Major-cation substitution in phlogopite and evolution of carbonatite in the Potash Sulphur Springs complex, Garland County, Arkansas

RICHARD C. HEATHCOTE,* GEORGE R. MCCORMICK
Department of Geology, The University of Iowa, Iowa City, Iowa 52242, U.S.A.

ABSTRACT

The petrogenetic relationships among three carbonatite units in the Potash Sulphur Springs alkaline complex are interpreted using petrographically determined relative ages and mineral chemistry of phlogopite contained in the carbonatites. The oldest sovite (C₁) is interpreted to have magmatically differentiated to the youngest sovite (C₃). The intermediate-age alvikite (C₂) is interpreted to have formed by magma mixing of the C₁ sovite and residual ijolite magma. Composition of the hybrid C₂ alvikite was probably controlled in part by the degree of sovite magma evolution at the time of the mixing. The compositional trend from C₁ to C₃ sovite is Si and Mg enrichment and Al, Ti, and Fe depletion. Oxidation of Fe occurred concurrently with depletion of Al, causing the later phlogopite generations to incorporate Fe³⁺ in tetrahedral sites. The compositional evolution of carbonatitic phlogopites is generalized as the replacement of a hypothetical Ti analogue of siderophyllite [ArFe⁺TiR⁺Si₄R⁺O₁₂] by ferriphlogopite [ArMgSiFe³⁺O₁₂]. The phlogopite of C₂ alvikite differs from that in C₁ sovite by replacement of end-member phlogopite [Ar,Mg₆Si₃R⁺O₁₂] with end-member annite [ArFe³⁺Si₄R⁺O₁₂]. Similar compositions of phlogopite in alvikite, feldspathic fenite, and phlogopitized melteginitic and ijolitic rocks suggests that separate Na-Al- and Mg-Fe-bearing fenitizations occurred when alvikite magma was present. Oscillatory zoning in phlogopites of C₂ and C₃ carbonatites suggest that quiescent conditions existed in alvikite and sovite magma chambers late in the evolution of these magmas.

INTRODUCTION

This investigation was designed to determine what major-element variations exist in micas in the carbonatite suite of the poorly exposed Potash Sulphur Springs intrusive complex, west-central Arkansas (Fig. 1), and to determine whether any observed variations can be used to reconstruct the petrogenesis of the carbonatite units in the absence of diagnostic field relations. Mica may provide a record of evolving magma composition because of the wide variety of cations that readily substitute in its various structural sites (Nockolds, 1947; Foster, 1960; Němec, 1972; Speer, 1984). Nockolds reported a range of Al₂O₃, MgO, and FeO proportions in micas from a variety of rock types and concluded that Al₂O₃ content, relative to MgO and FeO, is dependent on mineral paragenesis. Nockolds also concluded that the relative proportion of MgO and FeO is dependent on the degree of magma differentiation and is independent of paragenesis. Rimsaite (1969, p. 359) concluded that micas in the Oka carbonatite “represent the entire crystallization history” of that unit. Petrographic evidence from Oka reveals, according to Rimsaite, that discontinuous compositional shifts between zones in micas were caused either by replacement or by incipient crystallization of other minerals. This discontinuous variation is superimposed on gradual compositional variation caused by magmatic differentiation.

Major-cation variations in carbonatitic micas have been reported from Oka, Quebec (Rimsaite, 1969), Iron Hill, Colorado (Nash, 1972), occurrences in the Soviet Union and Uganda (Rass and Boronikhin, 1976), southern West Greenland (Secher and Larsen, 1980), Jacupiranga, Brazil (Gaspar and Wyllic, 1982), and central Arkansas (McCormick and Heathcote, 1987). Core-to-rim compositional variations in carbonatitic micas have been discussed by Nash (1972), Gittins et al. (1975), and Gaspar and Wyllic (1982). Eckerman (1948) and Vartiainen (1980) presented optical proof of carbonatitic phlogopite zonation and discussed the implications of this for magma differentiation. In this report, petrographic evidence for relative age is described for three carbonatites of the Potash Sulphur Springs complex, and the nature of major-cation substitution is interpreted for phlogopite that crystallized as these magmas evolved.

Magnetic phlogopite crystals selected for analysis possess sharp margins and euhedral to subhedral shapes; they are not altered. Phlogopite crystals that display anhedral shape and altered margins or cleavage traces are interpreted to be xenocrysts from elsewhere in the complex. The sources of the most common xenocrysts and xeno-
liths found in the Potash Sulphur Springs carbonatites are the ijolite rocks and the fenites.

METHODS OF INVESTIGATION

Mineral compositions were obtained from polished thin sections by energy-dispersive X-ray methods on ARL-EMX-SM microprobes at the University of Chicago and the University of Iowa. Microprobe standards for the major elements were natural minerals and synthetic silicate glasses; Kakanui hornblende was used as a working standard. Analytical precision estimated from repeated analyses of major oxides in Kakanui hornblende was ±6.2 relative percent or better at one standard deviation; the minimum detectable level for the elements of interest was 0.2 wt%.

Recognition analyses by wavelength-dispersive spectrometry indicated that F is present in all phlogopite populations of this study. Ba concentrations are below eos detectability in all samples; thus interference of Ba Z-series X-ray emission peaks of this study. Ba concentrations are below eos detectability in all samples; thus interference of Ba Z-series X-ray emission peaks of this study. Ba concentrations are below eos detectability in all samples; thus interference of Ba Z-series X-ray emission peaks of this study. Ba concentrations are below eos detectability in all samples; thus interference of Ba Z-series X-ray emission peaks of this study.

Analytical conditions were 15-pm spot size, 15-kV accelerating voltage at 100 nA, and 60-s counting time. Background peak counts for the elements were determined with the program of Bence and Albee (1968).

Representative phlogopite and clinopyroxene analyses are given in Tables 1 and 2; all phlogopite analyses obtained were used in constructing Figures 2-6. Fe is reported as Fe²⁺. Mineral formulas were not recalculated for Fe³⁺ although it is known to be present in some minerals. Vanadium ore occurs in the Potash Sulphur Springs complex, and V was detected in certain clino-pyroxenes (Table 2), but standards for this element were not employed in the eos routine so the significance of the recorded V value is unknown.

GEOLOGIC SETTING

The Potash Sulphur Springs complex is a subvolcanic structure, roughly circular in plan, with approximately 2.6-km² surface exposure (Fig. 1). Unpublished geophysical information indicates that the igneous body plunges steeply toward the Magnet Cove complex, 8 km to the east (D. R. Owens, pers. comm.). Syenites are the dominant outcropping rock types of the complex; small exposures exist of pyroxenite, melteigite, ijolite, malignite, nephelinite, phonolite, and carbonatite. Numerous lamprophyre dikes are also present (Hollingsworth, 1967; Howard, 1974), and sodic and potassic fenites are developed at the periphery of the complex. Natural exposure is limited owing to deep weathering and dense vegetation; however, large exposures were excavated on the east and north sides of the complex after Union Carbide Corporate.

Table 1. Chemical composition of phlogopite (EDS microprobe data)

<table>
<thead>
<tr>
<th>Mineral</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sovite (la)</td>
<td></td>
</tr>
<tr>
<td>M439-2-1</td>
<td>34.59</td>
<td>2.68</td>
<td>15.46</td>
<td>18.85</td>
<td>0.46</td>
<td>13.82</td>
<td>0.24</td>
<td>9.91</td>
<td>0.46</td>
<td>96.47</td>
</tr>
<tr>
<td>M439-3-6</td>
<td>36.11</td>
<td>3.88</td>
<td>16.40</td>
<td>20.85</td>
<td>0.30</td>
<td>18.40</td>
<td>0.31</td>
<td>10.28</td>
<td>0.32</td>
<td>97.41</td>
</tr>
<tr>
<td>Sovite (lb)</td>
<td></td>
</tr>
<tr>
<td>M307-1-8</td>
<td>39.97</td>
<td>0.95</td>
<td>12.03</td>
<td>13.71</td>
<td>0.30</td>
<td>22.38</td>
<td>0.24</td>
<td>9.33</td>
<td>0.30</td>
<td>97.14</td>
</tr>
<tr>
<td>M339-2-2</td>
<td>38.44</td>
<td>1.35</td>
<td>12.58</td>
<td>13.71</td>
<td>0.32</td>
<td>22.38</td>
<td>0.31</td>
<td>9.53</td>
<td>0.32</td>
<td>97.14</td>
</tr>
<tr>
<td>Sovite (III)</td>
<td></td>
</tr>
<tr>
<td>M488-2</td>
<td>41.44</td>
<td>0.97</td>
<td>11.37</td>
<td>8.36</td>
<td>0.29</td>
<td>21.21</td>
<td>0.30</td>
<td>10.38</td>
<td>0.30</td>
<td>94.98</td>
</tr>
<tr>
<td>M159-8-1</td>
<td>44.66</td>
<td>0.36</td>
<td>9.32</td>
<td>6.06</td>
<td>0.29</td>
<td>21.21</td>
<td>0.30</td>
<td>10.38</td>
<td>0.30</td>
<td>94.98</td>
</tr>
<tr>
<td>Sovite pegmatite</td>
<td></td>
</tr>
<tr>
<td>D98-10-4</td>
<td>35.24</td>
<td>3.13</td>
<td>11.83</td>
<td>25.65</td>
<td>0.71</td>
<td>10.36</td>
<td>0.41</td>
<td>10.01</td>
<td>0.20</td>
<td>96.25</td>
</tr>
<tr>
<td>M173-10-1</td>
<td>37.09</td>
<td>2.84</td>
<td>12.02</td>
<td>20.89</td>
<td>0.59</td>
<td>14.44</td>
<td>0.60</td>
<td>10.50</td>
<td>0.59</td>
<td>97.89</td>
</tr>
<tr>
<td>BC-1-1</td>
<td>38.95</td>
<td>2.26</td>
<td>11.23</td>
<td>17.92</td>
<td>0.71</td>
<td>16.24</td>
<td>0.60</td>
<td>10.29</td>
<td>0.71</td>
<td>98.49</td>
</tr>
<tr>
<td>M155-4</td>
<td>40.36</td>
<td>2.17</td>
<td>11.14</td>
<td>15.03</td>
<td>0.59</td>
<td>17.60</td>
<td>0.60</td>
<td>9.99</td>
<td>0.34</td>
<td>96.58</td>
</tr>
<tr>
<td>Melteigite (II)</td>
<td></td>
</tr>
<tr>
<td>BT-8-2</td>
<td>38.35</td>
<td>1.83</td>
<td>11.74</td>
<td>15.87</td>
<td>0.39</td>
<td>17.30</td>
<td>0.30</td>
<td>10.35</td>
<td>0.30</td>
<td>96.25</td>
</tr>
<tr>
<td>E73-1-4</td>
<td>41.62</td>
<td>2.03</td>
<td>11.74</td>
<td>11.81</td>
<td>0.35</td>
<td>18.95</td>
<td>0.20</td>
<td>10.21</td>
<td>0.36</td>
<td>97.07</td>
</tr>
</tbody>
</table>

Numbers of ions on the basis of 22 atoms of oxygen

- Si, Ti, Al, Fe: 5.27, 0.31, 2.78, 2.40
- Mn, Mg: 0.06, 3.14
- Ca: 0.04
- K, Na: 1.93, 0.14

* Fe is reported as Fe²⁺.
Carbonatite petrography

Carbonatite samples were collected from a drillcore located near the center of the Potash Sulphur Springs complex (Heathcote, 1987) and from exposures in the northeast quadrant of the complex. Four carbonatite units were found to contain phlogopite. Rock names have been assigned following the guidelines of Streckeisen (1979); a single mineral prefix is used to distinguish the two sivites in this study.

Phlogopite sivite

Phlogopite sivite contains fine- to medium-grained apatite, magnetite, and phlogopite phenocrysts (1.0–10.0 mm) in a mosaic-textured matrix of medium-grained (1.0–6.0 mm), inclusion-free calcite and minor dolomite; curved contacts between calcite crystals predominate. Rare xenocrysts of salite and melanite are present. Concentrations of magnetite, apatite, and phlogopite in some samples are suggestive of flow accumulations. Phlogopite is strongly pleochroic (\(X = \) pale yellow, \(Y = \) light green, \(Z = \) light green; \(Z > Y > X\)), and inclusion-free except for rare apatite.

Alvikite

Alvikite contains very fine grained phenocrysts (0.02–0.40 mm) of phlogopite, titanite, aegirine-augite, apatite, and noesite (noesite identified by optical properties and qualitative EDS analysis), with accessory magnetite and iron sulfide in a mosaic-textured matrix of fine-grained (0.3–1.5 mm), inclusion-rich calcite and minor dolomite. Apatite (0.02–0.07 mm diameter) has a distinctive oval outline in this carbonatite and occurs abundantly as inclusions in matrix carbonate. Planar contacts between adjacent carbonate crystals predominate, and flow banding is preserved in some specimens. Phlogopite phenocrysts commonly exhibit numerous concentric, optical zones and contain abundant inclusions of titanite, apatite, noesite, magnetite, iron sulfide, and melanite. Pleochroism of phlogopite is strong (\(X = \) pale yellow to orange, \(Y = Z = \) green to red-brown).

Xenoliths of melteigite, ijolite, malignite, melanephelinite, and orthoclase fenite are common. Xenocrysts of green phlogopite, nepheline, perovskite, salitic to aegirine-augitic clinopyroxenes, melinite, orthoclase, and apatite are abundant in some specimens. Nepheline xenocrysts have been replaced by microcrystalline aggregates of cancrinite that have been subsequently mantled by noesite; perovskite is mantled by titanite. Melanite is typically replaced to some degree by calcite; salitic clinopyroxenes commonly exhibit margins altered to microcrystalline intergrowths of titanite, calcite, and arfvedsonite (Zartman and Howard, 1985; Zartman et al., 1967) reported contemporaneous ages of 95 to 97 ± 5 Ma (K-Ar biotite) and 99 ± 8 Ma (Rb-Sr biotite) for syenitic rocks of the Magnet Cove complex. Zartman et al. (1967) reported contemporaneous ages of 95 to 97 + 5 Ma (K-Ar biotite) and 99 + 8 Ma (Rb-Sr biotite) for syenitic rocks of the Magnet Cove complex. Zartman et al. (1967) reported contemporaneous ages of 95 to 97 + 5 Ma (K-Ar biotite) and 99 + 8 Ma (Rb-Sr biotite) for syenitic rocks of the Magnet Cove complex.
occur together with highly altered salite xenocrysts. Fragments of orthoclase and apatite appear unaltered in alvikite matrix.

Ferriphlogopite sovite

Ferriphlogopite sovite contains fine- to medium-grained phlogopite phenocrysts (0.1–3.0 mm), with accessory apatite, titanite, and pyrochlore, in a fine-grained (0.1–1.5 mm), mosaic-textured matrix of calcite and minor dolomite. Planar contacts between calcite crystals predominate in some samples; other samples exhibit extensive recrystallization with stylolites and strongly interpenetrative matrix calcite crystals. Dysanalyte (identified by optical character and qualitative EDS analysis), massive pyrrhotite, spherulitic clumps of zoned, limpid to inclusion-rich apatite, and an anastomosing network of unidentified green fibers are associated with stylolites. Xenoliths of alvikite and orthoclase fenite occur in this unit.

Ferriphlogopite commonly exhibits faintly visible oscillatory zoning and rarely contains apatite inclusions. Pleochroism ranges from weakly normal (X = pale yellow, Y = Z = pale orange) to weakly reverse (X = orange, Y = Z = pale orange). This mica is very similar in optical properties and composition to tetraferriphlogopite described by Puustinen (1973). Mössbauer spectra obtained from samples M159 (Table 1) and M213 (not shown) confirm the presence of tetrahedral Fe$^{3+}$ in amounts of 36% ± 3% and 29% ± 3% of the Fe present in these two samples, respectively. The remaining Fe is octahedrally coordinated Fe$^{2+}$ (M. D. Dyar, written comm., 1988).

Other carbonatites

Sovite pegmatite is the fourth mica-bearing carbonatite in the Potash Sulphur Springs complex. Biotite in this unit displays ragged crystal margins and is interpreted to be xenocrystic although it has not been found elsewhere in the complex. It is strongly pleochroic (X = red, Y = Z = black). The sovite pegmatite, present in the East Wilson pit, cuts syenite and is cut by pyritiferous manganoan calcite veins. A fenite breccia with siderite matrix, present in the East Wilson pit, has been identified as ferrocarbonatite. This unit postdates orthoclase fenite, but is of uncertain age relative to other carbonatites.

MINERAL CHEMISTRY OF PHLOGOPITE

Compositional trends

Representative phlogopite and biotite analyses are presented in Table 1. Four separate types of phlogopite are determined by their optical characteristics and Al vs. Fe/(Fe + Mg) proportions (Fig. 2). The green phlogopite of phlogopite sovite is designated type I and is subdivided into subtypes Ia, Ib, and Ic on the basis of clusters evident in Figure 2. The red-brown to green phlogopite of alvikite is designated type II. Analyses from xenolith-poor alvikite samples plot within the dashed oval of Figure 2; micas with similar optical character occurring in silicate rocks scatter across the larger part of the type II field. Orange, normal- to reverse-pleochroic phlogopite of ferriphlogopite sovite is designated type III. The field in Figure 2 labeled “M488” represents an aluminous ferriphlogopite population that is identified as type III by optical character. Biotite analyses from sovite pegmatite, designated type IV, cluster tightly at an Fe-enriched composition.

Relative ages of phlogopite compositional types are established by the consistent zoning sequences in individual crystals and by xenocrystic and crosscutting criteria. Examples of zoning and overgrowth sequences from individual grains are shown in Figures 2 and 4 to 6 by trend lines with arrows indicating the rimward direction. Phlogopite of subtype I occurs in sovite as unzoned crystals and in alvikite as cores of cryptically zoned crystals that bear rims of subtype Ia. Alvikite veins containing type II crystals cut sovite veins that contain subtype Ib crystals. Phlogopite subtypes Ib and Ic have not been found together, but occur in sovite samples that are similar to one another in grain size and mineral assemblage. Ferriphlogopite sovite contains xenoliths of alvikite that contain type II phlogopite. Based on these relationships, type III is determined to be the youngest of the phlogopites, subtype I is the oldest, and the intermediate-age type II is younger than subtypes Ia and Ib.

Inclusion and xenocryst relationships and phlogopite zoning stratigraphy are used, together with similarities of rock texture and mineral assemblage, to define the sovite trend (Ia → Ib → M488 → III) and the alvikite trend (Ia → II) shown in Figure 2. It is clear from the established age relationships that crystallization of type II phlogopite on the alvikite trend began later than subtype I crystal-
Cation substitutions

Phlogopite compositions provide a basis from which elemental changes in the evolving carbonatite magma can be determined. Specific cation substitutions are inferred from bivariate scattergrams where elongate data fields parallel permissible octahedral and tetrahedral substitution lines (Figs. 3–6). Because the XRD analyses in this study are limited to five major cations, the substitutions discussed below are the simplest among many choices (e.g., Hewitt and Abrecht, 1986) and are not claimed to be unique characterizations of phlogopite crystal chemistry in the Potash Sulphur Springs carbonatites. Uncertainties in A-site and anionic substitutions preclude a detailed mica-component exchange analysis. Intrasite substitutions (substitution restricted to either octahedral or tetrahedral sites) that fit the data are dioctahedral-trioctahedral (6R3+ : 4Si; Fig. 3), annite-phlogopite (Fe3+ : Mg; Fig. 2), and Ti vacancy (Ti = 2Fe2+ ; Forbes and Flower, 1974; Fig. 4). Alignments of data fields along intersite substitution trends (paired substitutions in octahedral and tetrahedral sites), corresponding to the given intrasite substitutions, are shown in Figures 5 and 6. Elongation of the type II and III fields perpendicular to the Si:R2+ trend (Fig. 5) is an artifact caused by the assumption that total Fe is octahedrally coordinated Fe3+ when a portion is actually tetrahedrally coordinated Fe3+. Tetrahedral Fe3+ is assumed, in the absence of Mössbauer analysis, for phlogopite types II, III, and some of subtype Ib because Si + Al sums are less than 8.00.

Alignments parallel to the trends –2R2+:Ti (Fig. 4) and 2Si:R2+ (Fig. 5) suggest operation of the Ti-Tschermak substitution (6Ti2+R3+ = 6Si2+2Si; e.g., Czamanske and Wones, 1973; Robert, 1976), however, the 2Si:R2+ part of this substitution requires a much steeper slope for Mg vs. Si (ideally 1:2) than is evident for the broad 4Mg:Si alignment in Figure 6. No simple combination of Ti-Tschermak and other substitutions can produce the observed alignment. Simultaneous exchange of 2Mg for Ti, of Mg for Fe3+ and of Mg + Si for 6R3+ + 4Si in the previously noted substitutions does yield the 4Mg:Si ratio.

A general characterization of the cation substitutions given above may be made in terms of ideal, anhydrous mica end-members. The depletion of Fe2+, Ti, and Al, enrichment of Mg and Si, and Fe oxidation of the sovite trend correspond to replacement of a hypothetical Ti-analogue of siderophyllite [ArFe3+Ti3+O3] by ferriphlogopite end-member [Ar(Mg6Si4Fe3+)O3] by antinite end-member [Ar(Mg6Si4Fe3+)O3] (Annersten et al., 1971). Derivation of the alvikite trend from the sovite trend corresponds to replacement of phlogopite end-member [ArFe3+Si4R3+] by antinite end-member [ArFe3+Si4R3+]. Substitutions along the alvikite trend are similar to those along the sovite trend, but Mg enrichment at the expense of Fe is less evident.

Discussion

Details of carbonatite magma genesis are obscure in the Potash Sulphur Springs complex. Gross relationships among fenites and the sovite, alvikite, and silicate magmas can be inferred from available inclusion relations.
HEATHCOTE AND MCCORMICK: PHLOGOPITE AND EVOLUTION OF CARBONATITE

Differentiation of the parental Potash Sulphur Springs silicate magma may reasonably be assumed to have produced a petrogenetic sequence such as that documented for other complexes (e.g., King, 1965; Sorensen, 1974; LeBas, 1977; Robins, 1980), wherein early pyroxenite or melteigite is succeeded by ijolite or malignite, with syenites forming latest. Clinopyroxenes crystallizing during differentiation of this sequence grade from salitic toward acmite compositions (e.g., Nash, 1972). The presence of salite xenocrysts and the absence of aegirine-augite in phlogopite sovite of the Potash Sulphur Springs complex indicate that sovite formed later than salite-bearing pyroxenite and melteigite and possibly prior to the formation of aegirine-augite-bearing ijolite and malignite. Furthermore, subtype I phlogopite contains the highest proportion of Ti siderophyllite component in the complex, which indicates that it formed at higher temperature or pressure (e.g., Robert, 1976) than the other phlogopite types.

The presence in alvikite of abundant sovitic, type I phlogopite xenocrysts and unaltered, ijolitic, aegirine-augite xenocrysts indicates that alvikite is intimately linked with sovite and ijolite; salite xenocrysts from melteigite exhibit reacted margins in alvikite. Alvikite contains magmatic (euhedral) titanite, aegirine-augite, nesosan, and melanite; it is mineralogically similar to ijolite. For these reasons, and the established relative ages of phlogopite types, alvikite is interpreted to have formed as a hybrid magma when ascending sovite magma encountered a pocket of residual ijolitic magma (Fig. 7). The abundance in alvikite of ijolitic xenoliths and xenocrysts is interpreted to indicate that the ijolite magma pocket was mostly crystalline at the time of the encounter with sovite magma, and only a residual, interstitial ijolitic liquid was present. An additional indication of the interpreted petrogenetic relationship is the similar cation ratios found between salitic clinopyroxene and type I phlogopite and between aegirine-augite and type II phlogopite. The parallel variations of Si, Al, Ti, Mg, Fe, and Fe oxidation evident between clinopyroxenes contained in melteigite and ijolite and between phlogopites contained in phlogopite sovite and alvikite also suggest the interpreted petrogenesis (Tables 1 and 2).

Subtype Ia phlogopite is found only in zoned xenocrysts in alvikite, indicating that it is not a crystallization product of sovite magma. It is suggested that subtype Ia represents a transient stage of Fe uptake by phlogopite that occurred between the initial encounter of sovite with the more Fe-rich ijolite and the subsequent formation of alvikite magma. After subtype Ia crystallized, the alvikite magma abruptly began to crystallize type II phlogopite, which involved an increase in available Si and depletion of Al over what had been available during crystallization of subtype Ia.

The petrogenetic relationship between fenitized rocks and carbonatites of the Potash Sulphur Springs complex remains obscure, but the following relationships have been found in this study. Some orthoclase fenite samples ("F," Figs. 2–6) contain type II phlogopite, whereas others ("Fenite," Figs. 2–6) contain phlogopite on an edge of the type II field, with tetrahedral Fe"⁺ similar to the type III
composition of sovite specimen M488 (Fig. 2). The presence of orthoclase fenite xenoliths (fenitized chert) in alvikite indicates that the alvikite magma formed after K-Al–bearing fenitization, but the presence of type II phlogopite in phlogopitized silicate rocks, and also in some samples of orthoclase fenite, suggests that a Mg-Fe–bearing fenitization event followed K-Al–bearing fenitization and coincided with the presence of alvikite magma. The drop in Al content between subtype Ia and type II phlogopite on the alvikite trend may relate to feldspathic (K-Al–bearing) fenitization of the chert country rock.

The presence of alvikite and fenite xenoliths in ferriphlogopite sovite indicates that evolution of sovite magma, from crystallization of subtype I to crystallization of type III phlogopite, bracketed the formation and solidification of alvikite magma. Oxidation of Fe in sovite to produce ferriphlogopite must have occurred during or after the suggested Mg-Fe metasomatism. The sovite magma apparently solidified prior to the formation of syenite and sovite pegmatite.

Oscillatory zoning in late-formed phlogopites of both alvikite and sovite suggests these magmas were not strongly stirred prior to solidification, but experienced instead a quiescent period that permitted expression of subtle crystal-liquid interface processes, similar to what has been proposed to produce oscillatory zoning in igneous plagioclases (e.g., Allegre et al., 1981). In earlier (hotter) magmatic stages, conditions for oscillatory zoning either did not occur or such zoning was obscured by ionic diffusion in the micas as suggested by Loomis (1983). Oscillatory zoning in alvikitic phlogopite involves exchange of Ti siderophyllite and ferriphlogopite components (Figs. 2 and 4). The zoning in ferriphlogopite sovite is more subdued than in alvikite and is dominated by exchange of Si and Al; Fe$^{3+}$ evidently is not involved (Fig. 2). This difference in phlogopite oscillatory zoning between the two carbonatites may be due to the relative depletion of Fe and Al in late-stage sovite magma compared to alvikite magma.

A modification of the standard designation for carbonatites (LeBas, 1977, p. 268) is applied to units of the Potash Sulphur Springs complex on the basis of relative ages determined in this study: $C_1 =$ phlogopite sovite (phlogopite subtypes I and Ib), $C_2 =$ alvikite (type II), and $C_3 =$ ferriphlogopite sovite (type III). In the standard designation, ferrocarbonatite is usually designated C_3. Later carbonatites are also present, but their place in the evolution of the complex is not clear.

Sovite magma (C_1) remained mineralogically simple, crystallizing phlogopite, magnetite, andapatite, until late in its history (C_3) when other minerals (e.g., pyrochlore) formed. The relative abundance of calcite and dolomite did not change appreciably during this evolution. Compositional evolution of sovite, as recorded in phlogopite, involved progressive Mg and Si enrichment and Fe, Ti, and Al depletion concurrent with Fe oxidation.

Alvikite magma (C_2) is interpreted to have formed when sovite magma (C_1) encountered residual ijolite magma. Alvikite magma then evolved rapidly to a relatively uniform composition richer in Si, Fe, and Ti (Ti as titanite) than sovite magma. The presence of magmatic nosean (with Na:K estimated as 7:1) in alvikite indicates that this magma also contained sulfate and was enriched in alkalies relative to sovite. This means that alkalies must have been contributed by the ijolite magma when alvikite magma formed.

The Fe depletion and Si and Mg enrichment of carbonatite determined in this study mirrors the cation movement in fenitization of metapelites by carbonatite that has been suggested by Mian and LeBas (1987), but
Al depletion evident in carbonatite of the Potash Sulphur Springs complex contrasts with the Al movement from wallrock toward carbonatite inferred by those authors. The petrogenetic relationship between C₂ and C₁ carbonatites is interpreted to be purely accidental. The mixing event between silicate and C₁ carbonatite magmas could easily have occurred at a later stage, if at all, in the separate evolutions of the original magmas and then would have yielded different mineral assemblages and a different carbonatite suite.

Acknowledgments

We want to express our gratitude to Norman F. Williams, Director of the Arkansas Geological Commission, for the generous financial support furnished by the Commission for instrument and time charges for microprobe analyses. Sigma Xi and the Graduate College of the University of Iowa kindly furnished partial subsidy for drafting and photographic charges. We wish especially to thank Don R. Owens (Hot Springs, Arkansas) and Union Carbide Corporation for hospitality, help, and access to the Wilson Springs Vanadium Operation. J. V. Smith, as always, was most helpful in furnishing us with microprobe standards and allowing us time on the University of Chicago microprobe. The assistance and hospitality of Ian Steele and Rick Hervig during microprobe sessions at the University of Chicago are gratefully acknowledged. Reviews of an earlier draft of this paper by J. A. Speer and R. J. Arculus are much appreciated.

References cited

Manuscript received January 7, 1988
Manuscript accepted September 26, 1988