from the hindsight and, hopefully, yield data with less bias.

Table 5. Constants in regression equations for predicting counter-rotation δ from mean bond lengths $\bar{d}(\mathbf{M}-\mathrm{A})_{\text {obs }}$ and ${ }^{1} \mathbf{M E F I R}_{\text {obs }}{ }^{*}$

Acknowledgments

Prefixes homo-, meso-, hetero-, resulted from the proposal of S . Durovǐ̌ and D. Mikloš (Bratislava) modified by F. P. Sassi (Padova) during a discussion in the Mica Subcommittee, I. M. A. J.-L. Robert (Orléans) made available a manuscript prior to its publication. L. Žák (Prague) and B. Cičel (Bratislava) read the manuscript and offered critical comments.

References

Appelo, C. A. J. (1978) Layer deformation and crystal energy of micas and related minerals. I. Structural models for 1 M and $2 \mathrm{M}_{1}$ polytypes. American Mineralogist, 63, 782-792.
Backhaus, K. O. (1983) Structure refinement of an [sic] 1Mlepidolite. Crystal Research and Technology, 18, 1253-1260.
Barry, T. L. and Roy, Rustum (1967) Effective radius of a vacancy, and the calculation of solubility limits in crystals of highly ionic phases of the NaCl structure type. Zeitschrift für Kristallographie, 125, 70-79.
Birle, J. D. and Tettenhorst, Rodney (1968) Refined muscovite structure. Mineralogical Magazine, 36, 883-886.
Brown, B. E. (1978) The crystal structure of a 3T lepidolite. American Mineralogist, 63, 332-336.
Donnay, Gabrielle, Donnay, J. D. H., and Takeda, Hiroshi (1964) Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Crystallographica, 17, 1374-1381.

Donnay, Gabrielle, Morimoto, N., Takeda, Hiroshi, and Donnay, J. D. H. (1964) Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica. Acta Crystallographica, 17, 13691373.

Drits, V. A. (1975) Structural and crystallochemical peculiarities of layer silicates. (in Russian) In Kristallokhimiya mineralov i geologicheskie problemy, p. 35-51. Nauka, Moskva.
Guggenheim, Stephen (1981) Cation ordering in lepidolite. American Mineralogist, 66, 1221-1232.
Guggenheim, Stephen and Bailey, S. W. (1975) Refinement of the margarite structure in subgroup symmetry. American Mineralogist, 60, 1023-1029.
Guggenheim, Stephen and Bailey, S. W. (1977) The refinement of zinnwaldite-1 M in subgroup symmetry. American Mineralogist, 62, 1158-1167.
Güven, Necip (1971) The crystal structure of $2 \mathrm{M}_{1}$ phengite and $2 \mathrm{M}_{1}$ muscovite. Zeitschrift für Kristallographie, 134, 196-212.
Güven, Necip and Burnham, C. W. (1967) The crystal structure of 3T muscovite. Zeitschrift für Kristallographie, 125, 163-183.
Hazen, R. M. and Burnham, C. W. (1973) The crystal structures of one-layer phlogopite and annite. American Mineralogist, 58, 889-900.
Hazen, R. M. and Wones, D. R. (1972) The effect of cation substitutions on the physical properties of trioctahedral micas. American Mineralogist, 57, 103-129.
Hazen, R. M., Finger, L. W., and Velde, D. (1981) Crystal struc-
ture of a silica- and alkali-rich trioctahedral mica. American Mineralogist, 66, 586-591.
Hoppe, Rudolf (1979) Effective coordination numbers (ECON) and mean fictive ionic radii (MEFIR). Zeitschrift für Kristallographie, 150, 23-52.
Joswig, W. (1972) Neutronenbeugungsmessungen an einem 1MPhlogopit. Neues Jahrbuch für Mineralogie, Monatshefte, 1-11.
Kato, Toshio, Miura, Yasunori, Yoshii, Morimasa, and Maeda, Kenjiro (1979) The crystal structures of 1M-kinoshitalite, a new barium brittle mica and 1M-manganese trioctahedral micas. Mineralogical Journal, 9, 392-408.
Lin, Cheng-yi and Bailey, S. W. (1984) The crystal structure of paragonite- $2 \mathrm{M}_{1}$. American Mineralogist, 69, 122-127.
Lin, Jiunn-Chorng and Guggenheim, Stephen (1983) The crystal structure of a Li,Be-rich brittle mica: a dioctahedraltrioctahedral intermediate. American Mineralogist, 68, 130-142.
McCauley, J. W. and Newnham, R. E. (1973) Structure refinement of a barium mica. Zeitschrift für Kristallographie, 137, 360-367.
McCauley, J. W., Newnham, R. E., and Gibbs, G. V. (1973) Crystal structure analysis of synthetic fluorophlogopite. American Mineralogist, 58, 249-254.
Ohta, Tsutomu, Takeda, Hiroshi, and Takéuchi, Yoshio (1982) Mica polytypism: similarities in the crystal structures of coexisting 1 M and $2 \mathrm{M}_{1}$ oxybiotite. American Mineralogist, 67 , 298-310.
Pavlishin, V. I., Semenova, T. F., and Rozhdestvenskaya, I. V. (1981) Protolithionite-3T: its structure, typomorphism, and practical significance. (in Russian) Mineralogicheskii zhurnal, 3, 1, 47-60.
Radoslovich, E. W. (1960) The structure of muscovite, KAl_{2} $\left(\mathrm{Si}_{3} \mathrm{Al}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$. Acta Crystallographica, 13, 919-932.
Radoslovich, E. W. and Norrish, K. (1962) The cell dimensions and symmetry of layer-lattice silicates I. Some structural considerations. American Mineralogist, 47, 599-616.
Rayner, J. H. (1974) The crystal structure of phlogopite by neutron diffraction. Mineralogical Magazine, 39, 850-856.
Richardson, S. M. and Richardson, J. W., Jr. (1982) Crystal structure of a pink muscovite from Archer's Post, Kenya: implications for reverse pleochroism in dioctahedral micas. American Mineralogist, 67, 69-75.
Robert, J.-L. and Gasperin, M. (1984) Crystal structure refinement of hendricksite, a Zn - and Mn - rich trioctahedral potassium mica; a contribution to the crystal chemistry of zinc-bearing minerals. Tschermaks Mineralogische und Petrographische Mitteilungen, in press.
Rothbauer, R. (1971) Untersuchung eines $2 \mathbf{M}_{1}$-Muskovits mit Neutronenstrahlen. Neues Jahrbuch für Mineralogie, Monatshefte, 143-154.
Rozhdestvenskaya, I. V. and Frank-Kamenetskii, V. A. (1974) Structure of the dioctahedral mica chernykhite. (in Russian) In V. A. Frank-Kamenetskii et al., Eds., Kristallokhimiya i struktura mineralov, p. 28-33. Nauka, Leningrad.
Sartori, F. (1976) The crystal structure of a 1 M lepidolite. Tschermaks Mineralogische und Petrographische Mitteilungen, 23, 65-75.
Sartori, F. (1977) The crystal structure of a $2 \mathrm{M}_{1}$ lepidolite. Tschermaks Mineralogische und Petrographische Mitteilungen, 24, 23-37.
Sartori, Franco, Franzini, Marco, and Merlino, Stefano (1973) Crystal structure of a $2 \mathrm{M}_{2}$ lepidolite. Acta Crystallographica, -B29, 573-578.
Semenova, T. F., Rozhdestvenskaya, I. V., and FrankKamenetskii, V. A. (1977) Refinement of the crystal structure of
tetraferriphlogopite. (in Russian) Kristallografiya, 22, 11961201.

Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
Sidorenko, O. V., Zvyagin, B. B., and Soboleva, S. V. (1975) Refinement of the crystal structure of a 1 M dioctahedral mica. (in Russian) Kristallografiya, 20, 543-549.
Sidorenko, O. V., Zvyagin, B. B., and Soboleva, S. V. (1977) Refinement of the crystal structure of paragonite $2 \mathrm{M}_{1}$ by highvoltage electron diffraction. (in Russian) Kristallografiya, 22, 971-975.
Sidorenko, O. V., Zvyagin, B. B., and Soboleva, S. V. (1977) Crystal structure of paragonite 3T. (in Russian) Kristallografiya, 22, 976-981.
Soboleva, S. V. and Zuyagin, B. B. (1968) Crystal structure of a 1 M dioctahedral Al-mica. (in Russian) Kristallografiya, 13, 605610.

Soboleva, S. V., Sidorenko, O. V., and Zvyagin, B. B. (1977) Crystal structure of paragonite 1M. (in Russian) Kristallografiya, 22, 510-514.
Sokolova, G. V., Aleksandrova, V. A., Drits, V. A., and Bairakov, V. V. (1979) Crystal structures of two lithium-bearing brittle micas. (in Russian) In V. A. Frank-Kamenetskii, Ed., Kristallokhimiya i strukturnaya mineralogiya, p. 55-66. Nauka, Leningrad.
Steinfink, Hugo (1962) Crystal structure of a trioctahedral mica: phlogopite. American Mineralogist, 47, 886-896.
Swanson, T. H. and Bailey, S. W. (1981) Redetermination of the lepidolite $2 \mathrm{M}_{1}$ structure. Clays and Clay Minerals, 29, 81-90.
Takeda, Hiroshi and Burnham, C. W. (1969) Fluor-polylithionite: a lithium mica with nearly hexagonal $\left(\mathrm{Si}_{2} \mathrm{O}_{5}\right)^{2-}$ ring. Mineralogical Journal, 6, 102-109.
Takeda, Hiroshi and Donnay, J. D. H. (1966) Trioctahedral onelayer micas. III. Crystal structure of a synthetic lithium fluormica. Acta Crystallographica, 20, 638-646.
Takeda, Hiroshi and Ross, Malcolm (1975) Mica polytypism: dissimilarities in the crystal structures of coexisting 1 M and $2 \mathrm{M}_{1}$ biotite. American Mineralogist, 60, 1030-1040.
Takeda, Hiroshi, Haga, N., and Sadanaga, R. (1971) Structural investigation of polymorphic transitions between $2 \mathrm{M}_{2^{-}}, 1 \mathrm{M}$ lepidolite and $2 \mathrm{M}_{1}$ muscovite. Mineralogical Journal, 6, 203215.

Takéuchi, Y. (1965) Structures of brittle micas. Proceedings of the 13th National Conference 1964, Madison, 1-25, Pergamon Press, Oxford.
Tateyama, Hiroshi, Shimoda, Susumo, and Sudo, Toshio (1974) The crystal structure of synthetic $\mathbf{M g}^{\text {IV }}$ mica. Zeitschrift für Kristallographie, 139, 196-206.
Toraya, Hideo (1981) Distortions of octahedra and octahedral sheets in 1 M micas and the relation to their stability. Zeitschrift für Kristallographie, 157, 173-190.
Toraya, Hideo and Marumo, Fumiyuki (1983) The crystal structure of a germanate mica $\mathrm{KMg}_{2.5+\mathrm{x}} \mathrm{Ge}_{4-2 \mathrm{x}} \mathrm{Al}_{2 \mathrm{x}} \mathrm{O}_{10} \mathrm{~F}_{2}(\mathrm{x} \approx 0.14$) and distortion of $(\mathrm{Ge}, \mathrm{Al}) \mathrm{O}_{4}$ tetrahedra. Mineralogical Journal, 11, 222-231.
Toraya, Hideo, Marumo, Fumiyuki, and Hiráo, Minoru (1983) Synthesis and the crystal structure of a manganoan fluoromica, $\mathbf{K}\left(\mathrm{Mg}_{2.44} \mathrm{Mn}_{0.24}\right)\left(\mathrm{Si}_{3.82} \mathrm{Mg}_{0.18}\right) \mathrm{O}_{10} \mathrm{~F}_{2}$. Mineralogical Journal, 11, 240-247.
Toraya, H., Iwai, S., Marumo, F., and Hirao, M. (1977) The crystal structure of taeniolite, $\mathrm{KLiMg}_{2} \mathrm{Si}_{4} \mathrm{O}_{10} \mathrm{~F}_{2}$. Zeitschrift für Kristallographie, 146, 73-83.

Toraya, H., Iwai, S., Marumo, F., and Hirao, M. (1978) The crystal structures of germanate micas, $\mathrm{KMg}_{2.5} \mathrm{Ge}_{4} \mathrm{O}_{10} \mathrm{~F}_{2}$ and $\mathrm{KLiMg}_{2} \mathrm{Ge}_{4} \mathrm{O}_{10} \mathrm{~F}_{2}$. Zeitschnift für Kristallographie, 148, 65-81.
Toraya, Hideo, Iwai, Shin-ichi, Marumo, Fumiyuki, and Hirao, Minoru (1978) The crystal structure of a germanate mica, $\mathrm{KMg}_{3} \mathrm{Ge}_{3} \mathrm{AlO}_{10} \mathrm{~F}_{2}$. Mineralogical Journal, 9, 221-230.
Toraya, H., Iwai, S., Marumo, F., Daimon, M., and Kondo, R. (1976) The crystal structure of tetrasilicic potassium fluor mica, $\mathrm{KMg}_{2.5} \mathrm{Si}_{4} \mathrm{O}_{10} \mathrm{~F}_{2}$. Zeitschrift für Kristallographie, 144, 42-52.
Toraya, Hideo, Iwai, Shin-ichi, Marumo, Fumiyuki, Nishikawa, Tadahiro, Hirao, Minoru (1978) The crystal structure of synthetic mica, $\mathrm{KMg}_{2.75} \mathrm{Si}_{3.5} \mathrm{Al}_{0.5} \mathrm{O}_{10} \mathrm{~F}_{2}$. Mineralogical Journal, 9, 210-220.
Tsipurskii, S. I. and Drits, V. A. (1977) The effectivity of elec-
tronometric measurement of intensities in structural investigation by electron diffraction. (in Russian) Izvestiya Akademii nauk SSSR, Seriya fizicheskaya, 41, 2263-2271.
Zhoukhlistov, A. P., Zvyagin, B. B., Soboleva, S. V., and Fedotov, A. F. (1973) The crystal structure of the dioctahedral mica $2 \mathrm{M}_{2}$ determined by high voltage electron diffraction. Clays and Clay Minerals, 21, 465-470.
Zhukhlistov, A. P., Zvyagin, B. B., Lazarenko, E. K., and Pavlishin, V. I. (1977) Refinement of the crystal structure of a ferruginous celadonite. (in Russian) Kristallografiya, 22, 498-504.

Manuscript received, July 24, 1984; accepted for publication, January 28, 1985.

[^0]: * di=dioctahedral, tri = trioctahedral, ho= homooctahedral, me $=$ mesooctahedral, he $=$ heterooctahedral
 ** X=X-ray diffraction, $E=$ electron diffraction, $N=$ neutron diffraction
 *** $M=$ mineral $S=$ synthetic

[^1]: * number of octahedra containing the cation
 ** ordered structures only (homooctahedral micas not included)
 *** low spin

