Heat capacities and thermodynamic functions for beryl, $Be_3Al_2Si_6O_{18}$, phenakite, Be_2SiO_4 , euclase, $BeAlSiO_4(OH)$, bertrandite, $Be_4Si_2O_7(OH)_2$, and chrysoberyl, $BeAl_2O_4$

B. S. HEMINGWAY

U.S. Geological Survey, Reston, Virginia 22092

M. D. BARTON

Department of Earth and Space Sciences, University of California, Los Angeles, Los Angeles, California 90024

R. A. ROBIE, H. T. HASELTON, JR.

U.S. Geological Survey, Reston, Virginia 22092

ABSTRACT

The heat capacities of beryl, phenakite, euclase, and bertrandite have been measured between about 5 and 800 K by combined quasi-adiabatic cryogenic calorimetry and differential scanning calorimetry. The heat capacities of chrysoberyl have been measured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimental data and simultaneously fit using the program PHAS20 to provide an internally consistent set of thermodynamic properties for several important beryllium phases. The experimental heat capacities and tables of derived thermodynamic properties are presented in this report.

The derived thermodynamic properties at 1 bar and 298.15 K for the stoichiometric beryllium phases beryl, phenakite, euclase, and bertrandite are entropies of 346.7 ± 4.7 , 63.37 ± 0.27 , 89.09 ± 0.40 , and 172.1 ± 0.77 J/(mol·K), respectively, and Gibbs free energies of formation (elements) of -8500.36 ± 6.39 , -2028.39 ± 3.78 , -2370.17 ± 3.04 , and -4300.62 ± 5.45 kJ/mol, respectively, and -2176.16 ± 3.18 kJ/mol for chrysoberyl. The coefficients c_1 to c_5 of the heat-capacity functions are as follows:

					valid
\mathcal{C}_1	C_2	$c_3 \times 10^5$	C ₄	$c_{5} \times 10^{-6}$	range
1625.842	-0.425 206	12.0318	-20 180.94	6.825 44	200–1800 K
428.492	-0.099 582	1.9886	-5670.47	2.0826	200–1800 K
532.920	-0.150729	4.1223	-6726.30	2.1976	200–1800 K
825.336	-0.099 651		-10 570.31	3.662 17	200–1400 K
362.701	-0.083527	2.2482	-4033.69	-6.7976	200–1800 K
	<i>c</i> ₁ 1625.842 428.492 532.920 825.336 362.701	$\begin{array}{ccc} c_1 & c_2 \\ 1625.842 & -0.425\ 206 \\ 428.492 & -0.099\ 582 \\ 532.920 & -0.150\ 729 \\ 825.336 & -0.099\ 651 \\ 362.701 & -0.083\ 527 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

where $C_P^{\circ} = c_1 + c_2T + c_3T^2 + c_4T^{-0.5} + c_5T^{-2}$ and T is in kelvins.

INTRODUCTION

Recent advances in technology (Webster and London, 1979) have improved the mechanical properties of beryllium products at both room temperature and at elevated temperatures and have led to a renewed expansion in the use of beryllium in, and perhaps beyond, the traditional areas of weapons, space, optical, nuclear, and guidance systems; alloy-property modification; and, in military aircraft, disc brakes. The renewed interest in beryllium applications has rekindled an interest in the geochemistry and thermodynamic properties of berylliumbearing phases. We report here the heat capacities and derived thermodynamic functions for beryl, phenakite, euclase, bertrandite, and chrysoberyl. A companion paper (Barton, 1986) presents an evaluation of solution and phase-equilibrium experimental data, and a discussion of the petrology of selected beryllium phases.

All economic beryllium deposits are postmagmatic and related to acidic igneous rocks, generally biotite granites, but rarely high-silica and alkalic granites (Beus, 1966). The deposits are genetically related to late stages of pegmatitic processes or to various stages of hydrothermal processes (Jahns, 1955). Historically, beryllium production was limited to handpicking large beryl crystals from beryl-bearing granitic pegmatites. More recently, beryllium has been produced from hydrothermally altered deposits such as Iron Mountain, New Mexico (Jahns, 1944), and Spor Mountain, Thomas Range, Utah (Staatz, 1963). The pegmatitic process and related hydrothermal processes have been reviewed by Jahns (1955) and by Jahns and Burnham (1969).

				-		
Temp.	Heat capacity	Temp.	Heat capacity	Temp.	Heat capacity	Temp.
K	J/(mol·K)	ĸ	J/(mol•K)	ĸ	J/(mo1.K)	К
Serie	es l	Serie	s 2	Serie	в 3	Seri
299.16	442.2	169.80	262.6	4.95	0.9516	8.07
303.41	447.5	175.47	272.3	5.33	0.8519	9.15
308.37	452.6	181.11	281.9	5.77	0.7386	10.18
313.36	457.7	186.75	291.6	6.21	0.7534	11.38
318.54	462.9	192.37	300.8	6.72	0.8776	12.74
		197.98	309.8	7.40	0.9827	14.19
Serie	26 2	203.58	318.4	8.20	1.026	15.79
		209.17	326.6	9.10	1.214	17.55
54.89	42.60	214.73	334.8	10.11	1.410	19.50
59.92	51.45	220.29	343.0	11.23	1.544	21.66
64.67	59.99	225.84	351.2	12.48	1.746	24.05
69.96	69.95	231.39	359.0	13.85	1.992	26.72
76.05	81.98	236.95	367.1	15.36	2.291	29.71
82.07	94.07	242.50	374.3	17.01	2.699	33.04
88.13	106.2	248.04	381.7	18.82	3.242	36.77
94.19	118.4	253.58	388.8	20.84	3.983	45.61
100.21	130.4	259.10	395.8	23.09	4.935	50.85
106.19	142.4	264.63	402.8	25.59	6.259	56.67
112.12	154.2	270.16	409.4	28.38	8.087	62.91
118.00	166.0	275.68	415.5	31.50	10.56	69.28
123.85	177.6	281.19	422.4	34.99	13.81	75.65
129.67	188.9	286.69	428.8	38.89	18.10	81.95
135.46	200.2	292.16	435.1	43.28	23.87	88.15
141.24	211.2	297.62	440.8	48.19	30.89	94.30
146.99	222.0	303.07	446.3	53.69	40.01	100.39
152.72	232.4	308.49	451.9			106.42
158.43	242.6			Serie	s 4	112.41
164.13	252.8					118.34
				317.36	460.5	124.24
				322.54	466.3	130.11
				327.52	472.8	135.94
				332.52	477.5	141.75
				337.70	480.7	147.54
				342.86	486.0	153.31
						159.05

Table 1. Experimental low-temperature heat capacities of beryl, Be₃Al₂Si₆O₁₈·0.36H₂O

Table 2. Experimental low-temperature heat capacities of phenakite, Be₂SiO₄

Тешр.

к

198.80

204.42

210.03

215.63

221.22

226.81

236.45

241.57

246.74

252.17

257.58

262.99

273.76

279.17

284.53

289.84

295.15

300.43

305.68

310.89

316.08

265.51

266.54

267.47

268.40

269.37

270.35

271.32

272.29

273.26

274.23

Series

Series

0.0130 193.17

0.2273 231.06

Series

Heat

capacity

J/(mol·K)

57.42

59.72

62.01

64.23

66.48

68.64

70.80

72.44

74.49

76.34

78.23

80.15

82.07

84.00

87.83

89.55

91.30

93.07

94.75

96.29

97.83

99.47

84.80

85.14

85.76

86.02

86.51

87.00

87.00

86.99

87.21

87.61

101.0

3

2

1

Heat

capacity

J/(mol'K)

4

100.7

101.7

103.2

104.6

106.0

107.4

108.6

109.8

110.9

112.0

113.1

114.5

115.6

116.5

95.31

97.26

0.4006

0.4595

0.5099

0.5805

0.6653

0.7557

0.8515

0.9558

1.066

1,177

1.407

1.545

1.679

1.787

1.907

2.049

2.191

2.356

2.528

2.712

2.963

3.109

3.372

5

6

Temp.

K

315.49

318.94

324.05

328.96

333.86

338.88

343.90

348.92

353.93

358.91

363.88

368.83

373.78

378.71

297.13

302.42

28.15

29.34

30.19

31.11

32.24

33.34

34.46

35.59

36.72

37.84

40.08

41.21

42.32

43.43

45.65

46.77

47.88

48.99

50.10

51.20

52.31

53.40

54.51

Series

Series

Series

Heat

capacity

J/(mol·K)

0.0179

0.0190

0.0215

0.0327

0.0497

0.0685

0.0885

0.1217

0.1635

0.3244

0.4805

0.7246

1.062

1.910

2.661

3.835

5.417

7.334

9.515

11.79

14.08

16.38

18.67

21.00

23.38

25.80

28.28

30.79

33.25

35.73

38.22

40.65

43.07

45.50

47.94

50.30

52.67

55.05

164.78

170.49

176.18

181.86

187.52

1

Series

in Barton (1986). Beus (1966) and Mulligan (1968) discussed various beryllium deposits.

Kelley (1939) measured the heat capacities of bromellite and phenakite between about 54 and 294 K. Chase et al. (1974) reported that Kelley's data for bromellite deviate by +50% at 56 K, +8% at 100 K, and +1% at 200 K from more recent measurements based upon improved technology. Similar systematic errors can be expected for the heat-capacity data for phenakite reported by Kelley.

This study was motivated by the need to provide a consistent set of thermodynamic functions for important beryllium minerals to aid in the development of geochemical models for beryllium ore genesis and to help in the development of extraction procedures for beryllium obtained from new source materials. To this end, lowtemperature heat-capacity measurements of beryl, phenakite, euclase, and bertrandite were combined with hightemperature heat capacities for these and other berylliumbearing phases and with phase-equilibrium data and were simultaneously evaluated.

The generalized geochemistry of the beryllium phases studied in this report may be summarized as follows. Beryl is the most abundant beryllium mineral and is most commonly found in granite pegmatites and granites. Beryl is also commonly found in greisens and quartz veins and occasionally in skarns and other metamorphic rocks. Chrysoberyl is the second most abundant beryllium mineral; however, the formation of chrysoberyl appears to require either a local enrichment of aluminum or a reduced silica activity. Chrysoberyl is most abundant in fluoritized skarns and is only occasionally found in pegmatites. Bertrandite is one of the few beryllium minerals that has a relatively wide occurrence and is found in most deposits of beryllium minerals. Bertrandite is present in commercial quantities in hydrothermally altered tuffs in the western part of the Thomas Range, Utah (Staatz, 1963). In pegmatites, bertrandite forms in the late stages, commonly forming as a hydrothermal alteration product of beryl or other beryllium phases often with euclase, muscovite, or bayenite coprecipitating as the sink for aluminum released in the alteration process. Euclase is relatively rare and is generally found in lower-temperature late-stage hydrothermal vein deposits. Phenakite forms in a wider range of deposits than euclase, but phenakite formation appears to be restricted to depositional environments with moderate to low aluminum activity. A more complete discussion of the petrology of these minerals may be found

Table 3.	Experimental low-temperature heat capacities of
	euclase, BeAlSiO ₄ (OH)

2

Table 4. Experimental low-temperature heat capacities of bertrandite, Be₄Si₂O₇(OH)₂

Temp.	Heat capacity	Temp.	Heat capacity	Temp.	Heat capacity
К	J/(mol·K)	К	J/(mol·K)	К	J/(mol·K)
Series	3 1	Series	2	Series	3
297.91	126.4	189.62	78.26	356.97	145.7
301.98	128.1	194.82	81.02	361.94	147.3
307.47	129.8	200.00	83.69	366.89	148.8
313.00	131.8	205.16	86.32	371.84	149.7
		210.30	88.85	376.76	150.9
Series	в 2	215.43	91.45	381.68	152.2
		220.55	93.93		
53.05	5.525	225.66	96.37	Series	4
59.97	8.026	230.80	98.81		
66.65	10.37	235.95	101.3	6.03	0.0103
73.85	13.61	241.09	103.7	6.54	0.0218
79.56	16.42	246.22	106.0	7.12	0.0295
82.28	17.77	251.34	108.2	7.77	0.0187
86.07	19.68	256.45	110.4	8.60	0.0128
91-13	22.38	261.54	112.5	9.45	0.0162
96.34	25.12	266.66	114.6	10.40	0.0262
102.10	28.28	2/1.80	116.7	11.51	0.0292
107.87	31.55	276.92	118.7	12./5	0.0354
113.60	34.86	282.02	120.7	14.12	0.0538
119.31	38.21	28/.12	122.7	15.61	0.0782
124.96	41.54	292.19	124.6	17.29	0.1152
130.55	44.79	297.25	126.4	19.15	0.1722
136.10	48.08	302.30	128.3	21.22	0.2398
141.81	51.29	307+33	130.1	23.52	0.3209
147.07	54.43	312.30	131.0	20.09	0.4465
152.30	57.54	311.30	133.3	20.90	1.004
162 26	63 66	Contes		32.17	1 477
103+20	66 73	Series		30.0%	1.4//
173 99	60 73	337 33	136 5	1/ 37	3 171
170 1/	72 71	337 76	138 0	44.37	4.340
194 30	75 55	337 1/	139 7	47.47	6.300
104.39	2000	342 02	141 6	61 23	8 421
		347 00	142.9	67.60	10.73
		351.99	144.0	07.00	10.73
		552.000	144.0		

SAMPLES AND APPARATUS

Beryl (synthetic emerald) was provided by Richard M. Mandle, President, Vacuum Ventures, Inc. The low-temperature heat-capacity sample that weighed 25.1618 g, corrected for buoyancy, was made up of large, dark-green, tabular crystal fragments. The scanning-calorimeter sample was 22.826 mg in a single crystal fragment. The cell parameters are a = 0.9286(9) nm and c = 0.9193(4) nm, and the molar volume is 203.27(7) cm³. Sixteen microprobe analyses were made using analyzed beryl, pollucite, and several glasses as standards. The average values (weight percent) were BeO 14.16 (assumed), Al₂O₃ 18.12, Cr₂O₃ 0.37, SiO₂ 65.99, and H₂O 1.2 (by weight loss). The approximate formula calculated for the synthetic emerald was $Be_3(Al_{0.986}Cr_{0.014})_2Si_6O_{18} \cdot 0.36H_2O$. The sample was analyzed for Na, Mg, Fe, K, and Ca, all of which were less than the level of detection (0.05 wt%). Heat-capacity measurements were also made at elevated temperatures on chips that had been dried at about 1673 K for 1 h. X-ray diffraction analysis of similarly dehydrated beryl showed no change in cell parameters nor the presence of secondary phases.

A phenakite (Be_2SiO_4) sample was obtained from the Wilson Collection (USNM 158142). The source was listed as Brazil. The sample was composed of clear, glassy chunks of about 3 mm diameter. The low-temperature heat-ca-

κ J/(mol·K) κ J/(mol·K) κ J/(mol·K) κ J/(mol·K) Series 1 Series 2 Series 3 305.31 228.7 79.70 38.98 259.85 199.7 309.81 231.9 85.82 44.51 260.79 200.7 314.66 234.7 91.86 50.05 261.72 201.6 319.59 237.8 97.85 55.51 262.66 203.4 324.60 243.3 109.63 66.82 264.53 205.5 334.60 246.2 115.42 71.88 265.47 207.2 339.59 249.3 121.7 77.46 266.41 208.0 344.60 252.3 126.88 82.89 267.34 211.4 349.62 266.7 143.80 98.71 270.15 212.0 354.63 257.9 138.19 93.50 269.20 212.3 374.56 260.4 166.0.49 114	Temp.	Heat capacity	Temp.	Heat capacity	Temp.	Heat capacity
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	к	J/(mol·K)	К	J/(mol·K)	K	J/(mol·K)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Serie	s 1	Series	2	Series	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	305.31	228.7	79.70	38.98	259.85	199.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	309.81	231.9	85.82	44.51	260.79	200.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	314.68	234.7	91.86	50.05	261.72	201.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	319.59	237.8	97.85	55.51	262.66	203.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	324.60	240.4	103.78	61.01	263.60	203.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	329.60	243.3	109.63	66.82	264.53	205.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	334.60	246.2	115.42	/1.88	265.47	207.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	339.59	249.3	121.17	11.40	265.41	208.0
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	344.60	252.3	126.88	82.89	20/+34	211.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	349.62	254.7	132.55	03 50	260.27	213.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	354.03	257.9	1/3 80	99.71	270.15	212.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	359.03	260.7	143.80	104 0	271.08	211.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	369 60	265 4	154.95	109.0	272.01	212.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	374.56	269.4	160.49	114.2	272.95	211.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	379.52	270.4	166.00	119.3	273.88	209.7
Series 2 176.97 129.3 275.74 211.0 182.44 134.3 276.67 209.6 5.99 0.0616 187.89 139.1 276.67 209.6 6.49 0.0666 193.32 143.8 278.53 211.8 6.93 0.1054 198.74 148.5 279.46 212.4 7.43 0.1362 204.15 153.2 280.39 212.2 8.07 0.1255 209.54 157.6 281.32 212.7 8.67 0.1398 214.92 162.1 282.24 213.2 9.30 0.1584 220.29 166.5 283.17 215.6 10.02 0.1984 225.66 170.9 284.09 215.6 10.87 0.2553 231.02 175.2 285.02 216.7 11.87 0.2757 231.02 175.2 285.02 216.7 11.83 0.4390 247.10 188.7 297.00 223.8 1	579.52	21011	171.49	124.3	274.81	210.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Serie	s 2	176.97	129.3	275.74	211.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			182.44	134.3	276.67	209.6
	5.99	0.0616	187.89	139.1	277.60	210.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.49	0.0666	193.32	143.8	278.53	211.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.93	0.1054	198.74	148.5	279.46	212.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.43	0.1362	204.15	153.2	280.39	212.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.07	0.1255	209.54	157.6	281.32	212./
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.67	0.1398	214.92	162.1	282.24	213.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.30	0.1584	220.29	166.5	283.17	215.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.02	0.1984	225.00	175 2	285 02	215.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.87	0.2333	231.02	179 8	287.80	217.9
13.00 0.3429 2441.73 $104.88.7$ 297.00 223.9 14.28 0.4390 247.10 188.7 297.00 223.9 15.70 0.5878 252.45 193.3 301.59 227.0 17.33 0.7720 257.79 197.3 306.18 229.8 19.14 1.039 263.11 203.7 310.76 232.8 21.16 1.436 268.42 213.9 315.34 236.0 23.43 1.943 273.79 210.7 319.91 238.6 25.99 2.546 279.23 212.0 28.85 3.434 284.58 215.5 Series 316.06 6.103 295.11 222.6 51.99 16.75 39.60 8.287 300.38 225.9 53.69 18.34 44.08 10.81 305.64 229.5 54.64 19.29 54.67 19.60 Series 3 62.68 26.92 60.71 25.11 67.79 30.28 67.06 29.68 255.16 194.6 73.28 33.77 73.43 34.03 256.13 196.2 78.84 38.16 257.05 196.7 84.31 43.11 257.05 196.7 84.31 43.11 257.05 196.7 89.76 48.10 258.91 198.6 95.17 53.06	12.00	0.2/10	241 75	184.3	292.41	220.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 28	0.4390	247.10	188.7	297.00	223.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.70	0.5878	252.45	193.3	301.59	227.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.33	0.7720	257.79	197.3	306.18	229.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.14	1.039	263.11	203.7	310.76	232.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.16	1.436	268.42	213.9	315.34	236.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.43	1.943	273.79	210.7	319.91	238.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.99	2.546	279.23	212.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.85	3.434	284.58	215.5	Serie	3 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.04	4.659	289.84	219.2		14 75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.60	6.103	295.11	222.6	51.99	10.75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.60	8.287	300.38	225.9	53.69	10.34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.08	10.81	303.64	229.3	57 62	22.69
34.07 12.00 Series 3 62.08 20.08 60.71 25.11 67.79 30.28 67.06 29.68 255.16 194.6 73.28 33.77 73.43 34.03 256.13 196.2 78.84 38.16 257.97 197.0 89.76 48.10 258.91 198.6 95.17 53.06	49.11	14.29	Contor	3	62.68	26.92
67.06 29.68 255.16 194.6 73.28 33.77 73.43 34.03 256.13 196.2 78.84 38.16 257.05 196.7 84.31 43.11 257.97 197.0 89.76 48.10 258.91 198.6 95.17 53.06	54.07	25.11	Series	5	67.79	30.28
73.43 34.03 256.13 196.2 78.84 38.16 257.05 196.7 84.31 43.11 257.97 197.0 89.76 48.10 258.91 198.6 95.17 53.06	67.06	29.68	255.16	194.6	73.28	33.77
257.05 196.7 84.31 43.11 257.97 197.0 89.76 48.10 258.91 198.6 95.17 53.06	73.43	34.03	256.13	196.2	78.84	38.16
257.97 197.0 89.76 48.10 258.91 198.6 95.17 53.06	, , .		257.05	196.7	84.31	43.11
258.91 198.6 95.17 53.06			257.97	197.0	89.76	48.10
			258.91	198.6	95.17	53.06

pacity sample weighed 30.4317 g, corrected for buoyancy. The scanning-calorimetric sample was 22.837 mg. Microprobe analyses of similar material (Barton, 1986) revealed only silicon at the level of detection (0.05 wt% for elements heavier than F). The cell parameters are a = 1.2472(1) nm and c = 0.8253(2) nm, and the molar volume is 37.19 cm³.

Euclase [BeAlSiO₄(OH)] was provided by Richard Gaines from material collected in Minas Gerais, Brazil. Microprobe analysis of the sample detected only aluminum and silicon. The sample was analyzed for F, Na, Mg, Fe, K, Ca, Cr, and Cs, all of which were below the level of detection (0.5 wt% for F and 0.05 wt% for the remaining elements). The cell constants for the sample are a =0.47703(29) nm, b = 1.43235(54) nm, c = 0.46317(39)nm, and $\beta = 100.416(62)^\circ$, and the molar volume is 46.86(6) cm³. The low-temperature heat-capacity sample Table 5. Molar thermodynamic properties of beryl, $Be_3Al_2Si_6O_{18}\cdot 0.36H_2O$, to 340 K

Table 6. Molar thermodynamic properties of phenakite, Be₂SiO₄, to370 K

				the second second second second					
Temp.	Heat capacity	Entropy	Enthalpy function	Gibbs energy function	Temp.	Heat capacity	Entropy	Enthalpy function	Gibbs energy function
т	C°P	$s_{T}^{\circ} - s_{0}^{\circ}$	$(H_{T}^{\circ}-H_{0}^{\circ})/T$	-(G _T -H ₀)/T	т	C°p	s _r -s ₀	$(H_{T}^{\circ}-H_{0}^{\circ})/T$	$-(G_T^\circ - H_0^\circ)/T$
Kelvin		J	/(mo1•K)		Kelvin		J	/(mol·K)	
5	0 140	0.046	0.036	0.012	F	0.002	0.001	0.001	0 000
10	0.873	0.040	0.034	0.012	10	0.002	0.001	0.001	0.000
15	2.091	0.899	0.644	0.007	10	0.017	0.008	0.014	0.002
20	3,660	1.704	1 1 9 1	0.513	20	0.038	0.019	0.014	0.005
25	5.921	2.745	1.894	0.851	20	0.258	0.040	0.065	0.012
30	9.318	4.107	2 832	1 275	20	0.200	0.154	0.005	0.025
35	13.82	5 868	4 068	1 901	35	0.000	0.259	0.107	0.050
40	19.48	8 069	5 6 2 7	2 662	55	1 400	0.239	0.197	0.002
45	26.22	10.75	7.534	2 . 4 4 2	40	1 990	0.412	0.510	0.090
50	33.84	13.89	9 774	1 1 1 0	45	2 513	0.000	0.463	0.141
60	51.57	21 61	15 74	6 365	50	4 643	1 467	1 112	0.177
70	70.08	30 93	21 74	0.303	20	4.043	1 + 40 /	1.113	0.554
80	89.87	41.57	29 01	12 56	70	1.05	2.394	1.010	0.373
90	110.0	53 32	36 90	16 63	80	11.05	5.028	2.731	0.0//
100	130.0	65.94	45 20	20 74	90	10 50	5.142	3.8//	1.204
		03131	45120	20014	100	10.13	0.090	J.172	1.730
110	150.0	79.27	53.82	25.45	110	22.45	8.839	6.546	2.293
120	169.9	93.18	62.66	30.51	120	26.52	10.97	8.039	2.926
130	189.6	107.6	71.68	35.88	130	30.71	13.25	9.621	3.631
140	208.8	122.3	80.79	41.53	140	34.96	15.68	11.28	4.405
150	227.4	137.4	89.95	47.41	150	39.23	18.24	13.00	5.241
160	245.4	152.6	99.11	53.51	160	43.48	20.91	14.77	6.137
170	263.0	168.0	108.2	59.79	170	47.72	23.67	16.59	7.087
180	280.1	183.5	117.3	66.24	180	51.92	26.52	18.43	8.087
190	296.9	199.1	126.3	72.82	190	56.09	29.44	20.31	9.133
200	312.8	214.8	135.3	79.53	200	60.19	32.42	22.20	10.22
210	328.0	230.4	144.1	86.34	210	64.22	35.45	24.10	11.35
220	342.7	246.0	152.8	93.25	220	68.16	38.53	26.02	12.52
230	35/.1	261.6	161.3	100.2	230	72.02	41.65	27.93	13.72
240	3/1.0	2//.1	169.8	107.3	240	75.77	44.79	29.85	14.95
250	384.2	292.5	178.1	114.4	250	79.43	47.96	31.76	16.20
260	396.9	307.8	186.3	121.5	260	82.99	51.15	33.66	17.49
270	409.1	323.0	194.3	128.7	270	86.46	54.34	35.55	18.79
280	421.0	338.1	202.2	135.9	280	89.82	57.55	37.43	20.12
290	432.4	353.1	209.9	143.1	290	93.07	60.76	39.29	21.46
300	443.4	367.9	217.5	150.4	300	96.20	63.97	41.14	22.83
310	453.9	382.6	225.0	157.6	310	99.20	67.17	42.96	24.21
320	464.2	397.2	232.3	164.9	320	102.1	70.37	44.77	25.60
330	474.2	411.6	239.5	172.2	330	104.8	73.55	46.55	27.00
340	483.6	425.9	246.5	179.4	340	107.5	76.72	48.30	28.42
273.15	412.9	327.8	196.8	131.0	350	110.0	79.87	50.03	29.84
298.15	441.4	365.2	216.1	149.0	360	112.4	83.00	51.72	31.28
					370	114.8	86.12	53.40	32.72
					273.15	87.53	55.35	36.15	19.21
					208 15	95 63	63 37	40 80	22.57

weighed 33.4966 g, corrected for buoyancy. The scanningcalorimetric sample was 26.178 mg.

Bertrandite [Be₄Si₂O₇(OH)₂] was obtained from the Field Museum of Natural History (FMNH 6969). The source location listed was Albany, Maine. Microprobe analyses of the sample detected only silicon. A few of the crystals were cloudy in appearance. Inspection of some of these crystals revealed the presence of a claylike phase. The cell constants for the sample are a = 0.87135(4) nm, b =1.52677(14) nm, and c = 0.4583(3) nm, and the molar volume is 91.50(1) cm³. Weight-loss studies indicated that the sample contained 7.4(6) wt% H₂O. The low-temperature heat-capacity sample weighed 22.4678 g, corrected for buoyancy. The scanning-calorimetric sample was 25.006 mg.

The chrysoberyl (BeAl₂O₄) sample was a tabular crystal fragment. The pale-green grain was opaque and contained 3.1 wt% Fe₂O₃ (Fe by microprobe). The scanning-calorimetric sample was 20.429 mg. The cell constants for the

sample are a = 0.54801(3) nm, b = 0.94119(7) nm, and c = 0.44288(3) nm, and the molar volume is 34.32 cm³.

Low-temperature heat capacities were measured using the intermittent heating method under quasi-adiabatic conditions. The cryostat has been described by Robie and Hemingway (1972), the provisional low-temperature scale by Robie et al. (1978), and the electrical measurement system by Hemingway et al. (1984). The samples were sealed in the calorimeter under a small pressure of pure helium gas (about 5 kPa).

High-temperature heat capacities were determined by differential scanning calorimetry (DSC) following the procedures outlined by Hemingway et al. (1981). The samples were enclosed in unsealed gold pans.

The formula weights were based upon the 1975 values for the atomic weights (Commission on Atomic Weights, 1976). The formula weights are 544.74, 537.505, 110.107, 145.084, 238.230, and 126.973 g, respectively, for beryl

							Carlo Carlo Carlo		
Тетр.	Heat capacity	Entropy	Enthalpy function	Gibbs energy function	Temp.	Heat capacity	Entropy	Enthalpy function	Gibbs energy function
Т	с°р	s _r -s ₀	$(H_{T}^{\circ} - H_{0}^{\circ}) / T$	-(G _T -H ₀)/T	Т	с _р	s _T -s ₀	$(H_T^\circ - H_0^\circ)/T$	$-(G_{T}^{\circ}-H_{0}^{\circ})/T$
Kelvin		J	/(mol·K)		Kelvin		J	/(mol·K)	
						and the second			
5	0.002	0.001	0.000	0.000	5	0.021	0.007	0.005	0.002
10	0.017	0.005	0.004	0.001	10	0.164	0.055	0.041	0.014
15	0.069	0.020	0.015	0.005	15	0.517	0.179	0.133	0.046
20	0.197	0.055	0.043	0.012	20	1.198	0.409	0.303	0.105
25	0.387	0.119	0.092	0.027	2 5	2.300	0.791	0.590	0.202
30	0.767	0.219	0.169	0.050	30	3.860	1.337	0.994	0.343
35	1.361	0.379	0.294	0.085	35	5.845	2.079	1.543	0.536
40	2.282	0.618	0.482	0.135	40	8.488	3.025	2.240	0.785
45	3.296	0.945	0.738	0.206	45	11.39	4.188	3.091	1.09/
50	4.525	1.351	1.051	0.300	50	15.02	5.567	4.094	1.4/3
60	8.001	2.478	1.915	0.563	60	24.62	9.151	6.712	2.438
70	11.80	3.984	3.043	0.940	70	31.67	13.50	9.800	3.703
80	16.61	5.867	4.433	1.434	80	39.22	18.20	12.98	5.218
90	21.75	8.118	6.069	2.049	90	48.31	23.34	16.40	6.942
100	27.13	10.69	7.905	2.782	100	57.54	28.91	20.05	8.857
110	32.78	13.54	9.907	3.628	110	66.98	34.83	23.89	10.95
120	38.60	16.64	12.06	4.581	120	76.34	41.06	27.87	13.19
130	44.48	19.96	14.32	5.635	130	85.82	47.55	31.96	15.59
140	50.33	23.47	16.69	6.782	140	95.20	54.25	36.14	18.11
150	56.12	27.14	19.12	8.016	150	104.5	61.14	40.39	20.74
160	61.85	30.94	21.61	9.330	160	113.7	68.17	44.69	23.49
170	67.54	34.86	24.15	10.72	170	122.9	75.34	49.02	26.33
180	73.11	38.88	26.71	12.1/	180	132.0	82.63	53.38	29.25
190	/8.49	42.98	29.30	13.68	190	140.9	90.01	57.75	32.20
200	83.69	47.14	31.89	15.25	200	149.6	97.46	62.13	35.33
210	88.75	51.35	34.48	16.87	210	158.0	105.0	66.49	38.47
220	93.68	55.59	37.06	18.53	220	166.3	112.5	70.84	41.66
230	98.48	59.86	39.62	20.24	230	174.4	120.1	/5.1/	44.90
240	103.1	64.15	42.17	21.98	240	182.5	127.7	/9.4/	48.19
250	107.6	68.45	44.70	23.75	250	190.9	135.3	83.76	51.53
260	111.9	72.76	47.20	25.55	260	200.7	143.0	88.06	59.30
270	116.0	//.06	49.68	27.38	270	209.8	150.7	92.42	58.30
280	119.9	81.35	52.12	29.23	280	213.3	158.4	90.00	65 20
290	123./	85.62	54.52	31.10	290	218.9	166.0	100.8	69 60
300	12/.4	89.88	20.89	32.99	300	225.6	1/3.5	104.8	00.09
310	130.9	94.11	59.22	34.89	310	232.1	181.0	108.8	72.19
320	134.3	98.32	61.51	36.81	320	238.2	188.5	112.8	/5./1
330	137.5	102.5	63.77	38.74	330	243.8	195.9	116./	/9.24
340	140.7	106.7	65.98	40.67	340	249.5	203.3	120.5	82.78
350	143.7	110.8	68.16	42.62	350	255.1	210.6	124.3	00.00
360	146.6	114.9	70.30	44.5/	360	260.7	21/.9	128.0	07.00
370	149.3	118.9	/2.40	46.52	370	266.0	225.1	131.0	93.44
380	151.9	122.9	74.45	48.48	273.15	211.1	153.2	93.78	29.38
273.15	117.2	78.41	50.45	27.96	298.15	224.4	1/2.1	104.1	08.04
298.15	126.7	89.09	56.45	32.64					

Table 7.	Molar thermodynamic properties of euclase,
	BeAlSiO ₄ (OH), to 380 K

Table 8. Molar thermodynamic properties of bertrandite, Be₄Si₂O₇(OH)₂, to 370 K

of the composition $Be_3Al_2Si_6O_{18} \cdot 0.36H_2O$, stoichiometric beryl, phenakite, euclase, bertrandite, and chrysoberyl.

LOW-TEMPERATURE HEAT CAPACITIES AND THERMODYNAMIC FUNCTIONS

Heat-capacity measurements for beryl, phenakite, euclase, and bertrandite are listed in the chronological order of measurement (series) in Tables 1–4. The results are corrected for curvature (e.g., Robie and Hemingway, 1972). The data were smoothed using cubic spline routines and were graphically extrapolated to zero kelvin using the experimental and smoothed values for temperatures less than 30 K plotted in the form of C_P^{e}/T vs. T². Smoothed values of the heat capacities and derived thermodynamic functions are listed in Tables 5–8.

The entropy changes, $S_T^{\circ} - S_0^{\circ}$, at 298.15 K are 365.2 \pm 0.7, 63.37 \pm 0.13, 89.09 \pm 0.18, and 172.1 \pm 0.34 J/(mol·

K), respectively, for beryl ($Be_3Al_2Si_6O_{18} \cdot 0.36 H_2O$), phenakite, euclase, and bertrandite. Our value for the entropy of phenakite is about 1.5% lower than the value reported by Kelley (1939). Our heat capacities for phenakite are roughly equivalent to those reported by Kelley (1939) at the higher temperatures, but at lower temperatures the values show significant deviations. Kelley's (1939) heat capacities are 13% larger near 55 K. Similar discrepancies were noted by Chase et al. (1974) for BeO (Kelley, 1939) and were expected in this study.

HIGH-TEMPERATURE HEAT CAPACITIES AND THERMODYNAMIC FUNCTIONS

High-temperature heat-capacity measurements for beryl ($Be_3Al_2Si_6O_{18} \cdot 0.36H_2O$), anhydrous beryl powder, phenakite, euclase, bertrandite, and chrysoberyl were made between 340 and about 800 K. The experimental values are listed in Tables 9–14. Each scan represents one con-

Temp.	Heat capacity	Temp.	Heat capacity	Temp.	Heat capacity
K	J/(mol·K)	K	J/(mol·K)	K	J/(mol • K)
Scan	1	Scan	5	Scan	9
343.5	483.3	522.4	597.0	690.9	648.0
363.3	500.1	542.2	603.1	710.8	654.4
383.1	517.3	562.0	610.6	730.6	659.8
403.0	531.8	581.9	620.0	749.5	667.5
422.8	545.5	600.7	626.5		
442.6	558.1	621.6	632.8	Scan	10
462.4	570.7	641.4	638.3		
482.3	582.3	661.3	641.6	690.9	654.4
501.1	592.9	681.1	649.2	710.8	657.9
		700.0	657.1	730.6	662.1
Scan	2	,	00111	749.5	668 0
	~	Scan	6	, 4, , •, ,	000+0
343.5	482.6	beau	v	Scan	11
363.3	499.4	522 4	595.2	bcan	11
383.1	516.6	542.2	605.2	740 5	660 1
403.0	531.3	562.0	613 7	760 4	664 6
402.0	544 7	591 0	622 4	700.4	660 0
442 6	557 1	600 7	620 6	700.1	677 1
462 4	569 5	621 6	625 5	199.1	0// +1
402.4	580 0	641 4	661 5	0	1.0
402.J	500.9	041.4	041.5	scan	12
301.1	391.4	001.3	647.6	7/0 5	((C))
0		081-1	654.6	740.5	665.8
Scan	3	/00.0	660.2	/60+4	666.3
				780.2	671.8
4/2.8	5/7.9	Scan	7	799.1	680.2
492.6	587.1				
512.4	595.2	571.8	618.2	Scan	13
532.3	607.5	591.6	626.0		
551.1	615.3	611.4	633.2	858.8	709.2
		631.3	638.2	868.6	711.2
Scan	4	650.1	646.4	878.4	714.7
				887.2	717.2
472.8	578.2	Scan	8		
492.6	586.7				
512.4	595.9	571.8	625.1		
532.3	606.0	591.6	632.3		
551.1	613.8	611.4	638.9		
		631.3	643.9		
		650 1	619 0		

Table 9. Experimental high-temperature heat capacities of beryl, Be₃Al₂Si₆O₁₈·0.36H₂O

Table 10. Experimental high-temperature heat capacities of beryl, Be₃Al₂Si₆O₁₈

K $J/(mol·K)$ K $J/(mol·K)$ K $J/(mol·K)$ Scan1Scan8Scan16343.5470.2572.0601.6340.9461.7363.3487.7591.8603.6350.9471.2383.1503.2611.7610.3360.9478.6403.0517.5631.5618.4370.8486.6422.8531.0650.4631.9390.8592.6462.4555.5Scan9400.8509.4482.3567.5572.0606.4420.8524.0501.1576.3572.0606.4420.8524.0533.1500.552.0631.5627.8450.7433.5469.6650.4636.0460.7538.0633.3484.7383.1502.6613.5627.8452.8566.8621.6619.877559.5462.4526.8661.3627.3480.7551.8482.3566.5681.1636.1490.7559.5462.4559.2621.6619.5540.6592.8492.6569.2641.4626.1550.6595.2512.4578.1690.9630.0Scan1872.8559.2621.6619.5540.6592.8522.4578.1690.9630.0Scan18522.4578.1690.9630.0Scan18522.4 <td< th=""><th>Temp.</th><th>neat</th><th>Temp.</th><th>neat</th><th>Temp.</th><th>accalty</th></td<>	Temp.	neat	Temp.	neat	Temp.	accalty
KJ/(mol·K)KJ/(mol·K)KJ/(mol·K)Scan1Scan8Scan16343.5470.2572.0601.6340.9461.7383.1503.2611.7610.3360.9478.6403.0517.5631.5618.4370.8495.3442.6543.4390.8502.6462.4555.5Scan9400.8509.4482.3567.5572.0606.4420.8524.0501.1576.3572.0606.4420.8524.0Scan2611.7619.8440.7538.0633.5627.8450.7545.4343.5469.6650.4630.0460.7558.6521.8611.7579.5462.4526.8621.6619.8442.6540.1641.4624.2770.7558.6681.1636.1490.7571.6501.1577.6700.0642.7500.6578.6501.1577.6700.0642.7500.6592.2511.1577.6681.1634.4570.5502.0522.4578.1690.9630.0Scan18542.2587.6710.8637.0500.5598.9532.3586.9681.1634.4570.5602.0551.1593.4700.0637.2580.5604.8522.4578.1690.9630.0Scan18<		capacity		capacity		capacity
Scan1Scan8Scan16343.5470.2572.0601.6340.9461.7363.3487.7591.8603.6350.9471.2403.0517.5631.5618.4370.8486.6422.8531.0650.4631.9380.8495.3442.6543.4390.8502.6462.4462.4555.5Scan9400.8517.8501.1576.3572.0606.4420.8524.0533.5591.8613.7430.7530.6Scan2611.7619.8440.7538.0363.3484.731.5627.8450.7545.4363.3484.7361.5627.8450.7554.5462.4552.8661.3627.3480.7558.6363.3484.738.661.3627.3480.7559.5462.4552.8661.3627.3480.7558.6501.1577.6700.0642.7500.6578.6501.1577.6621.6619.5540.6581.0Scan3Scan11520.6581.0501.1577.6700.0642.7500.6592.8492.6569.2641.4626.1550.6592.8521.4578.1690.9630.0Scan18522.4578.1690.9630.0Scan18542.2586.6681.1 <td< td=""><td>K</td><td>J/(mol·K)</td><td>ĸ</td><td>J/(mol·K)</td><td>K</td><td>J/(mol·K)</td></td<>	K	J/(mol·K)	ĸ	J/(mol·K)	K	J/(mol·K)
Scan1Scan8Scan16 343.5 470.2 572.0 601.6 340.9 461.7 363.1 503.2 611.7 610.3 350.9 471.2 433.0 517.5 631.5 618.4 370.8 486.6 422.8 531.0 650.4 631.9 380.8 495.3 442.6 543.4 390.8 502.6 462.4 555.5 $Scan$ 9 400.8 509.4 482.3 567.5 410.8 517.8 501.1 576.3 572.0 606.4 420.8 524.0 31.5 621.8 631.7 430.7 538.0 631.5 627.8 450.7 536.6 363.3 484.7 366.0 460.7 550.8 383.1 500.3 $Scan$ 10 $Scan$ 17 422.8 526.8 621.6 619.8 470.7 559.5 462.4 552.8 661.3 627.3 480.7 563.8 482.3 566.5 681.1 636.1 490.7 571.6 501.1 577.6 700.0 642.7 500.6 578.6 501.1 577.6 621.6 619.8 490.7 571.6 422.8 526.8 621.6 619.8 490.7 571.6 422.8 526.8 621.6 619.8 490.7 571.6 422.4 552.8 661.3 627.3 480.7 590.5						
343.5470.2572.0601.6340.9461.7363.3487.7591.8603.6350.9478.6403.0517.5631.5618.4370.8486.6422.8531.0650.4631.9380.8495.3442.6543.4390.8502.6462.4555.5Scan9400.8509.4482.3567.5410.8517.8501.1576.3572.0606.4420.8524.0631.5627.8450.7536.0633.3484.7470.7538.6383.1500.3Scan10422.8526.8621.6619.8442.6540.1641.4624.2470.7559.5681.1636.1490.7571.6301.1577.6700.0642.7500.6572.8651.6619.5540.6585.0501.1577.6621.6619.5520.1576.8661.3627.3482.3566.5681.1636.1492.6569.2641.4626.1500.6510.1577.6700.0642.7500.6521.4576.8661.3629.5560.5521.5599.2621.6619.5532.3586.9681.1630.0522.4578.1690.9630.0522.4578.1690.9630.0522.4578.1690.9630.0522.4578	Scan	1	Scan	8	Scan	16
363.3487.7591.8603.6 350.9 471.2 383.1 503.2 611.7 610.3 360.9 478.6 403.0 517.5 631.5 618.4 370.8 486.6 422.8 531.0 650.4 631.9 380.8 495.3 442.6 543.4 390.8 502.6 462.4 555.5 $Scan$ 9 410.8 517.8 501.1 576.3 572.0 606.4 420.8 524.0 511.5 527.8 450.7 538.0 631.5 627.8 450.7 533.1 500.3 $Scan$ 10 $Scan$ 10 631.5 627.8 450.7 545.4 633.3 484.7 470.7 558.6 333.1 500.3 $Scan$ 10 422.8 526.8 621.6 619.8 442.6 540.1 641.4 624.2 470.7 422.8 526.8 621.6 619.5 546.5 681.1 636.1 490.7 571.6 500.6 578.6 501.1 577.6 621.6 619.5 542.2 559.2 621.6 619.5 540.6 599.2 512.4 576.8 661.3 622.4 550.6 595.2 511.1 593.4 700.0 637.2 580.5 609.9 522.4 578.1 690.9 522.4 578.1 690.9 522.4	343.5	470.2	572.0	601.6	340.9	461.7
383.1503.2611.7610.3 360.9 478.6 403.0517.5631.5 618.4 370.8 486.6 422.8531.0 650.4 631.9 380.8 495.3 442.6543.4 650.4 631.9 380.8 495.3 462.4555.5Scan9 400.8 509.4 482.3 567.5 572.0 606.4 420.8 524.0 501.1 576.3 572.0 606.4 420.8 524.0 533.3 549.6 650.4 636.0 460.7 530.6 363.3 484.7 383.1 500.3 $Scan$ 10 422.8 526.8 621.6 619.8 470.7 559.5 462.4 552.8 661.3 627.3 480.7 561.8 383.1 577.6 700.0 642.7 500.6 578.6 501.1 577.6 700.0 642.7 500.6 578.6 501.1 577.6 661.3 629.5 560.5 599.2 512.4 559.2 621.6 619.5 540.6 592.8 492.6 569.2 621.6 619.5 540.6 592.8 522.4 578.1 690.9 630.0 $Scan$ 18 72.4 578.6 611.3 629.5 560.5 598.9 522.4 578.1 690.9 630.0 $Scan$ 18 72.4 578.6 611.6 629.5 560.5 $600.$	363.3	487.7	591.8	603.6	350.9	471.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	383.1	503.2	611.7	610.3	360.9	478.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	403.0	517.5	631.5	618.4	370.8	486.6
442.6543.4390.8502.6462.4555.5Scan9400.8509.4482.3567.5410.8517.8501.1576.3572.0606.4420.8524.0591.8613.7430.7530.6Scan2611.7619.8440.7538.0633.5469.6650.4636.0460.7550.8363.3484.7470.7558.6383.1500.3Scan10422.8526.8621.6619.8442.6540.1641.4624.2470.7559.5462.4552.8661.3627.3480.7563.8482.3566.5681.1636.1490.7571.6501.1577.6700.0642.7500.6578.6512.4578.651.2510.6592.8492.6569.2641.4626.1550.6595.251.1593.4700.0637.2580.5604.8522.4578.6710.8637.0500.5518.9522.4578.6710.8637.0500.5619.0542.2587.6710.8642.4590.5610.2522.4578.6710.8642.0650.4630.2522.4576.7760.4648.0600.5615.050.5593.4700.0637.2580.5609.4649.7593.4700.6642.4590.5610.2 <tr<< td=""><td>422.8</td><td>531.0</td><td>650.4</td><td>631.9</td><td>380.8</td><td>495.3</td></tr<<>	422.8	531.0	650.4	631.9	380.8	495.3
462.4 555.5 $Scan$ 9 400.8 509.4 482.3 567.5 572.0 606.4 410.8 517.8 501.1 576.3 572.0 606.4 420.8 524.0 $Scan$ 2 611.7 619.8 440.7 538.0 631.5 627.8 450.7 545.4 343.5 469.6 650.4 636.0 460.7 550.8 363.3 484.7 383.1 500.3 $Scan$ 10 403.0 514.2 $Scan$ 10 759.5 462.4 552.8 661.3 627.3 480.7 559.5 462.4 552.8 661.3 627.3 480.7 559.5 462.4 552.8 661.3 627.3 480.7 563.6 $Scan$ 3 $Scan$ 11 520.6 578.6 501.1 577.6 700.0 642.7 500.6 572.8 492.6 569.2 641.4 626.1 550.6 592.2 472.8 559.2 621.6 619.5 540.6 592.8 492.6 569.2 641.4 626.1 550.6 598.9 532.3 586.9 681.1 637.0 562.5 598.9 522.4 578.1 690.9 630.0 $Scan$ 18 522.4 578.1 690.9 630.0 $Scan$ 18 522.4 578.1 690.9 630.0 $Scan$ 18 522.4 578.1 <	442.6	543.4			390.8	502.6
482.3567.5410.8517.8501.1576.3572.0606.4420.8524.0591.8613.7430.7530.6Scan2611.7619.8440.7538.0343.5469.6650.4636.0460.7550.8363.3484.7323.1500.3Scan10422.8526.8621.6619.8470.7559.5462.4552.8661.3627.3480.7563.8482.3566.5681.1636.1490.7571.6501.1577.6700.0642.7500.6578.6511.1577.6700.0642.7500.6585.0522.8569.2641.4626.1500.6592.8492.6569.2641.4624.5540.6592.8492.6569.2641.4624.550.6595.251.1593.4700.0637.2580.5602.0551.1593.4700.0637.2580.5609.4542.2587.6710.8637.0Scan18542.2587.6710.8642.4590.5619.251.1593.4700.0636.3640.4623.5500.7510.75can13620.4623.5600.7610.7749.5648.0600.5615.0600.7610.7749.5648.0650.4630.2500.6576.2749.5648.0650	462.4	555.5	Scan	9	400.8	509.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	482.3	567.5			410.8	517.8
Scan2591.8613.7430.7530.6Scan2611.7619.8440.7538.0343.5469.6650.4636.0460.755.4363.3484.7470.7558.6383.1500.3Scan10422.8526.8621.6619.8442.6540.1641.4624.2470.7559.5462.4552.8661.3627.3480.7563.8482.3566.5681.1636.1490.7571.6501.1577.6700.0642.7500.6578.6510.6585.0530.6592.8510.6585.0522.4559.2621.6619.5540.6592.8492.6569.2641.4626.1550.6598.9532.3586.9681.1634.4570.5602.0551.1593.4700.0637.2580.5604.8542.2587.6710.8637.0500.5611.0522.4578.1690.9630.0Scan18542.2587.6710.8637.0500.5615.0600.7610.75can13620.4623.5500.6576.2710.8642.4590.5609.4581.9610.7749.5648.0600.5615.0600.7610.75can13620.4626.4600.7610.75can690.9636.3640.4628.6<	501.1	576.3	572.0	606.4	420.8	524.0
Scan2611.7619.8440.7538.0343.5469.6631.5627.8450.7545.4363.3484.7470.7550.8383.1500.3Scan10422.8526.8621.6619.8442.6540.1641.4624.2470.7559.5462.4552.8661.3627.3480.755.8482.3566.5681.1636.1490.7571.6501.1577.6700.0642.7500.6578.6501.1577.6700.0642.7500.6581.05can3Scan11520.6585.052.4559.2621.6619.5540.6592.8492.6569.2641.4626.1550.6595.2512.4576.8661.3629.5560.5598.9522.4578.1690.9630.0Scan18542.2587.6710.8637.0511.0522.4578.1690.9630.0Scan18542.2587.6710.8637.0610.4619.1562.0595.0730.6642.4590.5609.4581.9610.7749.5648.0600.5615.0600.7610.75can13620.4623.55can5690.9636.3640.4631.5500.6576.2749.5648.0650.4630.2490.7570.4<			591.8	613.7	430.7	530.6
StarGainGainGainGainGainGain 343.5 469.6 650.4 636.0 450.7 545.4 363.3 484.7 470.7 558.6 383.1 500.3 Scan 10 403.0 514.2 Scan 17 422.8 526.8 621.6 619.8 442.6 540.1 641.4 624.2 470.7 559.5 462.4 552.8 661.3 627.3 482.3 566.5 681.1 636.1 490.7 510.1 577.6 700.0 642.7 500.6 $5can$ 3 Scan 11 520.6 822.8 569.2 641.4 626.1 550.6 592.8 492.6 569.2 492.6 569.2 641.4 626.1 550.6 522.3 586.9 681.1 634.4 570.5 50.5 593.4 700.0 637.2 580.5 511.1 593.4 700.0 637.2 580.5 522.4 578.1 690.9 630.0 Scan 522.4 578.1 690.9 630.0 Scan 542.2 587.6 710.8 642.4 590.5 500.7 730.6 642.4 590.5 609.4 581.9 610.7 749.5 648.0 600.5 600.7 610.7 749.5 648.0 600.5 500.6 576.2 710.8 642.4 590.5	Scan	2	611.7	619.8	440.7	538.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	bean	-	631.5	627.8	450.7	545.4
363.3464.7470.7558.6383.1500.3Scan10403.0514.2Scan17422.8526.8621.6619.8442.6540.1641.4624.2470.7462.4552.8661.3627.3480.7501.1577.6700.0642.7500.6511.1577.6700.0642.7500.652.4559.2621.6619.5540.692.6569.2641.4626.1550.693.2.3586.9681.1634.4570.593.2.3586.9681.1634.4570.552.4578.1690.9630.0Scan542.2587.6710.8637.0542.2587.6710.8637.0562.0595.0730.6642.4590.5609.4630.0542.2587.6710.8642.4590.5609.4581.9610.7749.5548.0600.5615.0600.7610.7Scan522.4578.1690.9636.3640.4628.6480.7562.6710.8642.0650.4630.4626.4640.7562.6700.4730.6645.6670.3632.4520.6500.6576.2749.5645.6600.7652.1700.2654.1700.4740.5643.2 <td>343.5</td> <td>469.6</td> <td>650.4</td> <td>636.0</td> <td>460.7</td> <td>550.8</td>	343.5	469.6	650.4	636.0	460.7	550.8
303.3501.7Scan10403.0514.2Scan10422.8526.8621.6619.8442.6540.1641.4624.2470.7452.4552.8661.3627.3480.7501.1577.6700.0642.7500.6501.1577.6700.0642.7500.6512.4559.2621.6619.5540.692.6569.2641.4626.1550.692.3586.9681.1634.4570.5492.6569.2641.4626.1550.6512.4576.8661.3629.5560.5511.1593.4700.0637.2580.5522.4578.1690.9630.0Scan522.4578.1690.9630.0Scan522.4578.1690.9630.0Scan542.2587.6710.8642.4590.5600.7610.7749.5648.0600.5600.7610.7749.5648.0600.7610.7749.5645.6600.7610.7749.5645.6600.7576.2710.8642.0650.4622.5500.6576.2749.5645.6670.3632.4640.752.6710.8642.0650.4631.5500.6576.2749.5645.6670.3632.4680.752.6710.8642.0	363 3	402.0	05014	030+0	470 7	558 6
303.1 503.3 502.1 <th< td=""><td>393 1</td><td>500 3</td><td>Seen</td><td>1.0</td><td>470.7</td><td>110.0</td></th<>	393 1	500 3	Seen	1.0	470.7	110.0
403.0514.2526.8621.6619.8442.6540.1641.4624.2470.7559.5462.4552.8661.3627.3480.7563.8482.3566.5681.1636.1490.7571.6501.1577.6700.0642.7500.6578.6Scan3Scan11520.6585.0492.6569.2641.4626.1550.6595.2512.4576.8661.3629.5560.5598.9532.3586.9681.1634.4570.5602.8551.1593.4700.0637.2580.5604.8542.2587.6710.8637.0561.2Scan4Scan12600.5611.0522.4578.1690.9630.0Scan18542.2587.6710.8637.050.5609.4581.9610.7749.5648.0600.5615.0600.7610.7Scan13620.4623.5Scan 5690.9636.3640.4628.6480.7562.6710.8642.0650.4630.2500.6576.2749.5645.6670.3632.4640.7502.4740.5643.2Scan19700.2654.9760.4643.2Scan19700.2658.1780.2653.6600.5612.6800.2650.7760.4643.2Sca	403 0	514 2	bcan	10	Seen	17
422.6 524.6 624.2 470.7 559.5 442.6 540.6 641.4 624.2 470.7 559.5 462.4 552.8 661.3 627.3 480.7 563.8 482.3 566.5 681.1 636.1 490.7 571.6 501.1 577.6 700.0 642.7 500.6 578.6 510.6 581.0 530.6 592.8 510.6 592.8 492.6 569.2 641.4 629.5 560.5 598.9 512.4 576.8 661.3 629.5 560.5 592.8 492.6 599.2 641.4 629.5 560.5 592.8 512.4 576.8 661.3 629.5 560.5 592.8 512.4 578.1 690.9 630.0 Scan 18 542.2 587.6 710.8 642.4 590.5 609.4 581.9 610.7 749.5 648.0 610.5 610.2 5	403.0	526 0	621 6	610 9	ocan	17
442.0541.4524.2 470.7 593.8 462.4552.8661.3627.3480.7563.8482.3566.5681.1636.1490.7571.6501.1577.6700.0642.7500.6578.6510.6581.0520.6585.0530.6590.9472.8559.2621.6619.5540.6592.8492.6569.2641.4626.1550.6595.2512.4576.8661.3629.5560.5598.9532.3586.9681.1634.4570.5602.0551.1593.4700.0637.2580.5604.8590.5610.250.5511.0522.4578.1690.9632.0595.0730.6642.4590.5609.4581.9610.7749.5648.0600.5615.0600.7610.75can13620.4623.5600.7502.6710.8642.0650.4630.2480.7562.6710.8642.0650.4630.2490.7570.4730.6645.6660.4631.5500.6576.2749.5644.252.4630.2480.7562.6710.8643.25can1970.2645.4740.5643.25can1870.2654.9760.4651.6670.3632.4680.3632.5600.4643.7703.6645.6 <tr< td=""><td>422.0</td><td>540 1</td><td>641 4</td><td>626 2</td><td>170 7</td><td>5 5 0 E</td></tr<>	422.0	540 1	641 4	626 2	170 7	5 5 0 E
402.4 52.6 601.3 627.3 480.7 503.6 482.3 566.5 681.1 636.1 490.7 571.6 501.1 577.6 700.0 642.7 500.6 578.6 $5can$ 3 $Scan$ 11 520.6 581.0 472.8 559.2 621.6 619.5 540.6 592.8 472.8 559.2 621.6 619.5 540.6 592.8 472.8 559.2 641.4 626.1 550.6 595.2 512.4 576.8 661.3 629.5 560.5 598.9 532.3 586.9 681.1 634.4 570.5 602.8 511.1 593.4 700.0 637.2 580.5 604.8 590.5 610.2 $5can$ 4 $Scan$ 12 600.5 611.0 522.4 578.1 690.9 630.0 $Scan$ 542.2 587.6 710.8 637.0 $Scan$ 18 542.2 587.6 710.8 642.4 590.5 609.4 581.9 610.7 749.5 648.0 600.5 615.0 600.7 610.7 749.5 648.0 650.4 630.2 $5can$ 5 690.9 636.3 640.4 628.6 480.7 562.6 710.8 642.0 650.4 630.2 $5can$ 5 $5can$ 14 690.3 632.5 $5can$ 6 576.2 749.5 <	442.0	540.1	661 3	627 2	4/0.7	557.5
432.3 306.5 081.11 036.1 490.7 371.6 501.1 577.6 700.0 642.7 500.6 578.6 $5can$ 3 $Scan$ 11 520.6 581.0 $5can$ 3 $Scan$ 11 520.6 581.0 472.8 559.2 621.6 619.5 540.6 592.8 492.6 569.2 641.4 626.1 550.6 592.8 492.3 586.9 681.1 634.4 570.5 602.0 512.4 576.8 661.3 629.5 560.5 598.9 532.3 586.9 681.1 634.4 570.5 602.0 511.1 593.4 700.0 637.2 580.5 604.8 $5can$ 4 $Scan$ 12 600.5 611.0 522.4 578.1 690.9 630.0 $Scan$ 18 542.2 587.6 710.8 642.4 590.5 609.4 58	402.4	552.0	601.3	02/.3	480.7	571 6
301.1 377.6 700.0 642.7 300.6 378.6 Scan3Scan11 520.6 581.0 30.6 590.9 621.6 619.5 540.6 592.8 492.6 569.2 641.4 626.1 550.6 595.2 512.4 576.8 661.3 629.5 560.5 598.9 532.3 586.9 681.1 634.4 570.5 602.0 551.1 593.4 700.0 637.2 580.5 604.8 500.5 598.9 681.1 634.4 570.5 602.0 551.1 593.4 700.0 637.2 580.5 604.8 522.4 578.1 690.9 630.0 Scan 18 542.2 587.6 710.8 637.0 600.5 611.0 522.4 578.1 690.9 630.0 Scan 18 542.2 587.6 710.8 637.0 610.4 619.1 542.2 587.6 710.8 637.0 610.4 619.1 522.4 578.1 690.9 636.3 640.4 626.4 600.7 610.7 $5can$ 13 620.4 626.4 690.7 570.4 730.6 645.6 660.4 631.5 500.6 576.2 749.5 643.2 $Scan$ 19 700.2 658.1 780.2 653.6 600.5 612.6 800.2 660.0 799.1 657.7 600.5 <	482.3	500.5	700 0	640 7	490.7	570 (
Scan3Scan11510.6581.0472.8559.2621.6619.5540.6590.9472.8559.2641.4626.1550.6595.2512.4576.8661.3629.5560.5598.9532.3586.9681.1634.4570.5602.6551.1593.4700.0637.2580.5604.8590.5610.2500.5591.0590.5610.2Scan4Scan12600.5611.0542.2587.6710.8637.0Scan18542.2587.6710.8637.050.5609.4581.9610.7749.5648.0600.5615.0600.7610.7730.6642.4590.5609.458can5630.4620.4623.5500.6Scan5630.4626.4630.2630.4620.7570.4730.6645.6670.3632.4640.7562.6710.8642.0650.4630.2490.7570.4730.6645.6670.3632.4650.6576.2749.5645.6670.3632.4770.2654.9760.4643.2Scan19780.2654.9760.4648.7700.2658.1790.2658.1780.2653.6600.5612.6800.2600.0799.1657.7600.5612.6770.2650.8	201.1	5/1.0	100.0	042.1	500.6	5/0.0
Scan3Scan11 520.6 585.0 472.8 559.2 621.6 619.5 540.6 592.8 492.6 569.2 641.4 626.1 550.6 592.8 512.4 576.8 661.3 629.5 560.5 598.9 532.3 586.9 681.1 634.4 570.5 602.0 551.1 593.4 700.0 637.2 580.5 604.8 522.4 578.1 690.9 630.0 $Scan$ 18 542.2 587.6 710.8 637.0 50.5 610.2 520.7 595.0 730.6 642.4 590.5 609.4 581.9 610.7 749.5 648.0 600.5 615.0 600.7 610.7 $5can$ 13 620.4 622.4 $52an$ 5 690.9 636.3 640.4 628.6 600.7 610.7 $5can$ 13 620.4 622.4 $52an$ 5 690.9 636.3 640.4 628.6 648.0 605.5 610.4 619.1 550.6 576.2 749.5 645.6 670.3 632.4 630.2 $62an$ 14 690.3 634.4 622.4 690.6 576.2 749.5 643.2 $5can$ 19 700.2 645.4 740.5 643.2 $5can$ 19 770.2 650.8 740.5 643.2 $5can$ 19 770.2 650.8 </td <td></td> <td></td> <td></td> <td></td> <td>510.6</td> <td>581.0</td>					510.6	581.0
472.8 559.2 621.6 619.5 540.6 592.8 492.6 569.2 641.4 626.1 550.6 595.2 512.4 576.8 661.3 629.5 560.5 598.9 532.3 586.9 681.1 634.4 570.5 602.0 551.1 593.4 700.0 637.2 580.5 604.8 590.5 610.2 562.0 595.0 730.6 642.4 590.5 610.2 542.2 587.6 710.8 637.0 562.0 595.0 730.6 642.4 590.5 609.4 581.9 610.7 749.5 648.0 600.5 615.0 600.7 610.4 619.1 600.7 610.7 749.5 648.0 600.5 615.0 630.4 622.4 620.4 622.4 620.4 622.5 630.4 626.4 480.7 562.6 710.8 642.0 650.4 631.5 $5can$ 5 690.9 636.3 640.4 628.6 480.7 562.6 710.8 642.0 650.4 631.5 500.6 576.2 749.5 645.6 670.3 632.4 490.7 570.4 730.6 643.2 $Scan$ 19 770.2 645.4 740.5 643.2 $Scan$ 19 780.2 658.1 780.2 653.6 600.5 612.6 800.2 660.0 799.1 657.7 600.5	Scan	3	Scan	11	520.6	585.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					530.6	590.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	472.8	559.2	621.6	619.5	540.6	592.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	492.6	569.2	641.4	626.1	550.6	595.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	512.4	5/6.8	661.3	629.5	560.5	598.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	532.3	586.9	681.1	634.4	570.5	602.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	551.1	593.4	700.0	637.2	580.5	604.8
Scan4Scan12600.5611.0 522.4 578.1 690.9 630.0 Scan18 542.2 587.6 710.8 637.0 Scan18 562.0 595.0 730.6 642.4 590.5 609.4 581.9 610.7 749.5 648.0 600.5 615.0 600.7 610.7 749.5 648.0 600.5 615.0 600.7 610.7 749.5 648.0 600.4 619.1 $5can$ 5 630.4 626.4 630.4 628.6 480.7 562.6 710.8 642.0 650.4 630.2 490.7 570.4 730.6 645.6 670.3 632.4 500.6 576.2 749.5 645.6 670.3 632.4 $5can$ 6 Scan14 690.3 632.5 $5can$ 6 $5can$ 14 690.3 634.4 770.2 645.4 740.5 643.2 $Scan$ 19 780.2 654.9 760.4 648.7 790.2 658.1 780.2 653.6 600.5 612.6 800.2 660.0 799.1 657.7 563.6 600.5 612.6 770.2 650.8 740.5 648.9 780.2 655.7 760.4 651.0 790.2 653.1 780.2 655.3 800.9 79.1 660.9 79.1 790.2 663.1 780.2 655.3 80					590.5	610.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Scan	4	Scan	12	600.5	611.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	522.4	578.1	690.9	630.0	Scan	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	542.2	587.6	710.8	637.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	562.0	595.0	730.6	642.4	590.5	609.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	581.9	610.7	749.5	648.0	600.5	615.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	600.7	610.7			610.4	619.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Scan	13	620.4	623.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Scan	5	bean		630.4	626.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	beun	2	690.9	636.3	640.4	628.6
490.7 570.4 730.6 645.6 660.4 631.5 500.6 576.2 749.5 645.6 670.3 632.4 $5can$ 6 $5can$ 14 690.3 632.4 80.2 654.9 740.5 643.2 $5can$ 19 770.2 645.4 740.5 643.2 $5can$ 19 780.2 654.9 760.4 648.7 790.2 658.1 780.2 653.6 600.5 612.6 800.2 660.0 799.1 657.7 600.5 612.6 770.2 650.8 740.5 648.9 780.2 655.7 760.4 651.0 790.2 653.1 780.2 655.3 800.2 655.7 760.4 651.0 790.2 663.1 780.2 655.3 800.9 800.9 800.9 800.9 800.9 800.9 800.9 800.9 800.9 800.9 800.9 800.9 800.9 800.9 800.9 <t< td=""><td>480.7</td><td>562.6</td><td>710.8</td><td>642.0</td><td>650.4</td><td>630.2</td></t<>	480.7	562.6	710.8	642.0	650.4	630.2
770.2 645.4 749.5 645.6 670.3 632.4 70.2 645.4 740.5 643.2 Scan 14 770.2 645.4 740.5 643.2 Scan 19 780.2 658.1 780.2 653.6 600.5 612.6 800.2 660.0 799.1 657.7 600.5 612.6 Scan 7 Scan 15 770.2 650.8 740.5 648.9 780.2 653.7 760.4 651.0 790.2 658.1 780.2 653.6 600.5 612.6 800.2 650.8 740.5 648.9 780.2 655.7 760.4 651.0 790.2 653.1 780.2 655.3 800.2 660.7 99.1 660.9	490.7	570.4	730.6	645.6	660.4	631.5
300.0 310.2 743.3 0431.4 0431.3 0431.4	500 6	576 2	749 5	645 6	670.3	632.4
Scan 6 Scan 14 690.3 634.4 770.2 645.4 740.5 643.2 Scan 19 780.2 654.9 760.4 648.7 790.2 658.1 780.2 653.6 800.2 660.0 799.1 657.7 600.5 612.6 Scan 7 Scan 15 770.2 650.8 740.5 648.9 780.2 655.7 760.4 651.0 790.2 653.1 780.2 655.3 800.2 661.1 780.2 655.3 800.9 91.1 657.3	500.0	570.2	/4/.5	043.0	680 3	632.5
770.2 645.4 740.5 643.2 Scan 19 780.2 654.9 760.4 648.7 790.2 658.1 780.2 653.6 600.5 612.6 800.2 660.0 799.1 657.7 600.5 612.6 770.2 650.8 740.5 648.9 780.2 655.7 760.4 651.0 790.2 653.1 780.2 655.3 800.4 651.0 799.1 660.9	Scan	6	Scan	14	690.3	634.4
<pre>//U.2 643.4 740.5 643.2 Scan 19 780.2 654.9 760.4 648.7 790.2 658.1 780.2 653.6 600.5 612.6 800.2 660.0 799.1 657.7 Scan 7 Scan 15 770.2 650.8 740.5 648.9 780.2 655.7 760.4 651.0 790.2 663.1 780.2 655.3 800.2 661.7 799.1 660.9</pre>			7/0 5	(10.0		1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	770.2	045.4	740.5	043.2	Scan	19
790.2 658.1 780.2 653.6 600.5 612.6 800.2 660.0 799.1 657.7 657.7 Scan 7 Scan 15 770.2 650.8 740.5 648.9 780.2 655.7 760.4 651.0 790.2 663.1 780.2 655.3 800.2 661.7 799.1 660.9	/80.2	654.9	760.4	648./	100 5	
800.2 660.0 799.1 657.7 Scan 7 Scan 15 770.2 650.8 740.5 648.9 780.2 655.7 760.4 651.0 790.2 663.1 780.2 655.3 800.2 661.7 799.1 660.9	/90.2	658.1	/80.2	653.6	600.5	612.6
Scan 7 Scan 15 770.2 650.8 740.5 648.9 780.2 655.7 760.4 651.0 790.2 663.1 780.2 655.3 800.2 661.7 799.1 660.9	800.2	660.0	/99.1	657.7		
770.2 650.8 740.5 648.9 780.2 655.7 760.4 651.0 790.2 663.1 780.2 655.3 800.2 661.7 799.1 660.9	Scan	7	Scan	15		
780.2 655.7 760.4 651.0 790.2 663.1 780.2 655.3 800.2 661.7 799.1 660.9	770.2	650.8	740.5	648.9		
790.2 663.1 780.2 655.3 800.2 661.7 799.1 660.9	780.2	655.7	760-4	651-0		
800.2 661.7 799.1 660.9	790.2	663.1	780.2	655.3		
	800.2	661.7	799.1	660.9		

tinuous set of measurements under one experimental setup. The data were collected at infrequent intervals over a 2-yr period with two measurement chambers, the initial chamber having failed electrically.

The high-temperature results were combined with the low-temperature heat capacities from this study, or in the case of chrysoberyl with the data of Furukawa and Saba (1965), and simultaneously fit with the solution and phaseequilibrium data described by Barton (1986) using the program PHAS20 (Haas and Fisher, 1976). PHAS20 attempts to fit all data types within the respective precision of the data type and, therefore, does not degrade the precision of relatively precise data like that for heat capacities. The heat capacities for the hydrous beryl sample were corrected for the small amount of Cr₂O₃ using the data of Robie et al. (1979) and for H_2O using an estimated heat capacity of 67 J/(mol·K) for caged H_2O . The heat capacities for chrysoberyl (listed in Table 14) were corrected for 3.1 wt% Fe₂O₃ using the data of Robie et al. (1979). Heat capacities were estimated for temperatures greater than 800 K. It should be noted that heat capacities were estimated only to 1000 and 1500 K, respectively, for ber-

trandite and euclase. Equations for the smoothed heat capacities are given in Table 15.

We have adopted the Gibbs free energies and uncertainties calculated by Barton (1986) from the simultaneous regression analysis of the data set discussed above. These results have been combined with the entropies at 298.15 K reported in this study for phenakite, euclase, and bertrandite; the entropy at 298.15 K for chrysoberyl reported by Furukawa and Saba (1965); the entropy at 298.15 K for beryl obtained by Barton (1986) through multiple regression; the equations listed in Table 15; and

Table 11.	Experimental high-temperature heat capacities of	of
	phenakite, Be_2SiO_4	

Table 12. Experimental high-temperature heat capacities of euclase, BeAlSiO₄(OH)

		- 10-10-			
Temp.	Heat capacity	Temp.	Heat capacity	Temp.	Heat capacity
K	J/(mol·K)	к	J/(mol·K)	ĸ	J/(mol·K)
Scan	1	Scan	2	Scan	4
340.0	107.2	410.8	125.0	580.5	149.1
350.0	109.4	420.8	127.2	590.5	150.1
360.0	111.5	430.7	128.8	600.5	150.8
370.0	113.6	440.7	130.2	610.5	151.8
380.0	115.5	450.7	131.1	620.4	152.5
390.0	117.6	460.7	133.2	630.4	152.9
400.0	119.5	470.7	135.5	640.4	153.2
410.0	121.7	480.7	137.5	650.4	154.4
420.0	123.8	490.7	138.6	660.4	155.1
430.0	125.9	500.6	139.6	670.4	156.0
440.0	127.9			680.4	154.9
450.0	129.8	Scan	3	690.3	159.3
460.0	131.3			700.3	159.3
470.0	132.8	460.7	133.2		
480.0	135.1	470.7	134.9	Scan	5
490.0	137.5	480.7	136.8		
500.0	139.0	490.7	138.1	690.3	157.7
		500.6	139.9	700.3	158.1
Scan	2	510.6	139.9	710.3	159.3
		520.6	142.1	720.3	159.5
330.9	104.4	530.6	143.2	730.3	160.7
340.9	106.4	540.6	144.5	740.3	161.4
350.9	109.3	550.6	145.4	750.2	161.9
360.9	111.8	560.5	146.1	760.2	162.3
370.8	114.6	570.5	146.8	770.2	162.4
380.8	117.5	580.5	147.7	780.2	163.8
390.8	120.4	590.5	148.7	790.2	164.3
400.8	122.6	600.5	149.5	800.2	164.9

ancillary data from Robie et al. (1979) to provide the smoothed values of the heat capacities and derived thermodynamic functions listed in Tables 16–20 for the temperature interval 298.15 to 1800 K (1200 K for bertrandite).

DISCUSSION

The entropy correction for the H₂O in beryl may be estimated by assuming that the H₂O in beryl is similar in bonding characteristics to that in analcime or clinoptilolite. Under this assumption we calculate the entropy contribution of 1 mol of H₂O to be 55 J/(mol·K) at 298.15 K from the data of Johnson et al. (1982) for analcime and dehydrated analcime or 57 J/(mol·K) calculated from the data of Hemingway and Robie (1984) for clinoptilolite. The calculated value for the entropy of anhydrous beryl at 298.15 K is 345.0 \pm 5 J/(mol·K) based upon this model and is in excellent agreement with the value of 346.7 \pm 4.7 J/(mol·K) predicted from the multiple regression analysis (Barton, 1986).

The heat capacity of beryl is unexpectedly high at low temperatures (less than 30 K) for a compound with such a low mean atomic weight. We can calculate the Debye temperatures for two beryls, goshenite as 795.6 K and aquamarine as 799.1 K, from the elastic constant measurements of Yoon and Newnham (1973). The heat capacity of material with a Debye temperature of approximately 800 K can be represented reasonably well to about 16 K by a Debye function. From such a function we would

Temp.	Heat capacity	Temp.	Heat capacity	Temp.	Heat capacity
K	J/(mol·K)	K	J/(mol·K)	ĸ	J/(mol·K)
Scan	1	Scan	5	Scan	10
343.5	140.9	522.4	177.4	690.9	196.8
363.3	146.6	542.2	180.5	710.8	198.2
383.1	151.9	562.0	183.4	730.6	199.8
403.0	156.8	581.9	186.3	749.5	201.8
422.8	161.3	600.7	188.5		
442 6	165.4	621.6	190.8	Scan	11
442.0	160 /	641 4	102 3	beau	
402.4	172 1	661 3	102 5	600 0	106 9
482.3	173.1	601.3	193.3	710 9	100.0
201.1	1/6.1	001.1	193+7	710.0	190.0
		/00.0	197.8	/30.6	199.9
Scan	2			149.5	202.2
		Scan	6		
470.7	167.7			Scan	12
480.7	171.0	621.6	191.6		
490.7	173.2	641.4	192.4	740.5	200.9
500.6	175.3	661.3	193.9	760.4	202.8
510.6	176.5	681.1	196.3	780.2	203.8
520.6	178.1	700.0	198.5	799.1	205.0
530.6	179.3				
540.6	180.3	Scan	7	Scan	13
550 6	191 7	beun	1	boun	2.0
560.5	101.7	500 5	197 0	740 5	201 5
500.5	105.0	190.J	100 5	740.5	201.5
570.5	104.0	610.5	100.7	700.4	202.1
580.5	105.0	610.4	109.7	700.2	204.4
590.5	180.7	620.4	190.8	/99.1	200.1
600.5	187.2	630.4	191.8		
		640.4	192.9	Scan	14
Scan	3	650.4	194.0	-	
		660.4	194.2	770.2	205.0
472.8	172.4	670.3	195.0	780.2	204.2
492.6	175.5	690.3	196.3	790.2	203.5
512.4	178.3				
532.3	181.7	Scan	8	Scan	15
551.1	184.3				
		571.8	185.0	770.2	203.3
Scan	4	591.6	187.3	780.2	204.0
		611.4	189.5	790.2	201.9
472.8	171.9	631.3	191.3	800.2	203.6
492.6	174.9	650.1	193.5		
512 4	177.9	0.00.1		Scan	16
532 3	191 1	Saca	Q	bean	
551 1	101.1	ocan	9	858.8	207.3
191+1	T03 * ,	571 0	195 9	969 6	210 4
		5/1+8	107.5	000.0	210.4
		591.0	10/.0		
		611.4	190.3		
		631.3	191.9		
		650.1	193.3		

estimate a heat capacity for beryl that is only about 19% of the measured heat capacity at 16 K. The heat capacity of 0.36 mol of ice is similarly about 20% of the measured heat capacity at 16 K. Finally, a Schottky contribution to the heat capacity, arising from Cr^{3+} ions in solid solution, may be expected at very low temperatures. However, it is unlikely that the contribution would be 60% of the heat capacity observed at 16 K. We have no explanation for the deviation of our measured heat capacities from our theoretical estimates.

Small numbers of fluid inclusions in the phenakite and bertrandite samples produced small anomalies in the heat capacities near 269 K. The bertrandite sample produced a larger anomalous heat capacity and, therefore, contained a greater quantity of fluid, generally associated with a claylike phase. The smoothed values of the thermodynamic properties of these phases have been corrected for

Temp.	Heat capacity	Temp.	Heat capacity	Тетр.	Heat capacity	
K	J/(mol·K)	ĸ	J/(mol'K)	K	J/(mol·K)	
Scan	1	Scan	3	Scan	5	
343.5	250.7	340.8	251.9	472.8	309.3	
363.3	261.6	350.8	258.0	492.6	315.3	
383.1	271.9	360.8	263.1	512.4	320.8	
403.0	280.3	370.8	268.3	532.3	327.2	
422.8	288.3	380.8	272.9	551.1	331.6	
442.6	295.7	390.8	276.1			
462.4	303.3	400.7	280.6	Scan	6	
482.3	310.4	410.7	284.9			
501.1	316.5	420.7	289.0	470.6	306.6	
		430.7	293.2	480.6	310.0	
Scan	2	440.7	296.3	490.6	312.9	
				500.6	315.6	
450.7	300.2	Scan	4	520.6	321.7	
460.7	303.4			530.6	323.2	
470.6	307.3	472.8	310.0	540.5	325.5	
480.6	310.4	492.6	315.5	550.5	327.9	
490.6	314.0	512.4	321.2	560.5	330.2	
500.6	317.6	532.3	328.1	570.5	333.2	
		551.1	333.5	580.5	335.7	
				590.5	339.0	
				600.5	342.4	

the small contribution to the heat capacities of the H₂O

sample surface and for vaporization from the surface re-

sulted in a large scatter in calculated heat capacities and,

in some cases, the calculation of erroneous heat capacities

from the DSC scans (Hemingway and Kirby, unpub. data,

1985). Experimental results obtained for temperatures

greater than 800 K were of poor quality and were not

reported. Therefore, it is estimated that the uncertainties

in the high-temperature heat capacities may average $\pm 2\%$.

 C_P extrapolations recently has been criticized, in partic-

ular with respect to equation form. It should be noted that

Use of the Haas-Fisher equation for high-temperature

The high-temperature heat capacities were obtained despite significant experimental problems. At temperatures greater than about 470 K, small quantities of volatiles were emitted from some of the samples during the differential-scanning-calorimetric measurements. The excess heat required for diffusion of the volatiles to the

in the inclusions.

Table 13. Experimental high-temperature heat capacities of bertrandite, Be₄Si₂O₇(OH)₂

Table 14.	Experimental high-temperature heat capacities of
	chrysoberyl, BeAl ₂ O ₄

Temp.

Heat

capacity

Heat

capacity

Temp.

Heat

capacity

Temp.

К	J/(mol·K)	K	J/(mol·K)	K	J∕(mol∙K)
Scan	1	Scan	2	Scan	4
340.0	115.7	420.8	133.0	580.5	155.1
350.0	117.8	430.7	134.7	590.5	155.8
360.0	119.9	440.7	136.3	600.5	155.6
370.0	122.0	450.7	138.1	610.5	157.2
380.0	123.7	460.7	139.4	620.4	157.2
390.0	125.8	470.7	141.3	630.4	159.0
400.0	127.4	480.7	142.0	640.4	158.9
410.0	129.4	490.7	144.4	650.4	160.0
420.0	131.3	500.6	145.5	660.4	160.6
430.0	133.0				
440.0	134.8	Scan	3	Scan	5
450.0	136.8				
460.0	138.2	460.7	140.3	670.4	161.3
170.0	139.9	470.7	141.3	680.4	161.9
480.0	141.9	480.7	142.2	690.3	163.5
\$90.0	143.8	490.7	143.9	700.3	164.4
500.0	145.4	500.6	145.0		
		510.6	146.3	Scan	6
Scan	2	520.6	147.4		
		530.6	148.6	690.3	161.2
340.9	116.9	540.6	149.9	700.3	161.8
350.9	119.2	550.6	151.1	710.3	163.3
360.9	121.2	560.5	152.2	720.3	163.3
370.8	123.5	570.5	153.5	730.3	164.8
380.8	124.9	580.5	154.2	740.3	165.8
390.8	127.5	590.5	155.4	750.2	166.8
400.8	129.3	600.5	156.5	760.2	167.1
410.8	131.2			770.2	167.2
				780.2	167.0
				790.2	168.2
				800.2	168.2

the properties of equations used to fit experimental results, the function of the Haas-Fisher equation, are different from the properties of equations developed to extrapolate or estimate values beyond the known universe of experimental results. Such differences and the consequences of ignoring such differences are discussed in mathematics courses and are beyond the scope of this paper. Wellbehaved equations, that is, equations that do not quickly change slope beyond the end points of a data set (e.g., the Meyer-Kelley equation) do not guarantee reliable extrapolations of experimental data. It is sufficient to note that the problems discussed by several authors lie in the mis-

Table 15. Heat capacity equations for selected beryllium minerals

Phase	^c 1	°2	° 3	с ₄	° 5
Beryl	1625.842	-0.425206	1.20318x10 ⁻⁴	-20180.94	6.82544x10 ⁶
Phenakite	428.492	-0.099582	1.9886×10^{-5}	~5670.47	2.0826 x10 ⁶
Euclase	532.920	-0.150729	4.1223 x10 ⁻⁵	-6726.30	2.1976 x10 ⁶
Bertrandite	825.336	-0.099651		-10570.31	3.66217x10 ⁶
Chrysoberyl	362.701	-0.083527	2.2482 x10 ⁻⁵	-4033.69	-6.7976 x10

Temp.	Heat capacity	Entropy	Enthalpy function	Gibbs energy function	Formation	from the ele Gibbs	ements
T	с°р	s _T ~s ₀	(H _T ~H ₂₉₈)/T	-(G _T °-H ₂₉₈)/T	Enthalpy	free energy	log K
kelvin			J/(mol·K)		kJ/	mol	
298.15	417.8	346.7	0.000	346.7	-9006.56	-8500.36	1489.23
Uncertai	nty	4.7			7.10	6.39	
300	419.8	349.3	2.583	346.7	-9006.36	~8497.07	1479.47
400	508.6	483.1	118.75	364.3	-9014.86	-8331.73	1088.01
500	568.1	603.4	203.05	400.4	-9008.66	-8156.06	852.05
600	609.1	710.8	267.51	443.3	-9004.80	-7985.81	695.22
700	638.3	807.0	318.51	488.5	-8999.40	-7816.41	583.26
800	659.8	893.7	359.90	533.9	-8993.19	-7647.79	499.34
900	676.3	972.5	394.18	578.3	-8986.63	-7480.05	434.13
							201 00
1000	689.6	1044	423.08	621.3	-9001.30	-/311.03	381.88
1100	700.9	1111	447.83	662.9	-8994.00	-7143.20	339.20
1200	711.0	1172	469.35	702.8	-8986.47	-6974.69	303.60
1300	720.7	1229	488.31	741.1	-8978.73	-6807.03	273.51
1400	730.5	1283	505.26	777.9	-8970.74	-6640.65	247.76
1500	740.7	1334	520.61	813.3	-8962.43	-6474.86	225.47

1600	751.7	1382	534.71	847.4	-8997.73	-6307.76	205.92
1700	763.6	1428	547.81	880.2	-9290.46	-6137.50	188.58
1800	776.7	1472	560.16	911.8	-9277.44	-5952.32	172.73

Table 16.	Molar thermodynamic properties of beryl, Be ₃ Al ₂ Si ₆ O ₁₈ , to 1800 K

Aluminum	melting	point	933.	.25 K	
Beryllium	alpha -	beta	1527	ĸ	
	melting	point	1560	K	
Silicon	melting	point	1685	K	

Table 17.	Molar thermodynamic properties of phenakite, Be ₂ SiO ₄ , to 1800 K

Temp.	Heat capacity	Entropy	Enthalpy function	Gibbs energy function	Formation	from the ele Gibbs	ements
Т	С°р	s _T ~s ₀	(H _T °-H ₂₉₈)/T	-(G _T ^{°-H} 298)/T	Enthalpy	free energy	log K _f
kelvin			J/(mol·K)	*********	kJ/	mol	
298.15	95.60	63.37	0.000	63.37	-2143.12	-2028.39	355.365
Uncertai	nty	0.27			3.78	3.78	
300	96.16	63.96	0.591	63.37	-2143.08	-2027.62	353.040
400	121.3	95.31	27.835	67.47	-2143.91	-1989.03	259.740
500	138.4	124.3	48.351	75.99	-2143.47	-1950.33	203.749
600	150.2	150.7	64.402	86.28	-2142.59	~1912.15	166.467
700	158.5	174.5	77.282	97.21	-2140.59	-1873.55	139.806
800	164.3	196.1	87.816	108.2	-2138.65	-1835.55	119.849
900	168.5	215.7	96.563	119.1	-2136.58	-1797.76	104.339
1000	171.6	233.6	103.92	129.7	-2134.48	-1760.20	91.943
1100	173.8	250.0	110.17	139.9	-2132.44	-1722.82	81.810
1200	175.4	265.2	115.54	149.7	-2130.49	-1685.67	73.375
1300	176.6	279.3	120.20	159.1	-2128.66	-1648.70	66.246
1400	177.6	292.5	124.26	168.2	-2127.02	-1611.96	60.143
1500	178.4	304.7	127.84	176.9	-2125-55	-1575.11	54.850
1600	179.1	316.3	131.02	185.2	~2153.61	-1537.69	50.200
1700	170 0	327 1	122 00	102 2		-1/09 66	46 048
1800	180 7	337 5	136.45	201 0	-2202.27	-1457 51	40.040
1000	100.7	221.2	130.43	201.0	-2200.14	~14J7.JL	42.290

Transitions in the reference state elements

Beryllium	alpha -	beta	1527 K
	melting	point	1560 K
Silicon	melting	point	1685 K

Temp.	Heat capacity	Entropy	Enthalpy function	Gibbs energy function	Formation	from the ele Gibbs	ments
Т	c°P	s _r -s ₀	(H _T [°] -H ₂₉₈)/T	-(G _T [°] -H ₂₉₈)/T	Enthalpy	free energy	log K _f
kelvin			J/(mol·K)		kJ/	mol	
298.15	126.8	89.09	0.000	89.09	~2532.91	-2370.17	415.243
Uncerta	inty	0.40			3.05	3.04	
300	127.5	89.88	0.784	89.09	-2532.86	-2369.10	412.497
400	156.6	130.8	36.363	94.48	-2533.97	-2314.34	302.221
500	175.8	168.0	62.469	105.5	-2533.40	-2259.50	236.048
600	188.8	201.3	82.514	118.8	-2531.89	-2204.84	191.948
700	197.9	231.1	98.384	132.7	~2529.87	-2150.49	160.471
800	204.3	258.0	111.25	146.7	~2527.59	-2096.45	136.884
900	209.2	282.3	121.87	160.5	-2525.26	-2042-64	118.552
1000	212.9	304.6	130.79	173.8	-2533.63	-1988.45	103.866
1100	216.0	325.0	138.40	186.6	~2531.08	~1934.01	91.838
1200	218.8	343.9	144.99	198.9	-2529.22	-1880.55	81.858
1300	221.4	361.5	150.76	210.8	~2525.85	-1825.86	73.364
1400	224.0	378.1	155.90	222.1	-2523.17	-1772.26	66.124
1500	226.9	393.6	160.54	233.1	-2520.43	-1718.64	59.848
1600	220 0	100 2	161 70	212 (2522 17	1664 77	5/ 2/0
1000	230.0	408.5	104./8	243.0	~2332+27	-1004.//	
1700	233.4	422.4	168.71	253.7	-2579.46	-1610.34	49.480
1800	237.3	435.8	172.42	263.4	-2575.55	-1553.32	45.076
Transit	ions in the	reference	e state element	: 8			
Al	uminum	melti	ig point 93	3.25 K			
Be	rvllium	alpha	- beta 152	7 K			
20	-,	melti	ne point 156	50 K			
0.1	14						

Table 18. Molar thermodynamic properties of euclase, BeAlSiO₄(OH), to 1800 K

application of the Haas-Fisher equation and not in the form of the equation, and that responsibility for developing and justifying alogrithms to extrapolate values beyond the experimentally determined data set always resides with those who need to make the estimate. An expanded discussion of the petrology and a discussion of solution and phase-equilibrium data for the beryllium minerals may be found in a companion paper by Barton (1986).

ACKNOWLEDGMENTS

We thank our U.S. Geological Survey colleague Harvey Belkin for examining our sample of bertrandite and bringing to our attention the presence of the claylike impurity. This work was

Table 19.	Molar t	hermodynamic	properties	of bertrandite,	$Be_4Si_2O_7(OH)_2$	to	1800	K
-----------	---------	--------------	------------	-----------------	---------------------	----	------	---

and the second second second									
Temp.	Heat capacity	Entropy	Enthalpy function	Gibbs energy function	Formation	from the elements Gibbs			
т	C _P	s _r -s ₀	(H _T [°] -H ₂₉₈)/T	-(G _T [°] -H ₂₉₈)/T	Enthalpy	free energy	log K _f		
kelvin			J/(mol·K)	*********	kJ/mol				
298.15	224.7	172.1	0.000	172.1	-4580.50	-4300.62	753.451		
Uncertai	nty	0.8			5.47	5.46			
300	225.9	173.5	1.389	172.1	-4580.38	-4300.50	748.783		
400	279.8	246.3	64.671	181.7	-4580.80	-4204.85	549.097		
500	317.4	313.1	111.68	201.4	~4578.19	-4111.16	429.490		
600	344.2	373.5	148.33	225.1	-4573.67	-4018.13	349.809		
700	363.5	428.0	177.76	250.3	-4567.89	-3925.96	292.958		
800	377.6	477.6	201.91	275.6	-4561.30	-3834.74	250.383		
900	387.8	522.7	222.03	300.6	-4554.26	-3744.31	217.314		
1000	395.1	563.9	239.00	324.9	-4547.02	-3654.65	190.899		
1100	400.0	601.8	253.43	348.4	-4539.82	-3565.77	169.324		
1200	403.2	636.8	265.79	371.0	-4532.82	-3477.58	151.375		

Temp. T	Heat capacity C°p	Entropy S [°] T ⁻ S [°] O	Enthalpy function (H [°] _T -H [°] ₂₉₈)/T	Gibbs energy function -(G [°] _T -H [°] ₂₉₈)/T	Formation	from the ele Gibbs	ements
					Enthalpy	iree energy	log K _f
kelvin			J/(mol·K)		kJ/	mol	
298.15	105.4	66.25	0.000	66.25	-2298.49	-2176.16	381.254
Uncertai	nty	0.30			3.18	3.18	
300	106.0	66.90	0.652	66.25	-2298.45	-2175.35	378.762
400	130.8	101.1	30.366	70.75	-2299.35	-2133.28	278.578
500	145.9	132.0	52.073	79.97	-2298.92	-2092.91	218.645
600	155.8	159.6	68.590	90.99	-2297.86	-2051.84	178.628
700	162.7	184.1	81.568	102.6	-2296.53	-2010.90	150.055
800	167.5	206.2	92.025	114.2	-2295.19	-1970.21	128.642
900	171.2	226.2	100.63	125.5	-2293.98	-1929.70	111.997
							00 001
1000	174.0	244.3	107.83	136.5	-2314.35	-188/.00	98.001
1100	176.3	261.0	113,96	147.1	-2312.96	-1845.05	87.614
1200	178.4	276.5	119.24	157.2	-2311.53	-1802.67	78.468
1300	180.2	290.8	123.86	167.0	-2310.07	-1760.25	70.728
1400	182.0	304.2	127.95	176.3	-2308.58	-1717.99	64.099
1500	183.8	316.9	131.61	185.3	-2307.07	-1675.99	58.363
1900	20010				*********	**********	
1600	185.7	328.8	134.93	193.9	-2320.19	-1633.50	53.328
1700	187.8	340.1	137.98	202.1	-2318.21	-1590.63	48.874
1800	190.1	350.9	140.82	210.1	-2316.04	-1547.85	44.917
1700 1800 Transiti Alu	187.8 190.1 .ons in the	340.1 350.9 referenc melti	137.98 140.82 e state element ng point 93	202.1 210.1	-2318.21 -2316.04	-1590.63 -1547.85	48 44

Table 20. Molar thermodynamic properties of chrysoberyl, BeAl₂O₄, to 1800 K

partially supported by a grant from the National Science Foundation to M. D. Barton (EAR84-08388).

REFERENCES

- Barton, M.D. (1986) Phase equilibria and thermodynamic properties of minerals in the system BeO-Al₂O₃-SiO₂-H₂O, with petrologic applications. American Mineralogist, 71, 277–300.
- Beus, A.A. (1966) Geochemistry of beryllium. Page, L.R. (Ed.), Lachman, F. (translation), W. H. Freeman and Company, San Francisco.
- Chase, M.W., Curnutt, J.L., Hu, A.T., Prophet, H., Syverud, A.N., and Walker, L.C. (1974) JANAF thermochemical tables, 1974 supplement. Journal of Physical and Chemical Reference Data, 3, 381.
- Commission on Atomic Weights. (1976) Atomic weights of the elements. Pure and Applied Chemistry, 47, 75–95.
- Furukawa, G.T., and Saba, W.G. (1965) Heat capacity and thermodynamic properties of beryllium aluminate (chrysoberyl), BeO·Al₂O₃, from 16 to 380°K. Journal of Research of the National Bureau of Standards, A69, 13–18.
- Haas, J.L., Jr., and Fisher, J.R. (1976) Simultaneous evaluation and correlation of thermodynamic data. American Journal of Science, 276, 525–545.
- Hemingway, B.S., and Robie, R.A. (1984) The thermodynamic properties of zeolites: Low-temperature heat capacities and thermodynamic functions for phillipsite and clinoptilolite. Estimates of the thermochemical properties of water at low temperatures. American Mineralogist, 69, 692–700.
- Hemingway, B.S., Krupka, K.M., and Robie, R.A. (1981) Heat capacities of the alkali feldspars between 350 and 1000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1400 K, and the reaction quartz + jadeite = analbite. American Mineralogist, 66, 1202–1215.

- Hemingway, B.S., Robie, R.A., Kittrick, J.A., Grew, E.S., Nelen, J.A., and London, David. (1984) The heat capacities of osumilite from 298.15 to 1000 K, the thermodynamic properties of two natural chlorites to 500 K, and the thermodynamic properties of petalite to 1800 K. American Mineralogist, 69, 701-710.
- Jahns, R.H. (1944) Beryllium and tungsten deposits of the Iron Mountain district, Sierra and Socorro Counties, New Mexico. In Strategic mineral investigations, U.S. Geological Survey Bulletin 945, 45–79.
- (1955) The study of pegmatites. Economic Geology, Fiftieth Anniversary Volume, 1025–1130.
- Jahns, R.H., and Burnham, C.W. (1969) Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granite pegmatites. Economic Geology, 64, 843– 864.
- Johnson, G.K., Flotow, H.E., O'Hare, P.A.G., and Wise, W.S. (1982) Thermodynamic studies of zeolites: Analcime and dehydrated analcime. American Mineralogist, 67, 736-748.
- Kelley, K.K. (1939) The specific heats at low temperatures of beryllium oxide and beryllium orthosilicate (phenakite). American Chemical Society Journal, 61, 1217–1218.
- Mulligan, Robert. (1968) Geology of Canadian beryllium deposits. Geological Survey of Canada, Economic Geology Report Number 23.
- Robie, R.A., and Hemingway, B.S. (1972) Calorimeters for heat of solution and low-temperature heat capacity measurements. U.S. Geological Survey Professional Paper 755.
- Robie, R.A., Hemingway, B.S., and Wilson, W.H. (1978) Lowtemperature heat capacities and entropies of feldspar glasses and of anorthite. American Mineralogist, 63, 109–123.
- Robie, R.A., Hemingway, B.S., and Fisher, J.R. (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10⁵ pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin 1452.

- Staatz, M.H. (1963) Geology of the beryllium deposits in the Thomas Range, Juab County, Utah. U.S. Geological Survey Bulletin 1142-M.
- Webster, Donald, and London, G.J. (1979) Beryllium science and technology. Plenum Press, New York.
- Yoon, H.S., and Newnham, R.E. (1973) The elastic properties of beryl. Acta Crystallographica, A29, 507–509.
- Manuscript received February 28, 1985 Manuscript accepted October 10, 1985