Hydration of corundum-bearing xenoliths in the Qôrquut Granite Complex, Godthåbsfjord, West Greenland

MINIK T. ROSING,* DENNIS K. BIRD
Department of Geology, Stanford University, Stanford, California 94305, U.S.A.

ROBERT F. DYMEEK
Department of Earth and Planetary Sciences, Washington University, and McDonnell Center for the Space Sciences, St. Louis, Missouri 63130, U.S.A.

ABSTRACT

Thermodynamic analysis of phase relations in a high-grade gneissic xenolith from the anatectic region of the late Archean Qôrquut Granite Complex indicates that fluids, probably derived from the granite complex, caused partial replacement of primary plagioclase, corundum, and biotite in the xenolith by epidote, margarite, and muscovite. Compositional relations within the metamorphic mineral assemblage, together with logarithmic activity and fugacity phase diagrams in the system Na$_2$O-K$_2$O-CaO-FeO-MgO-Fe$_2$O$_3$Al$_2 O_3$-SiO$_2$-H$_2$O, define local equilibrium constraints on temperature, oxygen fugacity, activity of aqueous silica, and cation activity ratios in the fluid phase during hydration of the xenolith.

The inferred lithostatic pressure at the time of intrusion of the granite complex is ~5 kbar. At this pressure and ~580°C, plagioclase and corundum react with water to form margarite. Equilibrium among plagioclase, corundum, margarite, epidote, muscovite, and an aqueous solution in the xenolith at this temperature and pressure requires an oxygen fugacity of ~10$^{-17}$ bars. At temperatures less than 580°C, the assemblage biotite + muscovite + margarite + epidote is stable over a wide range of cation to H$^+$ activity ratios and activity of silica in the fluid phase, but defines a narrow range of oxygen fugacities at any given temperature. The calculated oxygen fugacities for the xenolith are close to the maximum values estimated from Fe-Ti oxide phase relations in some granites and pegmatites reported in the literature. Hydration of plagioclase and corundum and the oxidation of biotite in the xenolith to form epidote, margarite, and muscovite require an influx of H$_2$O and possibly SiO$_2$ from the surrounding granite.

INTRODUCTION

The Qôrquut Granite Complex (QGC, Fig. 1) in southern West Greenland intruded high-grade polyphase gneisses during the late Archean (Burwell and Friend, 1979; Beech and Chadwick, 1980). A plagioclase-rich gneissic xenolith within the QGC, probably derived from the Malene supracrustal sequence, contains corundum and biotite that are partially replaced by margarite, epidote, muscovite, and margarite (Dymek, 1983). Dymek proposed that the textural and mineral-chemical features in the xenolith could be explained by oxidation of biotite and hydration of plagioclase and corundum to form epidote, muscovite, and margarite. The objective of this paper is to evaluate the thermodynamic constraints on the metamorphic and/or igneous fluid phase associated with this process. Thermodynamic analysis of phase relations in the system Na$_2$O-K$_2$O-CaO-FeO-MgO-Fe$_2$O$_3$Al$_2 O_3$-SiO$_2$-H$_2$O is used here to define local equilibrium constraints on the possible range of oxygen fugacities (f_{O_2}), cation activity ratios, and the activity of aqueous silica [a_{SiO_2}] in the xenoliths during the formation of the QGC.

Characterization of fluids associated with crustal anatexis and emplacement of deep-seated granite bodies may help in evaluating metasomatic redistribution of elements in the lower crust. In this case, we address a tectono-metamorphic event at 2600–2500 Ma characterized by the formation of anatectic granite bodies and by possible redistribution of alkalis and alkaline-earth elements near the late Archean amphibolite-granulite facies boundary in the craton of West Greenland (Moorbath et al., 1981).

THE QÔRQUUT GRANITE COMPLEX

The Qôrquut Granite Complex (Fig. 1) is a suite of late Archean granites (2530 Ma) that were formed by at least three distinct intrusive phases including a late pegmatitic phase (McGregor, 1973; Pankhurst et al., 1973; Burwell and Friend, 1979; Brown and Friend, 1980a, 1980b; Brown et al., 1981). These granites intruded the Archean
Fig. 1. Schematic geologic map of the Godthåbsfjord region of southern West Greenland. The circled star denotes the location of the corundum-bearing xenoliths in the QGC. ISB represents the location of the Isua supracrustal belt. The map is modified after Baadsgaard et al. (1984).

gneiss complex of West Greenland (Bridgwater et al., 1976), which consists of tonalitic-granitic orthogneisses with inclusions of meta-anorthositic and supracrustal lithologies. The currently exposed crustal level experienced granulite-facies metamorphism in the early Archean (3600 Ma, Griffin et al., 1980) and widespread amphibolite-facies and local granulite-facies metamorphism in the late Archean. Proterozoic metamorphism reached upper greenschist-lower amphibolite grade and involved considerable hydrothermal alteration in fault zones (Smith and Dymek, 1983; Rosing, 1984).

The age of the QOrqut Granite Complex is bracketed by two metamorphic events: a 2800 Ma amphibolite-facies event and a less-pronounced upper greenschist-lower amphibolite facies event at ca. 2500 Ma (Baadsgaard, 1983). Lithostatic pressure at the time of intrusion of the granite is inferred to be ~5 kbar based on the crystallization sequence and fractionation trend of the QGC in the system SiO₂-NaAlSi₃O₈-KAlSi₃O₈-Ca-Al₂Si₂O₈-SiO₂ (Brown et al., 1981) on the reconstructed metamorphic history of the Godthåbsfjord area (Fig. 1), which reveals that kyanite formed during penecontemporaneous regional retrograde metamorphism (Dymek, 1984). The xenolith studied here is from the lower portion of the QGC in which quartzofeldspathic gneisses with well-preserved banded structures are permeated by granititic bodies on a variety of scales ranging down to centimeter size, as detailed by Brown et al. (1981). It is likely, therefore, that the retrograde assemblage in the xenolith was strongly influenced if not controlled entirely by fluids associated with formation and subsequent crystallization of the granite.

MINERALOGIC PHASE RELATIONS AND THERMODYNAMIC CONVENTIONS

The petrology and mineral chemistry of this xenolith have been reported by Dymek (1983). As shown by the photomicrograph in Figure 2, it consists of large crystals of corundum (bright red; up to ~1 cm across), which are everywhere surrounded and replaced by mats of margarite (silvery in hand specimen; very pale brown in thin section). These corundum-margarite intergrowths are immersed in a matrix of finer-grained margarite, muscovite, biotite, and epidote (X\text{Ca2Fe3+Si2O10(OH)2} = 0.18–0.24). Textures in the matrix indicate that the biotite is a relic phase that is replaced by the muscovite. Plagioclase (X\text{CaAl2Si2O8} = 0.60–0.80) is the most abundant phase in the xenolith and is partially replaced by epidote and/or margarite.

Representative compositions of the layer silicates from the xenolith are given in Table 1. The biotite has an exceptionally high Al content, indicating about 40% of the eastonite endmember, which is consistent with its former equilibrium coexistence with corundum in the xenolith. The muscovite contains only a small amount of paragonite component, but has a fairly high celadonite component, as revealed by low Na and modest (Fe,Mg) contents, respectively. Two analyses of margarite are listed in Table 1. The first corresponds to the coarser variety that immediately surrounds the corundum and is noteworthy for its high Na content, indicating about 20% paragonite component. The second margarite analysis given in Table 1 represents a fine-grained matrix margarite, which has a considerably lower paragonite content (~10%). A final feature worth noting is the exceedingly low F and Cl contents of the muscovite and margarite, as compared to biotite that contains up to ~0.3 wt% F and ~0.2 wt% Cl. This suggests, but does not prove, that the fluids responsible for the retrogression were probably poor in halogens.

Phase relations presented below were calculated using layer-silicate compositions reported in Table 1 (analyses 1 through 3) and the average compositions of plagioclase and epidote within the xenolith, together with equations and data describing the thermodynamic properties of minerals, water, ions, and gases reported by Helgeson et al. (1978), Helgeson and Kirkham (1974a, 1974b, 1976), Helgeson et al. (1981), Walther and Helgeson (1977),
Table 1. Mica compositions

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>32.24</td>
<td>34.51</td>
<td>30.25</td>
<td>30.22</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.35</td>
<td>13.60</td>
<td>50.86</td>
<td>50.52</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.12</td>
<td>0.20</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>19.49</td>
<td>3.03</td>
<td>0.46</td>
<td>0.36</td>
</tr>
<tr>
<td>MgO</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>MnO</td>
<td>0.23</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>0.24</td>
<td>0.22</td>
<td>11.86</td>
<td>12.38</td>
</tr>
<tr>
<td>BaO</td>
<td>0.13</td>
<td>0.10</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Na₂O</td>
<td>9.52</td>
<td>10.50</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.22</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>F</td>
<td>0.14</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Cl</td>
<td>0.14</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Total**</td>
<td>94.87</td>
<td>95.35</td>
<td>95.18</td>
<td>94.84</td>
</tr>
</tbody>
</table>

Note: Columns are (1) biotite, (2) muscovite, (3) margarite (rim on corundum), and (4) margarite (matrix).

* All Fe as FeO.

** Less oxygen for F and Cl.

and Bird and Helgeson (1980). In this study, the thermodynamic activity of the CaAl₂Si₂O₇ component in plagioclase solid solutions was approximated by the activity-composition relations reported by Orville (1972). The activity of Al₂O₃ in corundum was assumed to be unity. Equations and data reported by Bird and Helgeson (1980) were used to evaluate the activities of the Ca₃Al₂Si₂O₉(OH) and Ca₃FeAl₂Si₂O₉(OH) components of epidote solid solutions. This mixing model explicitly accounts for the temperature dependence of substitutional order-disorder of Al³⁺ and Fe³⁺ in the M₁ and M₃ octahedral sites of epidote. Activities of margarite, biotite, and muscovite were calculated from equations and data reported by Aagaard and Helgeson (1983) and from assumed random mixing and equal interaction of atoms on energetically equivalent sites. The standard states adopted for the thermodynamic components KMg₃(Al₂Si₃O₁₀)(OH)₂, KFe₃(Al₂Si₃O₁₀)(OH)₂, and KAl₃(Al₂Si₃O₁₀)(OH) require that tetrahedral Al is ordered into the T₁ sites in biotite and muscovite (cf. Helgeson et al., 1978; Bird and Norton, 1981) and that tetrahedral Al in margarite is ordered in the two T₁ sites. Total analyzed Fe in biotite was considered to be FeO.

Activity and fugacity phase diagrams presented below define the mineralogic constraints on fH₂O, aSiO₂, and cation to H⁺ activity ratios in the fluid phase during oxidation and hydration of the xenolith. These phase diagrams were computed at the estimated pressure of 5 kbar for the QGC and represent the limiting condition where aH₂O = 1. Although it is probable that high concentrations of electrolytes may have been present in the fluid phase associated with the retrograde alteration of the xenolith, aH₂O is commonly close to unity in these solutions if they contain little or no dissolved CO₂ (Helgeson, 1967, 1969, 1980). Because the stability of zoisite and margarite in the system CaO-Al₂O₃-SiO₂-H₂O-CO₂ is restricted to fluids where XCO₂ < 0.25 at 5 kbar (Chatterjee, 1976; Allen and Fawcett, 1982), it is highly likely that the fluids responsible for the formation of epidote and margarite assemblages in the xenolith were water-rich.

Logarithmic ratios of the activities of cations (Na⁺, Ca²⁺, Mg²⁺, Al³⁺, and K⁺) to H⁺ are used here as descriptive variables in the phase diagrams (cf. Bowers et al., 1984). These dissociated cations are not necessarily the predominant species in the aqueous solution. In fact, evidence summarized by Quist and Marshall (1968), Helgeson (1969, 1980), Helgeson and Kirkham (1976), and Frantz and Marshall (1982) indicates that chloride complexes of the alkali and alkaline-earth cations will be the dominant aqueous species at 5 kbar and >500°C. At constant aH₂O, the cation to H⁺ activity ratios used here correspond to degrees of freedom in the Gibbs phase rule (Helgeson, 1970) and, together with equations and data reported by Helgeson and Kirkham (1976) and Helgeson et al. (1978, 1981), permit quantitative evaluation of solution-mineral equilibria at high pressures and temperatures.
Phase relations among stoichiometric minerals

The reaction of corundum, anorthite, and water to form margarite is well characterized experimentally (Velde, 1971; Chatterjee, 1974; Storre and Nitsch, 1974). Experimental reversals for this reaction between 2 and 6 kbar are shown in Figure 3 together with the calculated univariant curve for the reaction

\[
\text{CaAl}_2\text{Si}_2\text{O}_8 + \text{Al}_2\text{O}_3 + \text{H}_2\text{O} = \text{CaAl}_2(\text{Al}_2\text{Si}_2\text{O}_8\text{OH})_2 \quad (1)
\]

Although this reaction can be used to evaluate the maximum temperature for formation of margarite in the xenoliths, little information is revealed about the nature of the aqueous solutions associated with hydration and oxidation of the high-grade metamorphic mineral assemblages.

To illustrate the stability relations of margarite, phase relations in the system CaO-Al₂O₃-SiO₂-H₂O are given in Figure 4 as a function of \(\log (a_{\text{c}_{2\text{O}}}/a_{\text{H}_2\text{O}}) \) and \(a_{\text{SiO}_2\text{(aq)}} \) in an aqueous solution at three temperatures (550, 580, and 600°C) and \(P_{\text{H}_2\text{O}} = P_{\text{total}} = 5 \text{ kbar} \). At 580°C, which is slightly below the equilibrium temperature of Reaction 1 (Fig. 4B), margarite is stable in a narrow field between corundum and anorthite that is characterized by a wide range in values of \(a_{\text{c}_{2\text{O}}}/a_{\text{H}_2\text{O}} \) and \(a_{\text{SiO}_2\text{(aq)}} \) in the aqueous solution. With decreasing temperature (Fig. 4A), the stability field of margarite and clinozoisite expands, stabilizing both minerals with a broader range of activities of these aqueous species.

Values of \(\log (a_{\text{c}_{2\text{O}}}/a_{\text{H}_2\text{O}}) \), and \(a_{\text{SiO}_2\text{(aq)}} \) in a fluid phase in equilibrium with corundum and other minerals in the system CaO-Al₂O₃-SiO₂-H₂O are shown in Figure 5 as a function of temperature. Equilibrium between the fluid phase and either sillimanite or kyanite defines the minimum values of \(a_{\text{c}_{2\text{O}}}/a_{\text{H}_2\text{O}} \), and the maximum \(a_{\text{SiO}_2\text{(aq)}} \) in the fluid phase in equilibrium with margarite and corundum (Fig. 5). As a consequence of the small standard molal enthalpies of the reactions describing these phase boundaries (< -36 kJ/mol at 500°C and 5 kbar), the logarithm of \(a_{\text{c}_{2\text{O}}}/a_{\text{H}_2\text{O}} \) changes only slightly with decreasing temperature between 587°C and 450°C. The maximum values of \(a_{\text{c}_{2\text{O}}}/a_{\text{H}_2\text{O}} \), and the minimum values of \(a_{\text{SiO}_2\text{(aq)}} \) in the fluid phase in equilibrium with margarite + corundum are defined by the clinozoisite + corundum phase boundary. The activity of SiO₂(aq) in the aqueous solution in equilibrium with the assemblage margarite + clinozoisite + corundum decreases dramatically with decreasing temperature owing to the large positive standard molal enthalpy of the reaction characterizing this assemblage (104 kJ/mol at 500°C and 5 kbar). Values of \(a_{\text{c}_{2\text{O}}}/a_{\text{H}_2\text{O}} \) in equilibrium with this assemblage increase with decreasing temperature as a result of the large negative standard molal enthalpy of the reaction describing the margarite-clinozoisite phase boundary on the corundum saturation surface (< 146 kJ/mol at 500°C and 5 kbar).

Solution-mineral equilibria in the QGC xenolith

Phase diagrams presented above for stoichiometric minerals and unit activity of H₂O (a_{H₂O}) permit evaluation of local equilibrium constraints of the metasomatic phase relations in the QGC xenolith. Of particular interest are equilibrium constraints imposed by the mineral compositions in the xenolith and the activity-composition relations adopted above for plagioclase,ₚₖ margarite,ₚₖ biotite,ₚₖ muscovite,ₚₖ and epidote. The subscript “ss” is used here to denote the mineral compositions in the xenolith used in the calculations presented below which correspond to analyses 1 through 3 for micas in Table 1 and to the average compositions of plagioclase and epidote.

The maximum temperature of hydration of plagioclase and corundum to form margarite can be computed from the law of mass action for Reaction 1 and the activities of the components CaAl₂Si₃O₉ in plagioclase and of CaAl₂(Al₂Si₂O₈)(OH)₂ in margarite from the xenolith. At 5 kbar and unit activity of water, the logarithm of the
ROISING ET AL.: HYDRATION OF CORUNDUM-BEARING XENOLITHS

activity product of Reaction 1 is −0.03, corresponding to an equilibrium temperature only −10 deg lower than that for endmember compositions given in Figure 3.

In Figure 6, phase relations in the system Na₂O-CaO-Fe₂O₃-Al₂O₃-SiO₂-H₂O are given at 5 kbar for corundum saturation of the fluid phase. The stability field of epidoteₖ expands dramatically at the expense of plagioclaseₖ and margariteₖ with introduction of the pistacite [Ca₂Fe₂Si₂O₈(OH)] component (cf. Figs. 5 and 6). The expanded epidoteₖ field causes the possible range of activities of aqueous species in equilibrium with the assemblage plagioclaseₖ + margariteₖ + corundum to decrease relative to the stoichiometric mineral equilibria represented by Figures 3, 4, and 5. Substitution of Fe³⁺ for Al to form epidoteₖ requires an increased concentration of SiO₂(aq) but a decreased value of a₃/SiH₂ in the fluid phase relative to the stoichiometric phase relations given in Figure 5.

Logarithmic activity-activity phase diagrams representing mineral stabilities for the compositions of epidoteₖ, biotiteₖ, muscoviteₖ, plagioclaseₖ, corundum, and margariteₖ in the QGC xenolith are given in Figure 7 at 550°C and 5 kbar. Equilibrium among epidoteₖ, margariteₖ, and an aqueous solution requires log a₅O₃(aq) values in the fluid phase between −1.0 and −1.5 and log a₃/SiH₂ between 5.95 and 6.5. Local equilibrium of this assemblage with corundum (point 1, Fig. 7A) determines the minimum concentration of SiO₂ and the maximum values of a₃/SiH₂, a₅O₃/aH₂O in the aqueous solution. The plagioclaseₖ + margariteₖ + epidoteₖ assemblage shown by point 2 in Figure 7A represents the opposite extremes for the same fluid species.

Phase relations in the system Na₂O-K₂O-CaO-MgO-Fe₂O₃-Al₂O₃-SiO₂-H₂O are given in diagrams B and C of Figure 7 for the limiting case of corundum saturation (point 1, Fig. 7A). Points 3 and 4 in these diagrams denote values of log a₃/SiH₂, log a₅O₃/SiH₂, and log a₅O₃/aH₂O in an aqueous solution in equilibrium with biotiteₖ, epidoteₖ, margariteₖ, muscoviteₖ, and corundum at 550°C and 5 kbar. The diagrams indicate that the activity of Ca₂⁺ in the coexisting aqueous solution exceeds the activity of Mg²⁺ by several orders of magnitude. The calculated ratio of log a₃/SiH₂ varies from 2.35 for the limiting condition of corundum saturation (point 1, Fig. 7A and
point 3, Fig. 7C) to 1.93 for the plagioclase*-stable assemblage represented by point 2 in Figure 7A. The work by Frantz and Marshall (1982) indicates that the dissociation constants for CaCl₂ and MgCl₂ are similar. If the stoichiometric individual ion activity coefficients for Ca²⁺ and Mg²⁺ are also approximately equal, then the total concentration of Ca²⁺ in the fluid is approximately two orders of magnitude greater than Mg²⁺ for the conditions represented by the diagrams in Figure 7.

Local equilibrium constraints on the oxidation state of the system can be established from compositional relations among biotite.. and epidote.., The molar ratios of Al and Fe³⁺ in epidote.. and Fe²⁺ and Mg in biotite., define fo₂ of the system as a function of pressure, temperature, and heterogeneous equilibria constraints on the chemical potentials of Al₂O₃ and MgO. In the xenolith, biotite is partially replaced by fine-grained muscovite and epidote. Local equilibrium of this assemblage with an aqueous solution can be represented by the reaction

\[
\begin{align*}
4\text{KFe}_3(\text{AlSi}_3\text{O}_9)(\text{OH})_2 & + 12\text{Ca}_2\text{Al}_2\text{Si}_2\text{O}_7(\text{OH}) + 3\text{O}_2 \\
= 4\text{KAl}_4(\text{AlSi}_3\text{O}_9)(\text{OH})_2 & + 12\text{Ca}_2\text{FeAl}_2\text{Si}_2\text{O}_7(\text{OH}) \\
+ 4\text{Al}^3+ & + 6\text{H}_2\text{O}.
\end{align*}
\]

(2)

For constant mineral compositions, temperature, and pressure, the law of mass action for Reaction 2 requires log fo₂ to be a linear function of log a_{\text{Al}^3+}/a_{\text{H}^+} in the aqueous solution. Fixing a_{\text{Al}^3+}/a_{\text{H}^+} by saturation of the fluid phase with corundum, the equilibrium represented by

\[
\begin{align*}
4\text{KFe}_3(\text{AlSi}_3\text{O}_9)(\text{OH})_2 & + 12\text{Ca}_2\text{Al}_2\text{Si}_2\text{O}_7(\text{OH}) + 3\text{O}_2 \\
= 4\text{KAl}_4(\text{AlSi}_3\text{O}_9)(\text{OH})_2 & + 12\text{Ca}_2\text{FeAl}_2\text{Si}_2\text{O}_7(\text{OH}) \\
+ 4\text{Al}^3+ & + 6\text{H}_2\text{O}.
\end{align*}
\]

(3)

defines the fo₂-temperature relations given by curve A-B in Figure 8 at 5 kbar. This curve describes the maximum fo₂ values for epidote.., biotite., muscovite.., and an aqueous solution (see below). As noted above, substitution of Fe³⁺ in biotite., is not accounted for in this study, but will increase slightly the predicted fo₂, represented by the curves given in Figure 8. The minimum fo₂ at temperatures >520°C at 5 kbar is constrained by the assemblage epidote.. + plagioclase.. + margarite.. + biotite.. + muscovite.. + aqueous solution. This equilibrium can be expressed as

\[
\begin{align*}
4\text{KFe}_3(\text{AlSi}_3\text{O}_9)(\text{OH})_2 & + 12\text{Ca}_2\text{Al}_2\text{Si}_2\text{O}_7(\text{OH}) \\
= 4\text{KAl}_4(\text{AlSi}_3\text{O}_9)(\text{OH})_2 & + 12\text{Ca}_2\text{FeAl}_2\text{Si}_2\text{O}_7(\text{OH}) \\
+ 2\text{CaAl}_2\text{Si}_2\text{O}_7 & + 2\text{H}_2\text{O} + 3\text{O}_2.
\end{align*}
\]

(4)

which defines the log fo₂-temperature relations given by curve A-C in Figure 8. Point A denotes the temperature where Reactions 3 and 4 intersect at equilibrium defined by Reaction 1 (see Fig. 6). At 550°C and 5 kbar the corundum-stable (Reaction 3) and the plagioclase..-stable (Reaction 4) assemblages are represented by points 1 and 2 in Figure 7A, respectively. Point C in Figure 8 denotes the minimum equilibrium temperature for Reaction 4.
with corundum at point 1 and with plagioclase at point 2 (compare with points 1 and 2 in Fig. 7A). Note that over the wide range of values of $a_{SO_{2}(aq)}$ characterized by equilibrium $\text{epidote}_{ss} + \text{margarite}_{ss} + \text{biotite}_{ss}$ (between points 1 and 2 in Fig. 9) that log f_{O_2} varies by only about 0.1. Also given in Figure 9 are the relationships of f_{O_2} and log $a_{SO_{2}(aq)}$ for phase boundaries represented by curves A-B (Reaction 3) and A-C (Reaction 4) in Figure 8. Local equilibrium for the plagioclase-bearing assemblage (curve A-C in Figs. 8 and 9) requires $a_{SO_{2}(aq)}$ in the fluid phase to increase with decreasing temperatures until quartz saturation is reached at 518°C (point C, Fig. 9, and Reaction 5). Phase boundary C-D denotes equilibrium of Reaction 6 for saturation of the fluid phase with quartz.

The range of oxygen fugacities computed above for the assemblage $\text{epidote}_{ss} + \text{margarite}_{ss} + \text{biotite}_{ss}$ is given in Figure 10 as a function of temperature at 5 kbar. Also shown in Figure 10 are predicted oxygen fugacities estimated from Fe-Ti oxide phase relations for a large number of granites and pegmatites reported in the literature. It is apparent from the phase relations given in Figure 10 that f_{O_2} in the xenolith was slightly higher than values characteristic of many granites.

DISCUSSION

The mineral assemblages found in the xenolith are products of a series of events that led to the formation of the anatetic Qörqut granite. Observed phase relations in the xenolith do not allow for explicit definition of the changes in chemical potentials of thermodynamic components associated with the oxidation and hydration of biotite, plagioclase, and corundum. However, the meta-
Oxidation of biotite (Reaction 6) and hydration of corundum (Reaction 1) to form epidote$_{an}$, margarite$_{an}$, and muscovite$_{an}$, in the presence of plagioclase$_{an}$, require transfer of H$_2$O and SiO$_2$ (aq) from the H$_2$O-rich, quartz-saturated granitic melt into the corundum-bearing xenolith. It is apparent that the mass fluxes of SiO$_2$ and H$_2$O between the quartz-saturated granite and the xenolith were important processes during the formation of the xenolith's retrograde metamorphic assemblages. Although measurements have not been made, detailed field observations of compositional gradients within and near the xenolith in the QGC, together with the phase diagrams presented above, will provide a basis for describing and interpreting of local metasomatic-element migration during anatexis in the lower crust.

The mineral assemblage biotite$_{an}$ + epidote$_{an}$ + muscovite$_{an}$ + margarite$_{an}$ is not a buffer sensu stricto since the phases are solid solutions that change composition with f_{O_2}. However, at constant a_{H_2O} the assemblage defines a narrow isobaric f_{O_2} range, as shown in Figures 8, 9, and 10. Like the oxygen-buffering capacity of the assemblage biotite, garnet, muscovite, magnetite, and quartz proposed by Zen (1985) for some peraluminous granites and metamorphic rocks, these types of assemblages can be used to constrain intensive thermodynamic variables in certain geologic systems.

Uncertainties associated with the thermodynamic calculations given above are complex and largely ambiguous functions of the errors in experimental observations and thermodynamic models for standard- and non-standard-state properties of the components and phases of the systems. Nevertheless, such calculations prove to be useful tools in the analysis of even complex geologic systems.

ACKNOWLEDGMENTS

Critical reviews by Moonsup Cho, J. G. Liou, C. E. Manning, J. M. Rice, N. M. Rose, and J. V. Walther have greatly improved the content of this paper. Debbie Montgomery drafted a number of figures. Bobbie Bishop, Halldora Hreggvidsdottir, and Chuck Karish are thanked for supportive and stimulating discussions.

Support from the Carlsberg Foundation and the Danish Natural Sciences Research Council, to M. Rosing, while a Visiting Scholar at Stanford is acknowledged. This research was supported in part by grant NSF-EAR 84-18129 to D.K.B.

REFERENCES

Manuscript received July 24, 1985
Manuscript accepted September 2, 1986