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Subregular model for multicomponent solutions
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AssrRAcr

The subregular Margules model is applied here to quaternary solutions in order to derive
equations for excess properties (Ft, Z*t, etc.) and partial molar excess properties (RZln

7,, etc.) for components in the mixture. Formulae generalizing the subregular model to
arbitrary numbers of components and expressions for higher derivatives of the free energy,
for use in binode and spinode location. are also presented. The derivation indicates that
ternary mixing parameters exist independent of their component binaries. It is therefore
impossible to estimate ternary interaction coefficients having knowledge only of the mixing
properties of the binaries. Quaternary and higher-order coefficients are not required for
multicomponent subregular solutions.

INrnonucrroN

The subregular or asymmetric mixing model has been
used extensively in the geological, metallurgical, and
chemical literature. In geological systems, phases con-
taining four or more components are common, and, as
discussed by Andersen and Lindsley (198 l), the extension
of the subregular model to these systems is not intuitively
obvious and most attempts in the literature are in error.
The formulation for a binary (e.g., Thompson, 1967) is
straightforward, and the derivation for ternary subregular
solutions given by Andersen and Lindsley (1981) (after
Wohl, 1946) is a clear exposition of the problems and
pitfalls that arise in multicomponent systems. Although
Andersen and Lindsley's ternary equation is correct, all
currently available derivations of the subregular model
for quaternary and more complex solutions are, as far as
we are aware, incorrect. Jordan et al. (1950) presented an
expression for the activity coefrcient in a quaternary so-
lution that must be wrong because relabeling of any two
of the component indices does not yield an equivalent
equation. Typographic errors mar the expressions of Cur-
rie and Curtis (1976) and Ganguly and Saxena (1987). In
addition, Currie and Curtis erroneously suggested that
ternary interaction coefrcients can be derived from the
properties of the binaries (Chu and Sposito, 198 1). An-
dersen and Lindsley (1988) gave the correct expression
for Gxs, but their equation for RZ ln "y must be in error
since it does not reduce to the correct expression for the
binaries. Lastly, a concise formulation for asymmetric
mixing-model parameters has been suggested by Berman
and Brown (1984, 1987), but this results in interdepen-
dent symmetric and asymmetric interaction parameters
in ternary and higher-order systems.

In view of these errors and ambiguities, our intention
is to present a correct derivation ofexcess mixing prop-
erties in quaternary subregular solutions that will serve
as a useful reference. We feel that the derivation here is

correct, and we argue that it is. Furthermore, the exten-
sion to even more complex solutions may be written down
without further derivation. The development, while te-
dious, is clear so that others may verify the result.

Dnnrv,lrroN

The formalism of Thompson (1967) is followed. This
involves expressing the excess molar property, for ex-
ample, Gxs, as a suitably truncated power seriesr in the
n - | (in this case, 4 - | : 3, with X, eliminated) in-
dependent mole fractions of the mixing end-members:

G*s:(KJ *  arXr*  atXr*  aoXo
* brrX3 + bxX2X3 + b24X2X4
* brr& + b34X4X3 * booXS
* crrrX) I crnXlXt I crroXlXo
t crrr& I crrrXlX, I cttoXlXo
I cooo& I coorXlX, I coorfiX,
+ crroXrX.Xo (l)

Successive substitution of Xt : l, Xr: l, Xt: l, Xo:
I (with the other X, : 0) yields, since GXs = 0 at each
pure end-member composition.

K :  O ,
ar :  -br ,  -  cr r r .

Qr:  -br ,  -  cr r r .
. ,  - - h
u4 - u44 .444.

Substituting these relations, Equation I becomes

G*":brrXr(X, - 1) + u3X3(X3 - l) + b44X4(Xo- l)
+ bnX2X3 + b24X2X4 + b34X3X4
-l crrrXr(X] - l) + crrrXr(fi - l)

tThe convention for power series coefficient labels follows
that ofCurrie and Curtis (1976), not that ofThompson (1967).
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-t coooXo(X] - l)
+ crrrfiX, t crrrXrfi I crroXlXo
I coorXrX] I crroXlXo
I coorX.Xl I crroXrXrXo. Q)

In order to convert this expression into one conlaining
the familiar Margules parameters W, and W,,, all terms
need to be made third order in mole fractions of the end-
members.

Since in a binary the interaction coefficients W,, arrd
ll',,containthe products X,\ andX/il, extension to mul-
tlcomponent systems requires the same third-order forms.
Additionally, the third-order terms should contain prod-
ucts of more than one mole fraction: )il terms are for-
bidden since they do not represent a mole-fraction prod-
uct ofeither a binary or a ternary interaction coefficient.
These requirements guide the remaining substitutions to
bring Equation 2 into its final form. First, rhe X,(fi - l)
terms are brought to mixed products by substitution of

[ 
.t'

l t - ) x , l r o r \ :
L i * i l

G's: brrXr(X, - 1) + byX3(X3 - l) + b44X4(X4 - l)

+ bnX2X3 + b24X2X4 + b34xjxo
-t crrrX.(Xj + 2X4X3 + 2X4X1 - 2X4

+ x3 + 2X3X' - 2X3 + X, - 2X')
I crrrX.X| i crrrfiX, I crroXoX] I coorXlX,
I crrrXr(X] + 2X4Xz + 2XoXt - 2X4

+ x 7 + 2 X 2 X t - 2 X r + X - 2 X , )
I crroXoX\ I coorXlX,

I coooXo(X\ + 2X3X2 + 2X3Xt - 2X3

+ x 1 + 2 X 2 X t - 2 X r + X - 2 X , )
I crroXrXrXo. (3)

Next, terms involving X,(X, - l) are brought to third
order by substitution ot - 

? 
X, for (X, - l) and by mul-

tiplication of these substituted terms and others that con-
tain second-order terms in { by Xt + X2 + X3 + X4
(which is equal to 1). This produces

6xs : - fiX2(br, + crrr) - XlX.(b.. -l cr.rr)
- fi,Xo(boo I cooo)
- X7X,(b,, I 2c,rr) - X3X,(br, + 2crrr)
- XtrXr(b* + 2cooo)
+ XTX3ebn -t bzs - br, - crr. * crr, - 2crrr)
+ X7X4eb44 t bro - br, - cooo I crro - 2crrr)
+ &X2(-U3 t br, - br, - 2c.r, I crr, - crrr)
+ XX4eb44 ! bro - br, - 2cooo I crro - crrr)
+ &,X2Gb44 * bro - br, - 2cooo I coo, - crrr)
+ XZX3?b44 I bro - b., - 2cooo * coo, - crrr)
+ XI2L(-zbr, + br, - 2br, - 2crr.' - 2crrr)
+ Xx2xo(-zboo + bro - 2br, - 2cooo - 2crrr)
+ XI3X4e2boo + bro - 2br, - 2cooo - 2crrr)

1 0 1 7

+ X2X3X4(-2boo + bro - 2b, + bro + br, - 2bn
- 2cooo - 2crr, - 2crr., I cr.r). (4)

Equation 4 contains four ternary terms (involving XrXrX.,
X.X3X4, etc.). As noted by Andersen and Lindsley (1981),
these are functions of both second-degree symmetric eoef-
ficients (b,,, b) and third-degtee asymmetric coefficients
(c,,u, etc.) in the original power-series expansion, which is
undesirable. With some effort, the portions of the ternary
terms involving b,, and b,, can be distributed into the bi-
nary terms. To do this, all b, terms multiplying X,X-X,
need to be converted irfi.o X8 and X14 terms, which
will include them in the binary subregular products.
Equation 4 already contains the asymmetric binary in-
teraction coemcients, the use of which simplifies the fol-
lowing algebra. Applying Equation 4 to each of the bi-
naries in turn and using the definition for a binary
asymmetric quantity,2

Gxs: XiryWo + X,XWjt,

we obtain

Wrr :  -bt  -  2crr r ,

Wrr :  -br ,  -  cr r r ,

W ' : - b t r - 2 c r r r ,

W r , : - b r r - c r . r ,

Wro:  -boo -  2cooo,

W o r : - b o o - c o o o ,

W r r :  - b . r ,  I  b r -  b r r -  2 c r r r ] -  c r r r -  c 2 r r ,

Wrr: -bn I br, -  br, -  c.r,  I  crr,  -  2crrr,

Wro: -boo t bro - br, - 2cooo * coo, - c2rr,

Wor: -boo t bro - br, - cooo I crro - 2crrr,

Wro: -boo I bro - br, -  2cooo * caa3 - cy3,

Wor: -boo r bro - br, -  cooo I crro - 2crrr.

In Equation 4 the factors of rhe X,XrXt term involving b
are (-2bn I br, - 2brr). The definitions of the 'Zu terms
reveal

br r :  Wr ,  -  2Wr , ,

b r r :  W r ,  -  2 W t r ,

c r r r :  Wr ,  -  Wrr ,

C3rr: W., - Wrr,

Wn + W32: 2bzz - 2(br, + brr) - 3(cr, I crrr)

I (crr, * ctrr),

yielding

'?The subscript convention for I4/ follows Wohl (1946) and
Andersen and Lindsley (1 98 1) and is opposite to that ofThomp-
son (1967). Subscripts farther to the right denote higher powers
of X; the interaction coefficient W,,applies to the mole fraction
product X,\, whereas W1, applies to XrX?. Thus, 2,,, for ex-
ample, is the excess partial molar free energy of i infinitely diluted
ln J.
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b4: t /z(Wr, + W) t (W,, - 2W' + Wn - 2W2)

+ %(Wr, - W,r l Wr, - Wr.) - t/z(c24 * crrr).

Therefore,

(-2b' I br - 2brr) : -t/z(cr, I crrr)

+ 3(W2t - Wu)

* Vz(Wt, I Wtt)

+ 3(W, - W")
I t/z(W, t Wrt)
-l t/z(W, t Wtr)

: -t/z(c2y I crrr) I 3cr'
't t/z(W^ t Wrr)

I 3cr' t Yz(Wt, * Wrr)

* Vz(Wn -l Wtr).

Returning to the terms multiplying X.X2X3, substituting
the above result, and using the expressions for cr, and
czll,

XX2X3(-2U, I br, - 2br, - 2crr.. - 2crrr)
: XrXrXrlcrr, -l crr, - r/z(crr, * crrr)l

-t XrXr(t/zXr)Wr + XrX2(VzXr)W,
-t X rX r(t/zX r)W', I X'X'(t/zX')W',
-l XrXr(VzX,)Wt' + X'X.(YzX')W,.

This factors the X,XrX, term. The first term on the right-
hand side defines the ternary constant Wrrr, in which no
b, coefficients appear, and all of the D, terms have been
transformed into terms involving the binary coemcients
W,,. The remaining three ternary products are disaggre-
gated into their ternary and binary interaction coemcients
in analogous fashion.

After eliminating the binary coemcients from the ter-
nary mole-fraction products and collecting like W,,terms,
the complete expression for excess G is

GXS : X,X2IX, + VZ(X, + X)]WN
+ XX2lXt * t/z(X' + X)lwrl
+ XX3\X3 + Vz(X, + X)IWB
+ XX3lXt + Vz(X' + X)lW3l
+ x,xolx4 -r t/z(X2 + &)lwr4
+ Xl4lxt + Yz(X, + X)lW4l
+ x2x3lx3-t vz(x' + x)lwr3
+ X2X3\X2 + Vz(X, + X4)1W32
+ x2x4lx4 * t/z(X' + x3)1w24
+ X,XolX2 -t t/z(X, + &)1W42
+ x3x4lx4 -r lz(X' + x)lw3o
+ x3xolx3 -t vz(x' + x)1w43
+ XtX2X3Wn + XtXzX4Wr24
+ xtx3x4wB4 + x2x3x4w44, (5)

where the W,, and Wroterms are

W,r :  -br ,  -  2crr r ,
' l l 'rr: -br, - crrr,

W': -b" -  2c""
Wtr :  -bY -  caY,

Wro:  -boo-  2cooo,

W ^ :  - b o o -  c o u o ,

Wr, : -b, I br, - br, - 2cr' I ce2 - c222,

Wrr: -b* I br, - btr. - c.t, I crr, - 2crrr,

Wro: -boo I bro - br, - 2cooo I c4a2 - c222,

Wor: -boo * bro - br, - cooo * crro - 2crrr,

Wro: -boo I bro - brt -  2cooo I c44 - cv,

Wor: -boo l bro - brr - cooo * crro - 2ctrr,

Wrrt:  c222 + ca-o - t /z(cr4 r c::z).

Wrzq: c222 + c444 - t/z(czzc I coor).

Wrzc: ca.,. + c444 - r/z(crro I coor),

W n q : c 2 2 2 +  c a . , , +  c 4 4 4 +  c n 4

- t/z(crr. + ca32 + c224 + c442 t ctro * coor)

: cnq * wrn I wrro I wD4 + wt2

-  w ^ I  w B -  w 3 t +  w t 4 -  w 4 t .

The binary ll terms are repeated here for a complete

collection ofbinary and ternary interaction coefficient def-

rnrt10ns.
Setting cat : 0 yields the symmetric ternary expression

given by Wohl (1946), and sett ing Xc, Xs: 0 and W":

I,2,, successively recovers the ternary and binary asym-

metric and symmetric regular solution expressions given

by Wohl (1946).

The generalization of Equation 5 to an arbitrary num-

ber of components, r?, is

n n l l -
c*s :  > 2 l ,x, ln ' ,1x, +'nZ i '^ l

; ; . ,  l .  L  ^ - ,  I

t , . l l
+ w,,lx + th> xkll

L I;', ))

.i i)x,x,xow,r". (5')
i : 1  j > i  k > j

Activity coemcients are derived from Equation 5 fol-
lowing Wohl (1946),

R^n .y, : [#(n 4o*"f.,,r_,
It is helpful to recall that

( . ,
NaX, : ]tt -- x,l 1r.,,:_i , where N : D n*"  0 n ,  l - X ,  i f  i +  j '

Only the result of the derivation is given since the inter-
mediate expressions are cumbersome and are not illu-
mlnatlng:

RTln1,: VzWrrXrll - X, * Xz + 2Xr(Xt - X, - l) l

* t/zWrtXrlT - Xt - X2 - 2X,
. ( x t -  x , -  l ) l

4- VzW,.X.ll - X, I X3 + 2Xl
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+ vzw,,x,l'r(*:;,*: 
",t)' 

,.*,
( x . -  x 3 -  t ) l

+ YzWroXoll - X, * Xo + 2X,
. ( x , - x 4 - t ) l

* VzWorXo[7 - Xt - X4 - 2Xl

( \ -  x4 -  r ) l
+ W*X2X3(X2 - X, - t/z)

+ W32X3X2(X3 - X2 - t/z)

+ W24X2X4(X2 - Xo - Vz)

+ W42X4X2(X4 - X, - Vz)

+ W34X3X4(X3 - Xo - Vz)

+ W4X4X3(X4 - X, - Vz)

+ wnx2x3(l - 2xr) + wr24x2x4(l - 2X')
+ w34x3x4(1 - 2x')
- 2W44X2X3X4. (6)

Activity coefficients for the remaining three compon-
ents may be obtained by cyclic permutation of indices
( l - 2 , 2 - 3 , 3 - 4 , 4 -  l ) .  A s  b e f o r e ,  s e u i n g  X r ,  X o : 0
recovers the binary asymmetric activity coefficient
expression, and further setting Wa : W1, recovers the
symmetric binary activity coefficients given by Wohl
(1946), Equations 5a and 39a, respectively. The terms
multiplying each W,, can be independently differentiated
and verified individually. The generalization of Equation
6 to an arbitrary number of components, n, is

n v

RI ln7 , :>+
i r l  L

'{ty,ill - X, * xj + 2x)(x1 - x, - l)l

+ wj,Lt  -  xt  -  x j  -  2xt(x1- 4 -  1) l )
n n

+>>xXj

,i,r'i,' - X, - vz) + w1,(Xi - X, - vr
+ wtr(7 - 2X,)|

n n

-2>>)w$x,x,xu. (6,)

BrNonBs 
"Joii;" 

rN rHE ''BREGULAR M.DEL

When mixing in a multicomponent system is nonideal,
phase separation may occur, giving rise to binodes sep-
arating coexisting phases. Within each binode is con-
tained the spinodal surface, separating unstable and
metastable regions. As other authors have reported, the
spinode is the easier of the two to determine (Meijering,
1950, l95l; Prigogine and Defay, 1954; Barron, 1978).
The spinodal surface is defined by the general equation
det(A) : 0 (Bernard et al., 1967), with the elements of
matrix A defined as

62G

A is a (n - 1) by (n - l) 
ii1.i. 

since one of the { terms

is redundant; X,: I - 
> X,, for example. G is the

system free energy, with

G : 2 X,u,, trt : tr? + RI ln Xi + RT ln tt. Q)

Each component's ideal contribution to the free energy is
given by the first two terms of p,, and the nonideal por-
tion is the last term. The standard state chemical poten-
Iial, p!, is not compositionally dependent and so will not
contribute,to,any A,-. The second term will contribute

/ r \  l r  r \
either RI{} l to s,-or Ri ' (  u + u l to, l^^.  The third

\  , /  \^,  ^- /
term, when summed over all -(, is GXS and so will con-

a2Gxs
tribute - to l,-. Collecting these parts, the elements

oApA n

+>>(D ' rDf '+DI iDr " )

f  ,  l l
+ Wj, lX,+ Vr> Xr l l

L  k * ,  l )

+ > > ) wru1x,1o,;otr" + DfDf,l
i = t  j > i  k > j

+ xjlDtrDr + ryDr"l

+ XklDtiDf" + DiDf,lj, (8)

where

Dr ' : 6 , ^ -6 , , ,

ofA are then

l t  A . \
At^ :RT l_  ++ l

\ a '  a n /

I t n f
1w,, lx,  + 1/r> xkl
l L k + t l

. 
Z ?, 

(D',,xi + Dtix)

lr,lrr.* *i or.l+ r,lo. + v,Z,D*fj
l  L  k t t  I  L  k ? t

+>>(DT"X i+Df ,x )
i : l  j > i

I  i  1  f  ,  l l
lw, , lo, ;  + vz) o, i l+ w,, lDl ,  +t /z> Df l l
l L n - , l L k a i l l

k+t k+j

.  f r  i r i : i
" r r  

[ 0  i f i + j
a -

axpx* Note that n has been designated the dependent mole frac-
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tion in these formulae. To locate the spinode, one ap-
proach is to determine the temperature at which a given
composition lies on a spinode (Barron, 1978). After de-
termining the spinodal temperatures for a series of com-
positions, the spinode at a given temperature may be ob-
tained by contouring the various temperatures calculated.
An elegant formalism exists to determine the spinodal
temperature, given a composition (Barron, 1985). A can
be partitioned into its temperature-dependent and tem-
perature-independent portions, giving A : H - TS. Seg-
regating the terms of A in this way, the spinode's tem-
perature is given by the highest eigenvalue of S-'H. This
is a well-understood problem in linear algebra that nu-
merical techniques may solve easily. Spinode location at
a given temperature is, in essence, a problem ofcontour-
ing a given temperature within a field of temperatures at
known compositions.

The eigenvector corresponding to the eigenvalue at a
given composition is related to the tieJines giving the
compositions of the coexisting phases across the binode.
This eigenvector, X", indicates a compositional direction
of zero curvature of the free-energy surface at the com-
position and temperature. Though subparallel to the tie-
lines crossing the binodal surface that mantles the spi-
node, this vector is distinct. However, where the spinodal
and binodal surfaces coincide at the consolute point, this
vector is parallel to the binodal tie-lines and is a fair
approximation to them in the vicinity of the consolute
point. Therefore, binodal tie-lines can be approximately
determined, at temperatures near the consolute point,
while the spinode is being located.

Not only the curvature, but the change in the curvature
ofthe free-energy surface is zero in the direction X'at the
consolute point (Prigogine and Defay, 1954). This aids in
location ofthe consolute point, provided the directional
derivative of A in direction X" at composition X-, X. . (X" .

VAlx,).X-, is known. VA is a three-dimensional matrix
whose components are given by

/ r(vA)a^: Rr(+ -+\
\ ^ ;  A ' -  /

. i i (D, :Dr ,+DiDr , )

- i i@iDf"+DyDr)
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t l
+ W,,lDy^ + r/22 Of'l l

I  r , - i  l l
k+j

+>>(DyDf "+Df "Dr )

,  

' - t  

, t ' '  ,  l- \w, lo, t ,  + vz) Dyl
t L k + i l

f : l l
+ W,,lDt,n + vz> D'tll

I  r * i  l l

,  

** t

+>>2w,u
i : l  j> i  k>j

I,,l*.+ n) or)
k+j

+ w,,lor, . "2,or)j

.Iry"lD'iDf' + DfDf"l
+ Dl"lDI:Dr" + DttDyl
+ DtrlDIi"Dr" + DFD?"D. (9)

Note that only the first term of VA is compositionally
dependent. If X" is normalized to a unit vector, the cur-
vature along X' at X. is

x.'(x..vAlx.) x.: > *,2,rr2 ,"nn",^,

where X; are the individual components of )f and VA
has been evaluated at composition X.. These formulae
allow one to calculate a temperature at which a given
composition lies on a spinode as well as to check whether
the composition represents a consolute point, since the
change in curvature will be zero there. The directional
derivative may also be used to follow the spinodal locus
at a given temperature once a'point on the spinode is
found.

DrscusstoN

The derivation of Equation 6 shows that quaternary
and higher-order constants do not occur when more than
three components join in a subregular solution, contrary
to the assertion of Ganguly and Saxena (1987) following
their Equation 2.12. Such constants would only pertain
to mole-fraction products such as XXtXJ,with (i + j +
k + L), yet the power series (Eq. l) is truncated before
these terms appear, as dictated by a subregular model.
Extension of Equation 5 to more components only adds
r,re1v binary W,,terms and new ternary W,,oterms for the
t - \  t n \
( J I Uinarv combinations and the [ 

" 
I ternary combina-

\ z t  \ J /

tions of mole fractions.

Berman and Brown (1984, 1987) developed a compact
formulation for excess quantities, substantially simplify-
ing the formulae. Their starting point is the set of third-
order mole fraction products in the power-series expan-
sion (Eq. 4). The power-series coefficients multiplying
these products define their interaction parameters, re-

r t , l
lw, , lof ,  +, t  Z Df" l
l L k + i  J
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ferred to here as Wfif, giving Wlfr: -br, - c222, for
example. In a three-component system, there is one ter-
nary constant, Wllr: -2b, + br - 2bz2 - 2crr. - 2crrr.
Defined this way, the ternary interaction coefficient de-
pends on both the symmetric and asymmetric properties
of the binary since it involves both b and c coefficients
(see Eq. l). The liberty to set this parameter to an arbi-
trary value, e.9., zero, must be available to the modeler
in the absence ofdata on ternary behavior. Yet doing so
implies an unwarranted relation between symmetric and
asymmetric parameters in this definition. Were W!,a, set
to zero, a relation between binary l-2 and l-3 properties
(through brr, crrr, brr, and crrr) and binary 2-3 properties
(through brr) must hold and probably constitutes a con-
tradiction within the solution-model parameters. Ander-
sen and Lindsley (198 l) advised against this definition of
interaction parameters, suggesting instead that the bina-
ry-related coemcients be factored out of those of the ter-
nary. This approach, which we have followed, yields more
complex expressions but no contradiction internal to the
model if the ternary parameters are set arbitrarily.

Algebraic manipulation of the definitions of the W,,
and War terms can readily yield expressions for some of
the power-series coefficients. For example, (Wr, - W,r)
: c222, artd (Wr, - Wrr) : c222 + ca.,. I (crr, - crrr). This
exercise affords some insight into the properties of ter-
nary and higher-order solutions. First, suppose that in a
ternary solution, each of the constituent binaries are sym-
metric. What implications does this have for the prop-
erties for the ternary interaction coefficient? In general,
one would probably treat this case by truncating the pow-
er series for Gxs (Eq. l) after the second-order terms. This
yields the well-known equation for a ternary regular so-
lution in which no ternary term can appear,

Gxs : XtXzWn + X2X3W4 + X.X3WI.

The fact that each binary is symmetric does not, however,
require that there is no ternary constant. From the defi-
nition of a symmetric binary, we obtain Wr, : Wrr, W,3
: Wzt, and Wr, : Wrr.Using these definitions and our
expression for the third-order expansion yields crr, : 0,
cys: 0, cyz - czzt: czzz - c222, or that crrr: c223. From
the definition of Wn3,

Wrzt: c222 + ca, - t/z(cry I crrr),

: (wr, - w) * (wr, - w,.)
- t/z(crr, * crrr)

r 2 2 f

:  -cstz .  (10)

Thus, Wr.r, is not required to be zero even though all the
binaries are symmetric. Therefore, no statement about
the magnitude of the ternary interaction coefficient can
be made on the basis of the symmetry of the binaries; an
independent measurement of ternary properties must be
made to determine crr, (and Ww). If binary l-2 is not
symmetric, then its W, and W^ terms can yield values
for the power-series coemcient cr, through the difference

(Wr, - Wrr).The same result obtains: knowledge of the
binaries sheds no light on the properties of the ternary
cofLstar]]. w23.

Ternary properties yield no information on binary
properties either. Suppose a value were known for the
ternary constant Wrrr. Through Equation l0 there is a
relation among Wrrr, (Wr, - Wrr), and (W3r - Wrr),but
it involves the power-series coefrcienls cr, and ca32, of
which nothing is known unless values for (Wt, - Wrr)
and (Wr, - W,r) are known as well. Moreover, if Wrn,
(Wr, - W,r), and (Wr, - Wrr) are all known, these do
not supply adequate information to extract W, or Wrr,
since these coefrcients also involve Drr.

Collectively, these observations show that ternary con-
stants exist independently of the properties of the con-
stituent binaries, contrary to Currie and Curtis's assertion
(Cunie and Curtis, 1976). Wohl has suggested (Jordan et
al., 1950) that an estimate for the ternary interaction pa-
rameter is afforded by (Ganguly and Saxena, 1984, 198'7)

W,r, x Vzl(Wr, - Wrr) + (Wu - Wrr)
*  (wr ,  -  wrr ) ] .  (11)

The definition for Wr, indicates, however, that an ap-
proximation lo c2n + cr, is needed to approximate Wr,
(see Eq. 10), yet Equation ll contains the term (W.' -

W.rr), which yields crr, - crrr. Thus, Equation ll is es-
sentially ad hoc and cannot in any way be regarded as
applying an unequivocal constraint on the magnitude of
wrrr.

The observation that the ternary constants exist inde-
pendently of the binary coefficients makes good crystal-
lochemical sense. Binary interaction coemcients only ac-
count for the forces arising between pairs of molecules.
A ternary interaction parameter represents new interac-
tions involving triplets of different molecular species, un-
related to pair-wise behavior. Although it may be true
that ternary interaction parameters are, in general, neg-
ligible, this says only that pair-wise interactions domi-
nate, not that triplet interactions cannot arise, nor that
they are necessarily insignificant when they do arise.
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