Structural environment of Al dissolved in 2PbO•B₂O₃ glasses used for solution calorimetry: An ²⁷Al NMR study

RICHARD OESTRIKE, ALEXANDRA NAVROTSKY
Department of Geological and Geophysical Sciences, Princeton University, Princeton, New Jersey, U.S.A.

GARY L. TURNER, BEN MONTEZ
School of Chemical Sciences, University of Illinois at Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, U.S.A.

R. JAMES KIRKPATRICK
Department of Geology, University of Illinois at Urbana-Champaign, 1301 West Green Street, Urbana, Illinois 61801, U.S.A.

Abstract

²⁷Al NMR spectroscopy of glassy 2PbO•B₂O₃ calorimetric fluxes containing from 1.0 to 23.8 mol% Al [from dissolved α-Al₂O₃ or NaAlSi₅O₁₀ (albite) glass] shows that about 92% of the Al is in fourfold coordination to oxygen [Al(4)] with the remainder mostly in sixfold coordination to oxygen [Al(6)] and that the chemical shifts and Al(4)/Al(6) ratios do not change measurably in this composition range. Some spectra appear to contain a small (<2%) peak at about 30 ppm, which may be due to fivefold coordinated Al [Al(5)] (Risbud et al., 1987) or Al(4) with four B next-nearest neighbors (Dupree et al., 1985). The enthalpy of solution of Al₂O₃ in 2PbO•B₂O₃ at 700°C is independent of composition in the range 0.5 to ~6 mol% Al, with possible changes at higher concentrations which may be related to slow rates of dissolution. The NMR results provide a structural basis for the observed Henry's law behavior of the enthalpies of solution.

The presence of Al in several different coordinations in these glasses is consistent with ²⁷Al NMR data for other B-containing glasses and may represent coupling of the B(3)-B(4) and Al(4)-Al(6) equilibria.

Introduction

High-temperature solution calorimetry in molten 2PbO•B₂O₃ is a well-established method to determine enthalpies of formation of refractory materials, including many of geologic importance (Charlu et al., 1975; Navrotsky, 1977; Carpenter et al., 1983; Akao et al., 1984). The interpretation of enthalpy of solution data is greatly simplified if the heats of solution depend neither on solute concentration nor on the presence of small amounts of other dissolved solutes (i.e., that Henry's law is obeyed). Repeated calorimetric experiments have verified this assumption for oxide concentrations of less than ~1 wt% (Charlu et al., 1975; Navrotsky et al., 1986; Navrotsky, unpub. data). This paper presents the results of an ²⁷Al solid-state NMR study demonstrating that the structural environment of Al in 2PbO•B₂O₃ fluxes does not change significantly for Al concentrations between 1.0 and 23.8 mol% Al, supporting the Henry's law behavior observed in calorimetry.

Experimental methods

Sample preparation

The 2PbO•B₂O₃ starting material used in this study was from a master batch (~50 kg) of calorimetric flux previously prepared from reagent-grade PbO and H₂BO₃. This batch has been analyzed repeatedly for Pb by X-ray fluorescence spectroscopy to verify composition and homogeneity. For the experiments described here, batches of approximately 15 g of the flux were fused at ~740°C in a Pt crucible, air-cooled to a glass in the crucible, and weighed. Dried α-Al₂O₃ (corundum) or NaAlSi₅O₁₀ (albite glass) were weighed and added to the glassy flux in the Pt crucible. Table I lists the compositions used. The flux plus solute mixtures were then melted at ~740°C for 1 to 2 h (less time for lower concentrations of solute). During this time the solution was agitated vigorously and repeatedly with a Pt stirrer to ensure homogeneity. The solution was then air-quenched by pouring into a graphite bowl. The product was a transparent yellow glass. The glass samples were examined in immersion oils with a petrographic microscope to verify the absence of any crystals.

Spectroscopic methods

All spectra were obtained with a "home-built" 11.7-T spectrometer using the methods described by Kirkpatrick et al. (1985a) and Turner et al. (1986). A pulse width equal to one-sixth of the 90° pulse for the standard solution was used to ensure that signal intensity is not substantially dependent on quadrupole coupling constant (Fenzke et al., 1984). The standard solutions used were 1M AlCl₃ for ²⁷Al and BF₃-Et₂O (boron trifluoride etherate) for ¹¹B. Peak positions (chemical shifts at maximum intensity) are reported as the parts per million (ppm) difference in frequency...
Fig. 1. \(^{27}\text{Al} \text{NMR} \) spectra of Al-containing \(2\text{PbO-B}_2\text{O}_3\) glasses obtained at a field strength \(11.7 \text{ T}\). Left-hand column shows mass spectra obtained at a spinning speed of about 4 kHz, and right-hand column shows static spectra. The number next to each spectrum is the mol\% Al in that sample. All chemical shifts are in ppm from \(1M \text{AlCl}_3\) solution. See text for spectrometer conditions.

between the standard solution and the sample. The recycle times used, 1 s for \(^{27}\text{Al}\) and 5 s for \(^{11}\text{B}\), were more than sufficient to avoid signal saturation. Because of the low Al concentration, between 600 and 48000 free induction decays (FID) were collected to produce the \(^{27}\text{Al} \text{ spectra}\). The larger number of FIDs were used for the lower Al concentrations to ensure an adequate signal-to-noise ratio. Exponential multiplication resulting in an artificial line broadening of 65 Hz (\(-0.5 \text{ ppm}\)) was employed to improve the signal to noise of all \(^{27}\text{Al}\) spectra.

The magic-angle sample spinning (\(\text{MAS}\)) spectra were collected with two sample probes. One probe has a low Al-background signal, but has a maximum spin rate of about 4 kHz. This rate places spinning sidebands from Al(4) at \(-90\) and 30 ppm, obscuring any resonance that may be present near 30 ppm. Spinning more slowly produces four overlapping spinning sidebands between the tetrahedral and octahedral peaks [two from Al(4) and two from Al(6)], once again obscuring any resonance near 30 ppm. Therefore a second, faster-spinning probe was also used to obtain \(^{27}\text{Al} \text{mass NMR} \) spectra. The second probe can attain spinning speeds of 7–8 kHz, which puts spinning sidebands from Al(4) at about 110 and 0 ppm. Unfortunately, this probe has a large Al(6) background signal centered near 0 ppm. Therefore, \(^{27}\text{Al} \text{ mass NMR} \) spectra were obtained using both sample probes. The static \(^{27}\text{Al} \text{ spectra}\) and the \(^{11}\text{B} \text{ mass NMR} \) spectra were collected with the slower-spinning probe.

Fig. 2. \(^{27}\text{Al} \text{mass NMR} \) spectra obtained at \(11.7 \text{ T}\) and spinning speeds of between 7.0 and 7.5 kHz. In these spectra the spinning sidebands from the Al(4) peak are at about 115 and 0 ppm, and a small peak at about 30 ppm is seen in spectra A and B (prepared using \(\alpha\)-\(\text{Al}_2\text{O}_3\) solute) but not in spectrum C (prepared using Ab glass solute). This peak may be due to either Al(5) or to Al(4) with four B next-nearest neighbors. Fast-spinning spectra from samples with less than 6 mol\% Al have a relatively larger background signal that obscures the region near 30 ppm.

Table 1. Sample compositions and \(^{27}\text{Al} \text{mass NMR} \) data

<table>
<thead>
<tr>
<th>Solute</th>
<th>Flux</th>
<th>Soluted Al/Al(4) mass peak maximum</th>
<th>Soluted Al(6) mass peak maximum</th>
<th>% Intesity of Al(6) peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)-(\text{Al}_2\text{O}_3)</td>
<td>0.01528</td>
<td>15.08259</td>
<td>0.0102</td>
<td>55.8 ± 1.5</td>
</tr>
<tr>
<td>(\alpha)-(\text{Al}_2\text{O}_3)</td>
<td>0.02538</td>
<td>15.0827</td>
<td>0.0170</td>
<td>57.7</td>
</tr>
<tr>
<td>(\alpha)-(\text{Al}_2\text{O}_3)</td>
<td>0.05049</td>
<td>15.0839</td>
<td>0.0334</td>
<td>56.2</td>
</tr>
<tr>
<td>(\alpha)-(\text{Al}_2\text{O}_3)</td>
<td>0.10068</td>
<td>15.0853</td>
<td>0.0665</td>
<td>57.3</td>
</tr>
<tr>
<td>(\alpha)-(\text{Al}_2\text{O}_3)</td>
<td>0.20396</td>
<td>15.0876</td>
<td>0.1284</td>
<td>58.1</td>
</tr>
<tr>
<td>(\alpha)-(\text{Al}_2\text{O}_3)</td>
<td>0.40083</td>
<td>15.0833</td>
<td>0.2378</td>
<td>57.5</td>
</tr>
<tr>
<td>Ab glass</td>
<td>0.11016</td>
<td>15.0840</td>
<td>0.0142</td>
<td>56.0</td>
</tr>
<tr>
<td>Ab glass</td>
<td>0.22542</td>
<td>15.0829</td>
<td>0.0286</td>
<td>55.6</td>
</tr>
<tr>
<td>Ab glass</td>
<td>0.55056</td>
<td>15.0894</td>
<td>0.0670</td>
<td>55.4</td>
</tr>
</tbody>
</table>
The two overlapping peaks at the left are in reality a single peak. The B(3) doublet has maxima at 15.5 and 11.6 ppm, and the B(4) singlet has a maximum at 1.4 ppm. (b) Simulated composite spectrum obtained at 11.7 T. The B(3) doublet has maxima at 15.5 and 11.6 ppm, and the B(4) singlet has a maximum at 1.4 ppm. (c) Component peaks for the simulated spectra. The two overlapping peaks at the left are in reality a single quadrupolar split peak, but this does not affect the modeled B(3)/B(4) ratio.

RESULTS AND DISCUSSION

The 27Al ~ 4-kHz mass spectra (Fig. 1) clearly show peaks for Al(4) at about 50 ppm and Al(6) at about 3 ppm (chemical shifts summarized in Table 1). The peaks at about 90 and 30 ppm are spinning sidebands from the Al(4) peak. The static spectra (Fig. 1) also show an Al(4) peak at about 60 ppm and an Al(6) shoulder at about 0 ppm, although the peaks are not as well resolved owing to orientation-dependent broadening effects (Kirkpatrick et al., 1984a, 1986). The peaks near 0 ppm in the static spectra confirm that the peaks near 0 ppm in the mass spectra are not spinning sidebands, but represent signal from Al(6) sites.

The mass spectra obtained at about 7 kHz (Fig. 2) are less useful because of Al(6) background in the probe, but do show the presence of a very small peak at about 30 ppm for the more-concentrated samples made with Al$_2$O$_3$. This peak is not present for the most Al-rich sample made with albite glass solute. We cannot determine whether this peak is present for samples having lower concentrations of Al because of the probe background signal. In these faster-spinning-speed spectra, the peaks at about 110 ppm and -50 ppm are spinning sidebands. The relative intensity of the peak for Al(6) appears to increase with decreasing Al content of the sample, owing to the increasing relative contribution from the broad Al(6) probe background.

The significance of the small peak at about 30 ppm is not clear. Dupree et al. (1985) have assigned it to Al(4) with four B next-nearest neighbors. Risbud et al. (1987), however, have observed it in spectra of SiO$_2$-Al$_2$O$_3$ glasses and have assigned it to pentahedrally coordinated Al [Al(5)]. There are few model compounds with 27Al chemical shifts in this range, and discrimination between these two possible assignments is not currently possible. The absence of the peak at about 30 ppm for the most-concentrated sample made with albite glass solute may indicate that the presence of Si or Na in the glass changes the structural environment giving rise to this peak. Since the total intensity of this peak is low ($\pm 2\%$) and its assignment so poorly understood, further interpretation is unwarranted.

With the exception of the small peak at ~ 30 ppm, the 27Al spectra of all the samples are essentially identical. The Al(4) and Al(6) chemical shifts are essentially identical within experimental error. What small variation there is (56.5 ± 1.5 ppm and about 2 ± 2 ppm) is not systematic with Al content and is likely due primarily to poor signal-to-noise ratio for some spectra, small phasing errors, and to overlap of the Al(6) peak and the second spinning sideband from the Al(4) peaks. Similarly, the area of the Al(6) peak relative to that for Al(4) is essentially constant at $8 \pm 2\%$ (as determined by computer simulation using the Nicolet program NMRcap and the 4-kHz mass spectra). Because these spectra were obtained under short-pulse-width conditions, this peak area probably represents the relative abundance of Al(6) in the sample (Fenzke et al., 1984; Kirkpatrick et al., 1986). The presence of a very broad peak due to sites with very large quadrupole coupling constant (≥ 15 MHz) cannot be ruled out but seems unlikely. The quantitation method of Kirkpatrick et al. (1986) cannot be used for these samples because of the multiple peaks.

These spectroscopic results are fully consistent with calorimetric experiments, which show that reproducible and constant enthalpies of solution are obtained up to a maximum of 50 to 100 mg of solute per 15 g of 2PbO·BrO$_3$ base glass. The Al(4) and 4l(6) chemical shifts are essentially identical within experimental error. What small variation there is (56.5 ± 1.5 ppm and about 2 ± 2 ppm) is not systematic with Al content and is likely due primarily to poor signal-to-noise ratio for some spectra, small phasing errors, and to overlap of the Al(6) peak and the second spinning sideband from the Al(4) peaks. Similarly, the area of the Al(6) peak relative to that for Al(4) is essentially constant at $8 \pm 2\%$ (as determined by computer simulation using the Nicolet program NMRcap and the 4-kHz mass spectra). Because these spectra were obtained under short-pulse-width conditions, this peak area probably represents the relative abundance of Al(6) in the sample (Fenzke et al., 1984; Kirkpatrick et al., 1986). The presence of a very broad peak due to sites with very large quadrupole coupling constant (≥ 15 MHz) cannot be ruled out but seems unlikely. The quantitation method of Kirkpatrick et al. (1986) cannot be used for these samples because of the multiple peaks.

The significance of the small peak at about 30 ppm is not clear. Dupree et al. (1985) have assigned it to Al(4) with four B next-nearest neighbors. Risbud et al. (1987), however, have observed it in spectra of SiO$_2$-Al$_2$O$_3$ glasses and have assigned it to pentahedrally coordinated Al [Al(5)]. There are few model compounds with 27Al chemical shifts in this range, and discrimination between these two possible assignments is not currently possible. The absence of the peak at about 30 ppm for the most-concentrated sample made with albite glass solute may indicate that the presence of Si or Na in the glass changes the structural environment giving rise to this peak. Since the total intensity of this peak is low ($\pm 2\%$) and its assignment so poorly understood, further interpretation is unwarranted.

With the exception of the small peak at ~ 30 ppm, the 27Al spectra of all the samples are essentially identical. The Al(4) and Al(6) chemical shifts are essentially identical within experimental error. What small variation there is (56.5 ± 1.5 ppm and about 2 ± 2 ppm) is not systematic with Al content and is likely due primarily to poor signal-to-noise ratio for some spectra, small phasing errors, and to overlap of the Al(6) peak and the second spinning sideband from the Al(4) peaks. Similarly, the area of the Al(6) peak relative to that for Al(4) is essentially constant at $8 \pm 2\%$ (as determined by computer simulation using the Nicolet program NMRcap and the 4-kHz mass spectra). Because these spectra were obtained under short-pulse-width conditions, this peak area probably represents the relative abundance of Al(6) in the sample (Fenzke et al., 1984; Kirkpatrick et al., 1986). The presence of a very broad peak due to sites with very large quadrupole coupling constant (≥ 15 MHz) cannot be ruled out but seems unlikely. The quantitation method of Kirkpatrick et al. (1986) cannot be used for these samples because of the multiple peaks.

The mass spectra obtained at about 7 kHz (Fig. 2) are less useful because of Al(6) background in the probe, but do show the presence of a very small peak at about 30 ppm for the more-concentrated samples made with Al$_2$O$_3$. This peak is not present for the most Al-rich sample made with albite glass solute. We cannot determine whether this peak is present for samples having lower concentrations of Al because of the probe background signal. In these faster-spinning-speed spectra, the peaks at about 110 ppm and -50 ppm are spinning sidebands. The relative intensity of the peak for Al(6) appears to increase with decreasing Al content of the sample, owing to the increasing relative contribution from the broad Al(6) probe background.

The significance of the small peak at about 30 ppm is not clear. Dupree et al. (1985) have assigned it to Al(4) with four B next-nearest neighbors. Risbud et al. (1987), however, have observed it in spectra of SiO$_2$-Al$_2$O$_3$ glasses and have assigned it to pentahedrally coordinated Al [Al(5)]. There are few model compounds with 27Al chemical shifts in this range, and discrimination between these two possible assignments is not currently possible. The absence of the peak at about 30 ppm for the most-concentrated sample made with albite glass solute may indicate that the presence of Si or Na in the glass changes the structural environment giving rise to this peak. Since the total intensity of this peak is low ($\pm 2\%$) and its assignment so poorly understood, further interpretation is unwarranted.

With the exception of the small peak at ~ 30 ppm, the 27Al spectra of all the samples are essentially identical. The Al(4) and Al(6) chemical shifts are essentially identical within experimental error. What small variation there is (56.5 ± 1.5 ppm and about 2 ± 2 ppm) is not systematic with Al content and is likely due primarily to poor signal-to-noise ratio for some spectra, small phasing errors, and to overlap of the Al(6) peak and the second spinning sideband from the Al(4) peaks. Similarly, the area of the Al(6) peak relative to that for Al(4) is essentially constant at $8 \pm 2\%$ (as determined by computer simulation using the Nicolet program NMRcap and the 4-kHz mass spectra). Because these spectra were obtained under short-pulse-width conditions, this peak area probably represents the relative abundance of Al(6) in the sample (Fenzke et al., 1984; Kirkpatrick et al., 1986). The presence of a very broad peak due to sites with very large quadrupole coupling constant (≥ 15 MHz) cannot be ruled out but seems unlikely. The quantitation method of Kirkpatrick et al. (1986) cannot be used for these samples because of the multiple peaks.

The 27Al spectra presented here provide further evidence that Al commonly exists in more than one coordination in glasses containing both Al and B (Schiller et al., 1982; Dupree et al., 1985; Oestrike et al., 1986; Hah-
nert and Hallas, 1986). In contrast, aluminosilicate glasses containing no B do not have detectable amounts of nontetrahedral Al if the ratio of Al/(M+ + 0.5M'2+) is less than unity (i.e., peralkaline and framework compositions; Riebling, 1966; Taylor and Brown, 1979; Mysen et al., 1981; McMillan and Piriou, 1983; Oestrike and Kirkpatrick, in prep.). This difference suggests that the stabilization of nontetrahedral Al may be due to coupling between the B(3)-B(4) equilibria and the Al(4)-Al(6)-Al(5) equilibria, because borate and borosilicate glasses usually contain both B(3) and B(4) (Bray, 1985, and references therein).

Although the 27Al NMR data presented here appear to confirm the lack of change in the structural environment of Al suggested by the calorimetric results, one note of caution is that NMR spectra were obtained for glasses, whereas the solution calorimetric data were obtained for melts of the same composition. At present there is no fully effective way of assessing possible changes in the Al environment during the glass transition. Several studies suggest, however, that major structural changes in the nearest-neighbor configurations do not occur between the molten and glassy states (Riebling, 1966, 1967; Waseda and Toguri, 1977; Seifert et al., 1981; Domine and Piriou, 1983; Hochella and Brown, 1984, and references therein), and we believe that it is unlikely that there are significant changes in local coordination during quenching.

ACKNOWLEDGMENTS

This work was supported by NSF Grants EAR 8513916 (A.N.) and EAR 8408421 (R.J.K.). We wish to thank J. Stebbins and M. F. Hochella, Jr., for reviews that have improved this paper and Brian Phillips for the deconvolutions of the 27Al mass spectra.

REFERENCES

Hahnert, M., and Hallas, E. (1986) Zur aluminiumkoordination in alu-
inborsilicat-glasern. Zeitschrift für Chemie, 26, 144-145.

sance of alkali and plagioclase feldspars, American Mineralogist, 70, 106-123.

mochemistry of MgAl2O4-Al2O3 defect spinels. American Ceramic Society Journal, 69, 418-422.

MANUSCRIPT RECEIVED APRIL 23, 1986
MANUSCRIPT ACCEPTED MARCH 23, 1987