Local states of Fe\(^{2+}\) and Mg\(^{2+}\) in magnesium-rich olivines

JAN STANEK, S. S. HAFNER, AND J. A. SAWICKI

Department of Geosciences
University of Marburg
3550 Marburg, Federal Republic of Germany

Abstract

\(^{57}\)Fe Mössbauer spectra of a synthetic forsterite and of one natural olivine were studied at temperatures between 4.2 and 1223 K. Spectra were also taken at pressures between 1 and 30 kbar at 568 K and in external magnetic fields between 4 and 7 T at 295 K and 4.2 K. The signs of the electric field gradient at M1 and M2 are positive. The average value of the two asymmetry parameters \(\eta\) is \(0.20\pm0.05\). The force constants of Fe\(^{2+}\) at M1 and M2 are \(4.7\pm0.1\) eV/\(\AA^2\) and \(4.2\pm0.1\) eV/\(\AA^2\), respectively. The axial splitting \(\delta\) is \(1120\pm50\) cm\(^{-1}\) for both sites. The comparison of the \(^{57}\)Fe data with the previous \(^{25}\)Mg data allows a more detailed analysis of total, lattice, and Fe\(^{2+}\) valence field gradients at the M1 and M2 sites. The observed apparent lack of site preference for Fe\(^{2+}\) can be interpreted in terms of the local electronic properties.

Introduction

Many physical properties of olivines (Fe, Mg)\(_2\)SiO\(_4\) are determined by the local states of bonding at the atomic positions and their dependences on temperature and pressure. The crystal structures of olivines are orthorhombic with space group \(\text{Pnma}\). In this paper we are particularly concerned with the local properties of the positions of the bivalent cations, Fe\(^{2+}\) and Mg\(^{2+}\), which are octahedrally coordinated. There are two distinct positions, M1 and M2, with point symmetries \(I\) and \(m\), respectively. The distribution of the Fe\(^{2+}\) and Mg\(^{2+}\) ions is generally disordered over M1 and M2, although possible preferences of Fe\(^{2+}\) for M1 or M2 under certain conditions have been debated in the past. Many questions, particularly the cationic exchange between M1 and M2 at elevated temperatures and its kinetics are still open. However, for the interpretation of such processes, detailed studies of the local site properties are desirable.

In the past, Mössbauer spectroscopy of \(^{57}\)Fe has been mainly used for studying iron rich olivines (Eibschütz and Daniel, 1967; Kündig et al., 1967; Bush et al., 1970). In the present work we describe Mössbauer studies of synthetic and natural olivines with low concentrations of iron (0.0025 and 0.1 mol. fraction). The experiments were carried out in a wide range of temperatures (4.2–1223 K), at high external fields (4–7 T), and at high pressure (30 kbar) and elevated temperature (568 K).

In this paper, the measured magnitudes, signs, and asymmetries of the electric field gradient (EFG) tensors of \(^{57}\)Fe in forsterite are compared with the \(^{25}\)Mg nuclear magnetic resonance data previously obtained for the same mineral (Derighetti et al., 1978) and with theoretical EFG calculations. Such comparison is interesting in view of the relationship between lattice and valence contributions to the total EFG. This may be a step towards a more general consideration of local structure and chemical bonding. In particular, the estimated axial field splittings of the iron 3d orbitals can tentatively explain the weak, if any, preferential site occupancy by Fe\(^{2+}\) ions, which appears to be independent of the external state during the crystallization of olivine.

The Mössbauer spectra, if measured over a wide temperature range, also supply information about the dynamics of Fe\(^{2+}\) ions. For this, the estimated Debye temperatures and force constants for both sites may be compared with X-ray diffraction studies at high temperatures and high pressures provided that sufficiently refined data are available.

Samples

Two magnesium-rich olivines with the following compositions were studied. Sample (1): (Fe\(_{0.0025}\)Mg\(_{0.9975}\))\(_2\)SiO\(_4\). This forsterite sample was obtained by powdering a single crystal specimen of high perfection grown using the Czochralski method. High enrichment of \(^{57}\)Fe (90.4%) permitted the recording of Mössbauer spectra with a high total resonant absorption effect of \(18\)\% despite the low concentration of iron. Sample (2): (Fe\(_{0.01}\)Mg\(_{0.99}\))\(_2\)SiO\(_4\). This sample was kindly provided by T. Malyshawa. It was a high temperature olivine separated from a natural garnet peridotite.

The absorbers for the measurements at 295, 78 and 4.2 K were made by mixing powdered samples with lucite powder. Pellets with a diameter of 12 mm were prepared by pressing at 420 K and pressing at 2 kbar for 30 minutes. For high temperature measurements the samples were mixed with boron nitride and distributed homogeneously on an iron-free beryllium plate, also 12 mm in diameter. The absorber thickness was about 0.1 mg.
STANEK ET AL.: LOCAL STATES OF Fe2+ AND Mg2+ IN OLIVINES

s_{z}^{o} for sample (1) and about 4 mgFe/cm² for sample (2) so that the samples could be approximately treated as “thin” absorbers.

Measurements

The Mössbauer spectra in the temperature range between 295 and 1223 K were recorded using a vertically operating, water cooled furnace with a tungsten filament. The vacuum during the measurements varied from 5×10^{-5} to 10^{-3} Torr, depending on the temperature which was stabilized within 2 K.

Measurements in high, external magnetic fields were carried out using a superconducting solenoid which allowed the taking of spectra at liquid helium, liquid nitrogen, and room temperatures. The direction of the gamma rays was parallel to the magnetic field. The source was kept at a “zero field” position 4 cm from the absorber. This fortunate source-to-absorber geometry was possible due to a field compensation coil in the solenoid at the side of the source. However, the experimental line width in the absorber was generally broadened to widths of about 0.28 mm/s probably due to the fact that the magnetic field at the source was not exactly zero.

The apparatus used for the measurements of Mössbauer spectra at high pressures was the equipment described by Amthauer et al. (1979) modified for high temperature work up to 600 K. This temperature is needed for obtaining the resolution of the distinct quadrupole splittings of 57Fe at M1 and M2. The investigated sample was mixed with BN powder, inserted into a graphite ring (4 mm in diameter), and pressed between two B₄C anvils. The current through the graphite ring, being the main heating element, was 40 A at 500 K. The temperature of the sample was measured by a Pt-Pt (10% Rh) thermocouple, which was used also for temperature regulation (\pm 2 K). The correction for the pressure-induced change of the thermoelectrical voltage given by the thermocouple was considered (Bundy and Strong, 1962). The pressure vs. applied force calibration was carried out at room temperature using the known resistivity jumps of bismuth at 25.4 and 27 kbar (Bundy and Strong, 1962) and of ytterbium at 40 kbar (Drickamer, 1965). The constant force during experiments was supplied by an automatically regulated hydrostatic press. Thus, there was no change in pressure during heating from 300 to 500 K.

The design of the high pressure, high temperature cell which has not been published before is shown in Figure 1. High pressure, high temperature Mössbauer spectroscopy measurements have been attempted using a diamond cell heated with a laser beam (Ming and Bassett, 1974). The advantage of our design is that it yields undistorted spectra based on thin absorbers with reasonably large areas. However, the range of temperatures at present is limited to about 700 K due to the thermal properties of stainless steel (Thyrodur 2709) gasket.

All experiments were performed using a single-line source of 57Co in metallic Pd or Rh matrices. The activity of the source varied from 20 to 40 mCi in the different experiments. The instrumental line width was smaller than 0.25 mm/s. The velocity scale in the Mössbauer spectra was calibrated by use of a metallic iron absorber.

Experimental results

Measurements at high temperatures

The temperature dependence of the Mössbauer spectra in forsterite doped with 57Fe (sample 1) was investigated between 295 K and 1223 K. Spectra taken at 295, 1023 and 1223 K are shown in Figure 2. High temperature measurements were also carried out for the natural olivine (Fe₀.₃Mg₀.₇)SiO₄ (sample 2).
Since the two quadrupole-split Fe$^{2+}$ doublets at the M1 and M2 positions of olivine strongly overlap, the fitting procedure is generally difficult. In our case, however, because of high crystal perfection and absence of any textural effects physically reasonable constraints can be assumed for the fit. Consequently, the spectra were fitted in three different ways with the constraints

\[
\begin{align*}
W_l &= W_{h}, W_{l}' = W_{h}', I_l = I_{h}, I_l' = I_{h}'; \\
W_l &= W_l', W_{l}' = W_{h}', I_l = I_{h}, I_l' = I_{h}'; \\
W_l &= W_{l}', W_{l}' = W_{h}', I_l = I_{h}, I_l' = I_{h}'.
\end{align*}
\]
where E_r is the recoil energy of the nucleus (1.95×10^{-3} eV for 57Fe), f_r is the recoil free fraction of the absorber, and C is a constant.

The least squares fit of equation (1) to our data is shown in Figure 3. The fit yielded $\theta_D = 374 \pm 5$ K for synthetic forsterite (sample 1) as well as for natural olivine (sample 2). In our case, the ratio of A at M1 and M2 turned out to be independent of T within a fitting error of 2% so that θ_D may be assumed to be the same for iron at both sites. This assumption is in agreement with earlier results (Bush et al., 1970) obtained for fayalite, an iron-rich olivine, and a magnesium-rich olivine. In that work it was also concluded that the recoil free fraction of iron at the M1 and M2 positions was the same within 2%.

The high temperature Mössbauer spectra also supplied values for the force constants of the Fe$^{2+}$ ions at the M1 and M2 positions. In the higher temperature limit the thermal shift, i.e., the temperature dependence of the shift of the Mössbauer spectrum may be approximated (Gupta and Lal, 1972) by

$$\frac{\partial IS}{\partial T} = -\frac{3h^2}{2ME_r^2}K \frac{\partial \ln f_r}{\partial T}$$

Here, E_r is the energy of the gamma transition (14.4 keV), M is the mass of 57Fe, $M = 9.465 \times 10^{-26}$ kg, and K is the force constant. Substituting f_r obtained from the temperature dependence of the resonant area and fitting the experimental IS for each doublet, $K(M1) = 4.7 \pm 0.1$ eV/Å^2 and $K(M2) = 4.2 \pm 0.1$ eV/Å^2. The fits together with the experimental IS values are shown in Figure 4.

Measurements of forsterite in high, external magnetic fields

The main purpose of measuring Mössbauer spectra in high, external magnetic fields H was the determination of the sign of the principal component V_{zz} of the EFG tensor3 at the M1 and M2 positions. Such spectra also allow us to estimate the asymmetry parameter $\eta = (V_{xx} - V_{yy})/V_{zz}$, where V_{xx}, V_{yy} and V_{zz} are the values of the second derivative of the electrostatic potential V at the crystallographic positions of 57Fe, and X, Y, Z refer to the diagonalized system.

The sign of V_{zz} and value of η were found by comparison of the experimental spectra with those computed by means of the “Gabriel-Ruby” program for calculating combined quadrupole and magnetic hyperfine interactions in polycrystalline samples (Gabriel, 1965; Collins and Travis, 1967). The magnitudes of the quadrupole splittings observed in zero-field spectra and experimental line widths of 0.28 mm/s were introduced as fixed parameters. Since the spectrum consists of two overlapping doublets due to

\[A = C \cdot f_r = C \times \exp\left(\frac{-6E_rT}{K\theta_D^2}\right) \]
Fig. 8. Computed (solid line) and experimental (dots) 57Fe spectra in polycrystalline forsterite in external magnetic fields of 4.0 T (A), and 6.0 T (B) at 295 K. The field was parallel to the gamma rays. For the computed spectra, $\eta = 0.2$ and a positive sign of V_{zz} were assumed.

57Fe at the M1 and M2 sites various simulations of spectra had to be computed using positive and negative signs of V_{zz} as well as different η values for both sites and different external magnetic fields. η was varied between 0 and 1 in steps of 0.05. The simulations showed that the spectrum depends on η and the sign of V_{zz} most critically at fields between 4 and 7 T. The best agreement between experimental and computed spectra was obtained for a positive sign of V_{zz} at the M1 as well as the M2 sites, and an average $\eta = 0.20 \pm 0.05$. Two experimental and computed spectra for fields $H = 4.0$ T and 6.0 T are shown in Figure 8.

The application of the Gabriel-Collins procedure used for the evaluation of Mössbauer spectra needs further comment. It is only correct for diamagnetic ions, or for paramagnetic ions which have isotropic properties as, for example Fe^{2+}. Fe^{2+} in forsterite is, however, anisotropic, i.e., the effective magnetic field at 57Fe, H_{ef}, is not parallel to the external field H. Its magnitude depends on the orientation of the crystal with respect to the external field. In this case a phenomenological model which describes the Mössbauer spectrum of paramagnetic powders in high magnetic fields developed by Varret (1976) may be applied. It is based on the assumption that H_{ef} acting at the Fe^{2+} nucleus can be described as

$$H_{ef} = (1 + \bar{B})H$$

where \bar{B} is the "magnetization hyperfine tensor." Such magnetization effects become significant at low temperature and at the high field limit, when saturation of the magnetization in the easy direction appears. This can drastically change the line shape of the Mössbauer absorption. Such an approach has been successfully used for the description of 57Fe spectra of Fe and Zn fluorosilicates studied in external fields (Varret, 1976).

For a verification of the data obtained, an additional experiment at $H = 7.15$ T and 4.2 K was made. The spectrum obtained, shown in Figure 9, consists of two broad lines and can not be reproduced by the simple method used in this paper due to enhanced magnetic anisotropy of Fe^{2+} at lower temperatures as discussed above. In consequence, this result supplied no independent estimate for the η value (the sign is obvious from room temperature spectra).

It is to be noted that the sign of the V_{zz} component of the EFG tensor as well as the asymmetry parameter for Fe^{2+} in forsterite are the same at both sites as in fayalite, Fe$_5$SiO$_8$. The components of EFG tensor in fayalite ($V_{zz} > 0$ and $\eta = 0.2$ at M1 and M2 sites) were estimated by Kündig et al. (1967) on the basis of the Mössbauer spectra of the magnetically ordered state at 4.2 K.

A drastic difference is observed, however, between the EFG measured at Fe^{2+} and at Mg^{2+} ions in forsterite. The components of EFG tensors at Mg^{2+} in forsterite have been precisely determined by Derighetti et al. (1978) by
means of magnetic resonance on dynamically polarized
\(^{25}\)Mg nuclei in a single crystal. The given values of the
asymmetry parameters are larger: 0.4 at M2 and 0.96 at
M1. The signs of the main EFG components were not
determined experimentally but a calculation based on the
point charge model including ionic, dipole and quadru-
pole contributions as well as overlap effects lead to posi-
tive signs (Rager and Schmidt, 1981). These results, to-
gether with our data are the basis of the discussion of the
relationship between lattice and valence EFG, presented
in the next section.

Discussion

Correlation between lattice and valence field gradient

A primary interest of this study was the relation between
the EFG tensors of \(^{57}\)Fe and \(^{25}\)Mg (Derighetti et al., 1978)
at the two nonequivalent M1 and M2 sites. The \(^{57}\)Fe ten-
sors are described in their principal axes system X,Y,Z
and consist of two contributions: (1) the dominating va-
lence contribution \(V_{\nu}^{\text{Fe}}\) with the principal axes system
\(X^{*},Y^{*},Z^{*}\) and (2) the lattice contribution \(V_{l}^{\text{Fe}}\) with the prin-
cipal axes system \(x,y,z\). According to the model of Ingalls
(1964) it is usually assumed that the systems \(X,Y,Z,\)
\(X^{*},Y^{*},Z^{*}\) and \(x,y,z\) have identical orientation. For the
\(^{25}\)Mg tensor, of course, \(V_{l}^{\text{Mg}}\) is assumed to be zero, i.e., \(V_{l}^{\text{Mg}} =
V_{\nu}^{\text{Mg}}\). A discussion of the signs of the various tensors and
the different orientations of their principal axes appears
worthwhile.

For comparing the lattice tensors acting on \(^{57}\)Fe and
\(^{25}\)Mg with the total tensors, the data should be corrected
for the different \(\gamma_{\text{Fe}^{2+}}\) and \(\gamma_{\text{Mg}^{2+}}\) Sternheimer antishielding
factors \(\gamma_{\text{Fe}^{2+}}\). Thus at \(^{57}\)Fe the lattice tensor is

\[
V_{l}^{\text{Fe}^{2+}} = \frac{[1 - \gamma_{\text{Fe}^{2+}}]}{[1 - \gamma_{\text{Mg}^{2+}}]} \times V_{\nu}^{\text{Mg}^{2+}}
\]

where \(\gamma_{\text{Fe}^{2+}} = -3.5\) (Schmidt et al., 1979), \(\gamma_{\text{Fe}^{2+}} =
-10.972\) (Sternheimer, 1972), and \(i = x,y,z\). Assuming a
positive sign of \(V_{\nu}^{\text{Mg}^{2+}}\) (Rager and Schmidt, 1981) and
substituting the experimental data for \(V_{\nu}^{\text{Mg}^{2+}}\) (Deri-
ghetti et al., 1978), yields the values for the \(^{57}\)Fe lattice
tensor components at both positions\(^{4}\) expressed in the
principal axes system, \(x,y,z\).

The estimation of the errors in \(V_{l}^{\text{Fe}^{2+}}\) is difficult. The exper-
imental errors of \(V_{l}^{\text{Fe}^{2+}}\) are about \(10^{-9}\) V/m\(^2\). The
errors of calculated \(\gamma_{\text{Fe}^{2+}}\) and \(\gamma_{\text{Mg}^{2+}}\) are not known;
they can even reach \(10\%\), but this causes only systematic
shifts of \(V_{l}^{\text{Fe}^{2+}}\). In particular the value of the asymmetry
parameter \(\eta\) is not affected.

However, the question of how much the lattice EFG
measured on \(^{25}\)Mg\(^{2+}\) ions can be identified with the lattice
EFG acting on \(^{57}\)Fe at the same crystallographic position

\(^{4}\) An energy shift of 1 mm/s for the 14.4 keV transition in the
\(^{57}\)Fe Mössbauer spectrum is equal to 11.625 MHz, or to \(4.808 \times
10^{-9}\) eV. An axial tensor of \(V_{zz} = 10^{-21}\) V/m\(^2\) produces a quadru-
pole splitting of \(^{57}\)Fe of 0.208 mm/s (assuming \(Q = 0.20 \times
10^{-20}\) cm\(^2\) for the quadrupole moment of 14.4 keV state of \(^{57}\)Fe).
Table 1. The components of the lattice (V_l), total and valence (V) EFG tensors in M1 and M2 sites, expressed in the total EFG tensor principal axis system X,Y,Z in the units of 10^{20} V/m^2

<table>
<thead>
<tr>
<th></th>
<th>V_{xx}</th>
<th>V_{yy}</th>
<th>V_{zz}</th>
<th>V_{xy}</th>
<th>V_{xz}</th>
<th>V_{yz}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>+24</td>
<td>-1</td>
<td>-24</td>
<td>-57</td>
<td>-85</td>
<td>+142</td>
</tr>
<tr>
<td>M2</td>
<td>+20</td>
<td>-6</td>
<td>-14</td>
<td>-59</td>
<td>-88</td>
<td>+147</td>
</tr>
</tbody>
</table>

The data of Derighetti et al. (1978) using equation (4) and are presented. The V_l components are calculated from the as in the case of M2.

Considering the data collected in Table 1, it can be concluded that in spite of the fact that the lattice tensor is highly asymmetric (especially at M1) in M2, the valence contribution to the total tensor is, at room temperature, fairly axial (\(\eta = 0.018\), as estimated from Table 1) i.e., it is indicative of a big axial field splitting.

The experimental results on forsterite appear to weaken the prediction of Ingalls (1964) concerning the relation between the lattice and valence contributions to the total tensor (they should be of opposite signs and the X,Y,Z system should be identical with the X,Y,Z system).

Temperature dependence of the quadrupole splitting (QS) and the axial field splitting \(\delta\)

The temperature dependence of the valence tensor of \(\text{Fe}^{2+}\) was described by Ingalls (1964). The ligand field parameters (cf. also Gibb, 1968) can be estimated from the decrease of the QS with the increasing temperature if the weakly temperature dependent lattice contribution is subtracted from the total tensor. In our present case, the lattice tensors in forsterite are, of course, known precisely at 4.2 K from the \(^{25}\text{Mg}\) data of Derighetti et al. (1978). In olivines, two opposing contributions to the temperature dependence of the lattice tensor may be expected: (1) thermal expansion of the lattice may reduce the tensor with increasing temperature; (2) the increasing mean static distortion of the oxygen octahedra around M1 and M2 with increasing temperature (Smyth and Hazen, 1973; Smyth, 1975) may produce an increasing contribution to the tensor. This contribution may partly cancel or even outweigh (1).

For further discussion the high temperature (568 K) and high pressure (30 kbar) Mössbauer measurements should be included. It is known that the ratio of the coefficient of linear thermal expansion \(\alpha\), and the coefficient of linear compression \(\beta\), are constant for a wide variety of minerals (Hazen, 1976, 1977). Thus the process of the thermal volume decrease is structurally similar to the decrease of volume during compression. For forsterite, a pressure difference of 30 kbar corresponds to a decrease of the average M-O bond of about 0.018 Å. The same decrease is achieved by a decrease in temperature of about 700 K (Hazen 1976). No pressure dependence of the QS was observed at 30 kbar (cf. Fig. 7). It can, therefore, be concluded that structural changes expected in our experimental temperature range (300-1220 K) have little influence on the lattice tensor, which can be assumed to be independent of temperature.

In the high temperature region, where the influence of spin orbital interaction on the tensor is negligible, the temperature dependence of an axially symmetric valence tensor \(V_{zz}\) at an octahedrally coordinated site of \(\text{Fe}^{2+}\) (Ingalls, 1964) is

\[
V_{zz} = -2V_{yx} = -2V_{zx} = C \times \frac{1 - \exp(-\delta/kT)}{1 + 2 \exp(-\delta/kT)}
\]
Here $\delta = 3D_e$ is the T_{2g} orbital splitting, where D_e is the axial field parameter. The values of the total components V_{ii} can be calculated for any temperature as

$$V_{ii}(T) = V_{ii}(0) + V_{ii}(1)$$

To obtain the explicit form of the temperature dependence of QS the $V_{ii}(0)$ components must be inserted into equation (6). The experimental values of QS are presented in Figure 6. The least squares fit of the function of equation (6) to the points of Figure 6 with the conditions described by equation (7) (solid lines in Fig. 6) leads to $\delta = 1120 \pm 50$ cm$^{-1}$. This result is inconsistent with $\delta = 1860$ cm$^{-1}$ (dashed line in Fig. 6) of Burns (1970). It should be noted, however, that the value of 1860 cm$^{-1}$ results, at least for the M1 site, from a numerical error in subtracting the energy of 8060 cm$^{-1}$ and 7200 cm$^{-1}$ of the two absorption bands in the polarized absorption spectra of olivine (Burns, 1970). Our result can be related rather well to the absorption minimum of 1124 cm$^{-1}$ in the infrared spectra of forsterite (Runciman et al., 1973).

Preferential site occupancy of bivalent iron in olivines

In view of the different point symmetries of the M1 and M2 positions and the somewhat different geometrical distortions of the M1 and M2 coordination octahedra a preference of Fe$^{2+}$ is expected for one of the two positions, at least in general. The EFG tensors are distinct for the two positions, particularly at temperatures higher than 250°C. Moreover, the average M-O distance is somewhat shorter for M1 ($d = 2.095$ Å) than for M2 ($d = 2.131$ Å) (Wenk and Raymond, 1973), yielding a slightly smaller volume for the M1 octahedron.

The relative volumes of M1 and M2 octahedra are consistent with the result that the force constant K of M1 is greater than that of M2. This fact indicates that the Fe$^{2+}$ ions at M1 are somewhat more tightly bonded to the oxygen ions than at M2. This result does not support the conclusion of Hazen (1976) that the compressibility of M1 octahedra is larger than that of M2. From our data for the force constants we find

$$\frac{\partial V(M2)}{\partial p} = \frac{\partial V(M1)}{\partial p} = \left(\frac{K(M1)}{K(M2)}\right)^3 \approx 1.4$$

In spite of the geometrical difference between the M1 and M2 octahedra the electronic levels of Fe$^{2+}$ appear to be quite similar at both sites. This rather surprising result is confirmed by the spectra at high pressures. The hyperfine parameters are not influenced significantly by pressures up to about 30 kbar.

The ordering of cations may be discussed in terms of the crystal field stabilization energy CSFE. For octahedral coordination,

$$\text{CSFE} = \frac{2\Delta_0}{3} + \frac{1}{3}\delta$$

where Δ_0 is the crystal field splitting and δ is the axial field splitting (Burns, 1970). In pyroxenes, it was concluded that the difference in δ at the M1 and M2 positions is responsible for the preference of Fe$^{2+}$ for the M2 position (Burns, 1970). The apparent lack of cation ordering in olivines appears to be related to the equal δ splittings of Fe$^{2+}$ at both M positions as concluded from present data. Therefore, precise determination of Fe$^{2+}$ ordering over M1 and M2 in the olivine solid solution by Mössbauer spectroscopy will require careful experimental study of the relative M1 and M2 resonant absorption areas over a large region of temperature.

The weak preferential site occupancy in olivines has also been explained by a dynamical Jahn-Teller effect (Welsch et al., 1974). However, in that work an incorrect order of δ_g level splitting was assumed, i.e., from the distortion of the M2 octahedron it was concluded that the ground state is a doubly degenerated $(3d^{4})$ level. The positive signs of $V_{1/2}$ show that the ground states must be $3d^{5}$ singlets for both positions. Thus, the values of stabilization energy of Welsch et al. (1974) require reconsideration.

Acknowledgments

We thank T. Malysheva, Vernadsky Institute of Chemistry, Academy of Sciences USSR, Moscow, for a natural sample of olivine. One of us (J. Stanek) thanks the A. V. Humboldt Foundation for a fellowship. This work was supported by a Grant of German Research Foundation (DFG-127).

References

Hazen, R. M. (1977) Effects of temperature and pressure on the

Smyth, J. R. and Hazen, R. H. (1973) The crystal structures of forsterite and hornolite at several temperatures up to 900°C. American Mineralogist, 58, 588–593.

Manuscript received, December 3, 1984; accepted for publication, September 4, 1985.