NEW MINERAL NAMES*

JOHN L. JAMBOR
CANMET, 555 Booth Street, Ottawa, Ontario K1A 0G1, Canada

JACEK PUZIEWICZ
Institut für Mineralogie, Universität Hannover, D-3000, Hannover 1, Federal Republic of Germany

Abhurite*

Chemical analysis gave Sn 73.4, Cl 15.7, O 11.0, H 0.4, sum 100.5 wt%; the ideal formula SnO(OH)rCl requires Sn 74.6, Cl 14.9, O 10.1, H 0.4 wt%. The mineral occurs as cryptocrystalline crusts and as platy hexagonal crystals that average 1.5 mm in diameter. Colorless, transparent with opalescent luster, white streak, hackly fracture, H: 2, dissolves slowly in HCl and HNO3, D *: 4.29 (pycnometer), D r: 4.35 g/cm3 with Z : 21.

Crystals are platy to tabular on hexagonal (0001), twinned on (0001), and have rhombohedral forms {0115} and {0001}. Optically uniaxial positive, ω = 2.06, ε = -2.11. Single-crystal X-ray study indicated rhombohedral symmetry, space group R 3m, R 3m, or R 32; the refined Guinier-Hägg powder pattern (CuKα) gave hexagonal parameters a : 10.0175(3), c: 44.014(2) Å, and strongest lines of 4.139(50)(116), 3.404(50)(208), 3.271(35)(211), 3.244(35)(122), 3.142(35)(214), 2.9074(35)(217), 2.8915(70)(300), 2.8175(50)(128), 2.5313(100)(11.15), and 1.8928(35)(410).

Abhurite occurs as blisterlike protuberances that formed as a corrosion product of tin ingots recovered from the cargo of a sunken ship, wrecked possibly 100 yr ago, lying in a Red Sea cove known as Sharm Abhur, about 30 km north of Jiddah, Saudi Arabia. Associated minerals are romarchite, kutnohorite, and aragonite. Specimens of abhurite are in the Smithsonian Institution, Washington, D.C., and in the Royal Ontario Museum, Toronto, Ontario. J.L.J.

Bazhenovite*

Wet-chemical analysis combined with TGA results (water) and corrected for impurities (Fe) gave Ca 27.58, sulfide S (S-S) 6.11, polysulfide S (S-S) 7.25, thiosulfate S (S-S) 6.20, H2O (hydroxyl) 9.46, H2O (molecular) 31.20, O 12.20, total 100.00 wt%, corresponding to Ca(S8,51S8,52S8,53Ca-(S7,52O3,56)Ca6,60(OH)12,50)20.14H2O. The mineral forms aggregates up to 1 cm in diameter, orange to yellow, light yellow streak, vitreous luster; intergrowths of parallel plates have a pearly luster. Crystals are blades up to 5 mm long, flattened on (010), elongate [001], with {110} edges and terminated by {011}, {101}, and {111}. Thin crystals are transparent, and coarser grains are transparent to translucent. Fracture uneven, very good (010) cleavage, brittle but elastic in thin leaves, H = 2, D meso = 1.83(1), D calc = 1.845 g/cm3 with Z = 1. No luminescence in ultraviolet light (360 nm). Decomposes in water, giving S and a white porous residuum; decomposes in HCl to give S and H2S. Slowly hydrolyzes in air, gradually becoming colorless with a weak bluish tint, preserving the transparency. Hydrolyzed pseudomorphs typically have porous aggregates of S on their surfaces. The DTA curve shows a strong endothermic effect at 140 °C (loss of molecular water, 31.7 wt%), a distinct exothermic one at 365 °C (loss of sulfidic and polysulfidic sulfur, 13.4 wt%), and an endothermic one at 495 °C (loss of hydroxyl water, 16.2 wt%). Additional weight loss at higher temperatures is 4.8%. The infrared spectrum shows absorption bands at 810 (OH), 1100 (SO and S=O), 1630 (H2O), and 3300 (OH) cm⁻¹. Optically biaxial positive, α = 1.595(2), β = 1.619(2), γ = 1.697(3) (white light), a = Y, b = X, c ∧ Z = 30°, 2V calc = 60°20'. Strong pleochroism: X deep green-yellow, Y greenish-yellow, Z pale greenish-yellow, X > Z > Y. Single-crystal X-ray study shows the mineral to be monoclinic, space group P 21/c, a = 8.45(1), b = 17.47(1), c = 8.24(1), β = 119.5°. Strongest lines of the powder pattern (57.3-mm camera) are 8.76(100)(020), 4.39(100)(040), 2.91(60)(060), 2.81(50)(240), 2.62(50)(122), 2.28(50)(260), and 1.996(70)(162). The X-ray pattern of the mineral is similar to that of its synthetic orthorhombic analogue. The crystal structure of the mineral is layered, with Ca(OH)2, polysulfide, and water-bearing layers parallel to {010}.

Bazhenovite is associated with native iron, native sulfur, oldhamite, troilite, pyrrhotite, fluorite, and periclase in altered pyritized siderite fragments in the melted products of old, burning coal dumps of the Chelyabinsk coal basin, south Ural Mountains, USSR. The name is for A.G. Bazhenov (petrographer) and L.F. Bazhenova (analytical chemist). Type material is in the Fersman Mineralogical Museum, Moscow. J.P.

* Prior to publication, minerals marked with an asterisk were approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association.
Cesplumtantite*

Microprobe analysis (3 given) gave Ta$_{2}$O$_{5}$ 63.85, Nb$_{2}$O$_{5}$ 3.24, Cs$_{2}$O 5.37, Na$_{2}$O 0.71, CaO 0.83, PbO 20.24, Sb$_{2}$O$_{3}$ 2.88, SnO$_{2}$ (calculated) 1.60, sum 100.21 wt%, corresponding to (Cs$_{0.93}$Na$_{0.56}$Ca$_{0.30}$Sr$_{0.31}$Sb$_{0.48}$Sn$_{0.61}$)Ta$_{2}$O$_{5}$, ideally (CsNa)Ta$_{2}$O$_{5}$, Ta$_{4}$O$_{13}$ with Cs > Na, Pb > Sb. X-ray powder study shows the mineral to be tetragonal, a = 13.552(8), c = 6.445(5) Å, Z = 2. The strongest X-ray lines (35 given) are

<table>
<thead>
<tr>
<th>d (Å)</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.73(50)</td>
<td>112</td>
</tr>
<tr>
<td>2.51(90)</td>
<td>112</td>
</tr>
<tr>
<td>2.23(60)</td>
<td>112</td>
</tr>
<tr>
<td>1.87(40)</td>
<td>111</td>
</tr>
</tbody>
</table>

Light gray in reflected light, weak bireflectance, no pleochroism or internal reflection. Strongly anisotropic, with complex polysynthetic twinning. Reflectance values (nm, %) in air (Si standard) are 476, 18.2, 17.1; 553, 17.3, 16.5; 589, 17.1, 16.5; 656, 15.6, 15.3.

Cesplumtantite was found in a museum specimen of thoraeulite in granitic pegmatite from Manono, Zaire. The new mineral occurs as veinlets of elongate aggregates up to 0.3 mm long and is associated with lithiotantite, cassiterite, calciofantite, and microlite. The name alludes to the chemical composition. The type specimen is at the Museum of the Leningrad Mining Institute, Leningrad, USSR. J.P.

Cobaltaustinite*

Electron-microprobe analysis gave CaO 22.4, CoO 25.8, CuO 2.5, As$_{2}$O$_{3}$ 46.1, P$_{2}$O$_{5}$ 0.3, SO$_{2}$ 0.3, H$_{2}$O (CHN analysis) 3.6, sum 101.1 wt%, corresponding to Ca$_{0.01}$Co$_{0.01}$Cu$_{0.08}$As$_{0.10}$P$_{0.01}$S$_{0.05}$O$_{4.06}$(OH)$_{0.01}$, simplified as Ca(Co,Cu)(As,P)$_{4}$O$_{10}$(OH) and ideally CaCoAs$_{4}$O$_{10}$. Additional microprobe analyses show substantial Co-Cu variations, suggesting complete solid solution with coctahalite, the Cu end-member. The mineral occurs as dull green coatings of crystallites up to 25 µm in diameter. Streak pale green, brittle, conchoidal fracture, H = 4½, soluble in HCl and HNO$_{3}$. D_{calc} = 4.24 g/cm3 for the analytical formula and Z = 4. Optically biaxial positive, $c' = 1.777(3)$, $\gamma' = 1.802(3)$, large 2V, greenish-yellow and not pleochroic. Cell dimensions calculated from the X-ray powder pattern (114.6-mm Debye-Scherrer camera, Cu radiation) indexed by comparison with nickelaustinite are a = 7.50, b = 9.01, c = 6.92 Å; strongest lines are 4.13(70)(111), 3.159(100)(210), 2.633(80)(112), 2.600(80)(221), 2.532(40)(131), and 1.609(100)(332).

Cobaltaustinite occurs with erythrite and numerous other arsenates derived by oxidation of arsenide-rich ore at the small Dome Rock copper deposit, which is about 42 km north of Mignary and on the Adelaide-Broken Hill railway about 470 km from Adelaide. The holotype specimen (M32479) is in the Museum of Victoria, Melbourne, Australia. J.L.J.

Ecandrewsite*

Four electron-microprobe analyses of the mineral from the type locality, the Melbourne Rockwell mine at Little Broken Hill (13 km southeast of the main Broken Hill deposit, New South Wales), gave TiO$_{2}$ 50.12–52.45, FeO 8.8–13.65, MnO 4.4–7.64, ZnO 28.5–35.05, total 98.85–100.0 wt%, corresponding to (Zn$_{0.55}$O$_{0.45}$Fe$_{0.19}$O$_{3}$Mn$_{0.02}$O$_{1.0}$)$_{3}$TiO$_{2}$(OH)$_{3}$, ideally ZnTiO$_{3}$, the Zn analogue of ilmenite. At the type locality the mineral occurs as euhedral tabular grains, up to 50 µm. Physical and optical properties are similar to those of ilmenite: dark brown to black color and streak, submetallic luster, VH,oo : 600–600 kg/m2, no cleavage or twinning, D_{calc} = 4.99 g/cm3 with Z = 6. In reflected light, grayish-white with a pinkish tinge, weak reflectance pleochroism in air, strongly anisotropic from greenish-gray to dark brownish-gray. Reflectance values in air (SiC standard) for R_{s} and R_{g} are 470, 19.2–19.9, 17.2–17.7; 546, 19.0–19.7, 17.2–17.6; 589, 18.9–19.6, 17.0–17.6; 650, 18.7–19.2, 16.8–17.5. X-ray crystal-structure study indicated rhombohedral symmetry, space group $R\bar{3}$, hexagonal cell dimensions a = 5.090(1), c = 14.036(2) Å. Strongest lines of the powder pattern are 2.73(100)(1014), 2.53(90)(1120), 2.23(60)(1123), 1.87(40)(0224), and 1.71(70)(1126), in close agreement with data for synthetic ZnTiO$_{3}$ (PDF 26–1500).

At the type locality the mineral is disseminated in quartz-rich metasedimentary rocks of amphibolite-granulite facies and coexist with almandine-spessartine, ferroan garnite, and rutile. Associated amphibolites contain zincian ilmenite. The new mineral was discovered almost 20 yr ago in flotation residues of oxidized ore from the North mine at Broken Hill. At the San Valentin mine, La Union district, Sierra de Cartegena, Spain, ecandrewsite grains up to 50 µm across occur intergrown with zincian ilmenite in primary oxide-sulfate-carbonate ores. The new name is for E.C. Andrews, New South Wales government geologist (1870–1948), who mapped the Broken Hill region. A single grain from the Melbourne Rockwell mine type locality is at the Museum of Victoria (M35700). Specimens from the San Valentin occurrence are in the collections of the Free University, Amsterdam, the Netherlands. J.L.J.

Fahleite*
Mon., 167-171.

Electron-microprobe analyses of five different crystal aggregates gave CaO 3.8-4.3, MnO 0.4-0.6, ZnO 25.6-26.5, Fe₂O₃ 10.1-10.4, As₂O₅ 43.1-44.2, H₂O (by difference) 14.4-16.6 wt%, Co, Ni, Mg, and Si not detected; the mean of the analyses corresponds to Ca₁₀₋₁₁Mn₀,₊₋₁₂Zn₁₂₋₁₃Fe₁₋₂⁺⁺As₁₋₂⁺Os₂₋₃·1₃.4₂H₂O, ideally Zn₃CaFe⁺⁺(AsO₅)₁₄H₂O, considered to be the Zn analogue of smolianinovite. The mineral occurs as minute fibrous aggregates or spherules and as gray to bright green to straw-yellow bundles of fibrous crystals more than 1 cm long. The crystals are only a few micrometers thick, are very soft, sectile, flexible, have a silky or pearly luster, are readily soluble in cold acid, and have a perfect cleavage normal to the fibers. The infrared spectrum (not given) is reported for smolianinovite. The mineral occurs as minute fibrous aggregates or spherules and as gray to bright green to straw-yellow bundles of fibrous crystals more than 1 cm long. The crystals are only a few micrometers thick, are very soft, sectile, flexible, have a silky or pearly luster, are readily soluble in cold acid, and have a perfect cleavage normal to the fibers. The infrared spectrum (not given) is reported for smolianinovite.

Fahleite has the ideal formula Zn₃CaFe⁺⁺(AsO₅)₁₄H₂O, considered to be the Zn analogue of smolianinovite. The mineral occurs as minute fibrous aggregates or spherules and as gray to bright green to straw-yellow bundles of fibrous crystals more than 1 cm long. The crystals are only a few micrometers thick, are very soft, sectile, flexible, have a silky or pearly luster, are readily soluble in cold acid, and have a perfect cleavage normal to the fibers. The infrared spectrum (not given) is reported for smolianinovite. The mineral occurs as minute fibrous aggregates or spherules and as gray to bright green to straw-yellow bundles of fibrous crystals more than 1 cm long. The crystals are only a few micrometers thick, are very soft, sectile, flexible, have a silky or pearly luster, are readily soluble in cold acid, and have a perfect cleavage normal to the fibers. The infrared spectrum (not given) is reported for smolianinovite.

Fluorellestadite
c

Electron-microprobe analysis gave Fe₂O₃ 46.3, P₂O₅ 28.2, and TGA-EGA gave H₂O 26.0, sum 100.5 wt%. Microchemical tests showed a strong reaction for Fe³⁺ but no reaction for Fe²⁺. The results are in good agreement with those reported for the same mineral by van Tassel (Bull. Soc. Belge Geol., 75, 38-48, 1966) and correspond to Fe⁺⁺Fe⁺⁺PO₄(OH)₂[H₂O]₃(OH)₉. The ideal formula for Fe³⁺Fe⁺⁺PO₄(OH)₂[H₂O]₃(OH)₉ is MnFe⁺⁺PO₄(OH)₂[H₂O]₃. The new name alludes to the composition and relation to strunzite.

Ferristrunzite occurs as light brownish-yellow matted aggregates: crystals are acicular [001], 2 to 30 μm long; composites are up to 0.5 mm long; and radiating sprays are up to 2.6 mm in diameter. Light yellow streak, brittle, good cleavage parallel to the X-Z optical plane, Dₘeas = 2.38-2.50 (suspension), Dₐbc = 2.55 g/cm³ with Z = 2. Optically biaxial positive, α = 1.664(4), β = 1.698, γ = 1.757(5), 2V = 77(10°), strong pleochroism X = greenish-yellow, Y = not observed, Z = brownish-yellow, Z > X, Z ≅ c = ~ 17° and Z approximately parallel to the elongation. X-ray single-crystal study indicated triclinic symmetry, pseudomonoclinic, space group P1 or P1, a = 10.01(2), b = 9.73(2), c = 7.334(8) Å, α = 90.52(12), β = 96.99(10), γ = 116.43(10)°. Twinned (110). Strongest lines of the powder pattern (64.6-mm Gandolfi camera, Fe radiation) are 8.87(80)(100), 5.34(100)(011, 111), 4.48(20)(111, 200), 4.37(20)(020, 211), 4.20(30)(320), 3.442(30)(012), 3.387(30)(210), 3.267(40)(012), 3.196(20)(102, 230), and 3.022(20)(202). Ferristrunzite is associated with carnallite, diadochite, allophane-evansite, minyulite, strengite, phosphosiderite, cacoxenite, and beraunite that occur as secondary minerals in argillaceous and elastic sediments exposed in a canal near Blaton, Belgium. Type material is at the Smithsonian Institution, Washington, D.C. J. L. J.
Isocubanite*

The cubic phase of CuFe$_2$S$_3$ has been variously named chalcopyrhotite, cubanite II, cubic cubanite, and isocubanite (intermediate solid solution of CuFe$_2$S$_3$ composition); the name isocubanite has been approved to designate this cubic polymorph of cubanite. Five electron-microprobe analyses of isocubanite from modern "black-smoker" sulfide chimneys at 21°N, East Pacific Rise, gave Cu 20.79-21.52, Zn 0.77-1.09, Fe 41.64-42.49, S 35.49-35.82 wt%, corresponding to a range of Cu$_{0.9}$Zn$_{0.03}$Fe$_{2.5}$S$_3$ to Cu$_{0.96}$Zn$_{0.03}$Fe$_{2.02}$S$_3$. The mineral is opaque, bronze color, metallic luster, grain size up to 400 μm, typically euhedral with cubo-octahedra present and with rims and/or lamellae of Fe- and Zn-rich chalcopyrite. Pinkish-brown in reflected light, isotropic, slightly browner and softer than pyrrhotite. Reflectivity percentages (SiC standard) are given in 20-nm steps; representative values in air and oil, respectively, are 420, 22.73, 12.94; 460, 26.87, 16.40; 500, 31.34, 20.08; 540, 34.79, 22.73; 580, 37.35, 24.58; 620, 39.11, 25.83; 660, 40.32, 26.80; 700, 41.33, 27.48; 740, 41.91, 27.87; 780, 42.50, 27.42. Single-crystal study showed the mineral to be cubic, space group Fm3m, a = 5.303(3) Å (slightly larger than that of pure synthetic material (a = 5.283-5.286) because of the minor substitution of Zn). The X-ray powder pattern (140-mm Gandolfi camera, Fe radiation) consists of five lines: 3.059(100)(111), 2.647(20)(200), 1.876(70)(220), 1.602(50)(311), and 1.327(20)(400). Type material is in the Mineralogical Collection of the École Nationale Supérieure des Mines, Paris. J.J.L.

Kadyrelite*

Microprobe analysis (average of 5) gave Hg 84.36, Br 10.19, Cl 2.93, I 0.01, O (calc.) 1.70, total 99.19 wt%, corresponding to Hg$_5$Br$_2$Cl$_2$I$_3$O$_{0.01}$. In 40% KOH the mineral immediately turns black; in HCl, it slowly becomes dark gray, and it is readily soluble in 1:1 HNO$_3$, leaving a cottonlike white residuum. X-ray powder study showed the mineral to be cubic, isostructural with eglestonite. Space group (by analogy with eglestonite) Ia3d, a = 16.22 Å. Strongest lines of the X-ray powder pattern (28 lines given) are 4.06(30)(400), 3.32(100)(422), 2.63(20)(611,532), 2.57(60-70)(620), 2.34(20)(444), 1.91(80-90)(822,660), and 1.73(20)(664). D$_{calc}$ = 8.79 g/cm3 with Z = 24. Bright to dull orange color, orangeglow, streak, brittle, vitreous to adamantine luster, H = 2.5 to 3, microhardness 143-192 (average 175) kg/mm2, conchoidal to uneven fracture, no cleavage. Transparent in transmitted light, bright orange-yellow, isotropic, refractive index >2. In reflected light, grayish-white, with weak bluish tint visible at high magnifications. Isotropic, no birefringence, intense orange internal reflection. Reflectance (nm, %): 436, 27.7; 460, 25.3; 500, 21.2; 546, 19.4; 589, 18.1; 620, 17.8; 656, 16.6. Readily polishable, but after exposure in air the polished surface become bluish, then brownish.

Kadyrelite occurs in cavities in carbonate veins, or rarely forms individual grains up to 0.5 mm at the Kadyrelsky mercury ore occurrence, Tuviniska ASSR (USSR), where it is intergrown with eglestonite and bromian eglestonite and is associated with calomel, bromian calomel, kuzminite, corderoite, lavrentievite, etc. The new name is for the locality. Type material is at the Museum of the Institute of Geology and Geophysics (Novosibirsk, USSR), and at the Museum of the Leningrad Mining Institute, Leningrad, USSR. J.P.

Pottsite*

Electron-microprobe analysis gave PbO 32.4, Bi$_2$O$_3$ 3.0, V$_2$O$_5$ 26.6, H$_2$O 6.71 (Penfield determination on 216 μg), sum 99.71 wt% (corresponding to H$_{0.02}$Pb$_{0.98}$Bi$_{0.09}$V$_{0.91}$O$_{1.99}$, ideally HPbBi$_3$(VO$_5$)$_2$·2H$_2$O). The special site for H is assigned merely to provide charge balance. The mineral is bright yellow, adamantine luster, pale yellow streak, brittle, H = 3½, D$_{max}$ = ~7.0, D$_{calc}$ = 7.31 g/cm3 with Z = 10. Crystals are up to 1 mm long and are dipyramids or stubby prisms terminated by pyramids; (101) is typically dominant, and also present are (110), (101), and (211). In thin section, cloudy yellow, uniaxial negative, 0 = 2.40, ε = 2.30. X-ray single-crystal study indicated tetragonal symmetry, space group I422, a = 11.084, c = 12.634 Å. Strongest lines of the powder pattern (114-mm camera, Cr radiation) are 4.618(90)(121), 4.168(30)(022), 3.210(40)(123), 3.062(100)(132), 2.476(40)(240), 2.252(30)(125), 2.184(30)(051,341), 1.952(30)(235,244), and 1.523(30).

Pottsite occurs near Potts, Lander County, Nevada, in the oxide zone of a tungsten mine. Associated minerals are scheelite, clinobisvanite, bismutite, and vanadinite. Type material is in the British Museum (N.H.), London, England. J.L.J.
Zharchikhite

Wet-chemical analysis gave Al$_2$O$_3$, 59.03, SiO$_2$, 2.54, MnO, 0.07, CaO, 0.39, MgO, 0.13, F, 22.96, H$_2$O, 24.55, O = F. Weight loss (%): 560°C, 22.04; 560–650°C, 3.64; >650°C, a marked endothermal effect at 480°C, a weaker one at 840°C. The X-ray powder pattern exhibits absorption bands at 3200–3700 cm$^{-1}$, proving the presence of OH groups in the mineral. The tentative formula is AIF(OH)$_r$. The infrared spectrum has strong absorptions at 3200–3700 cm$^{-1}$, proving the presence of OH groups in the mineral. The DTA curve exhibits a marked endothermal effect at 480°C, a weaker one at 840°C.

The mineral forms drusy aggregates consisting of fine-grained masses that grade into transparent, colorless, prismatic crystals up to 2.5 mm long. The crystals are orthorhombic, elongate (001), with prominent (110) and (010), and terminated by (110) and (111). Luster vitreous, microhardness 596 kg/mm2 parallel to the elongation, 426 kg/mm2 perpendicular to it, average 500 kg/mm2 (H = 4.5, Mols). Very brittle, perfect (010) cleavage. $D_{max} = 2.81(1)$, $D_{calc} = 2.82$ g/cm3. Biaxial negative, $\alpha = 1.532(2)$, $\beta = 1.552(2)$, $\gamma = 1.567(2)$ (592 nm), $2V_{calc} = 80^\circ$, $Z \times c = 43–44^\circ$, $Y = b$, optic-axis plane (010), inclined dispersion, $r > v$. Single-crystal X-ray study showed the mineral to be monoclinic, space group $P2_1/a$, $a = 5.164(1)$, $b = 7.843(1)$, $c = 5.179$ Å, $\beta = 116.24(8)^\circ$. The strongest lines (43 given) of the powder pattern are $3.98(100)(011)$, 2.92(80)(121), 2.31(70)(200), 1.83(90)(231), 1.73(70)(211), and 1.289(70)(402).

Zharchikhite occurs in cavities in hydrothermally mineralized fault breccia in a trachytic neck in the Zharchin-skye stockwork molybdenum deposit, Zabaykalye, USSR. The new mineral is associated with prosopite, ralstonite, ehrleite, barite, and siderite. The name is for the place of occurrence. Type material is at the Fersman Mineralogical Museum, Moscow. J.P.

Unnamed Au$_r$Hg

Microwave aggregate and rosettes of pale yellow, metallic, hexagonal prismatic crystals from Sumidouro, Mariana County, Minas Gerais State, Brazil, are present in a vial of grains constituting sample 6210M in the mineralogical collection of the National Museum. Spectrochemical analysis of about 40 mg showed Au, Hg, and Fe to be the principal elements. Single-crystal X-ray study indicated hexagonal symmetry, $a = 2.951$, $c = 4.810$ Å. Indexed Gandolfi powder patterns (three are listed) are in good agreement with data for synthetic Au$_r$Hg (PDF 4–808).

Although gold occurs at Sumidouro, mercury minerals are not known. Au$_r$Hg could have formed naturally or could be the result of mining activity known to have occurred in the region.

Discussion. The same mineral has been reported to occur in a gold-silver orebody in China and has been named weishanite (Am. Mineral., 73, 196, 1988). J.L.J.

Unnamed Mn phosphate

Chemical analysis gave Fe$_2$O$_3$, 17.2, FeO 9.2, MnO 0.2, CaO 12.0, Na$_2$O 0.8, MnO 16.9, P$_2$O$_5$, 40.9, H$_2$O 4.2, sum 101.4 wt%. The FeO was determined by titration, H$_2$O by estimation from the 6.7% loss obtained by TGA–EGA, and all others by electron-microprobe analysis. The tentative formula is Fe$_{10.8}$Fe$_{3.2}$Ca$_{0.2}$Na$_{0.8}$Mn$_{0.2}$P$_{23.7}$H$_{0.2}$O$_{10.9}$, generalized as (Mn,Fe$^{3+}$,Fe$^{2+}$,Na,Ca,Mg)$_2$(PO$_4$)$_2$(OH,H$_2$O)$_r$. The mineral is dark green and has a slightly pearly luster on cleavage surfaces but is dull on fracture, $D_{max} = 3.64(5)$ by suspension, $D_{calc} = 3.766$ g/cm3 with $Z = 4$. Optically biaxial positive, $\alpha = 1.781(3)$, $\beta = 1.787(3)$, $\gamma = 1.793(6)$, $2V$ about 75°, intensely pleochroic: X = dark brownish-green, Y = dark green, Z = medium brownish-green, $X > Y > Z$. Strong dispersion $r < v$. Precession photographs are of poor quality but resemble those of wicksite. The X-ray powder pattern (114.5-mm Gandolfi camera, Fe radiation) also is similar to that of wicksite and yields an orthorhombic cell with $a = 12.77(1)$, $b = 12.59(1)$, $c = 11.709(8)$ Å; strongest lines are 6.31(40)(020), 5.84(50)(002), 2.997(90)(232,411), 2.927(100)(004), 2.769(100)(042,421), and 2.098(60).

The new mineral occurs as a drusy coating on barbosalite from the Bull Moose mine, South Dakota. The mineral is thought to be the Mn analogue of wicksite, but more work is needed to resolve the uncertainties in their formulas. The samples studied are in the Smithsonian Institution, Washington, D.C. (NMNH 159890 and 159892). J.L.J.

New Data

Ehrleite

X-ray crystal-structure study of holotype ehrleite showed that the formula is $\text{Ca}_2\text{ZnBe}(\text{PO}_4)(\text{PO}_4,\text{OH})\cdot 4\text{H}_2\text{O}$ and the cell is triclinic, space group $\overline{1}$, $a = 7.130(4)$, $b = 7.430(4)$, $c = 12.479(9)$ Å, $\alpha = 94.31(5)$, $\beta = 102.07(4)$, $\gamma = 82.65(4)^\circ$. The formula and unit cell are new. J.L.J.

Ramsbeckite

X-ray crystal-structure determination, utilizing type material provided by one of the co-authors of the 1985 original description of ramsbeckite, led to a revision of the formula to $\text{(Cu,Zn)}_3(\text{OH})_2(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$ with $Z = 2$; the original formula was $\text{(Cu,Zn)}_5(\text{OH})_2(\text{SO}_4)_2\cdot 5\text{H}_2\text{O}$ with $Z = 4$. J.L.J.

Roggianite

A new, complete chemical analysis of holotype roggianite revealed the presence of 3.19 wt% BeO. Re-interpretation of the composition, based on the chemical results and crystal-structure considerations, leads to the formula $\text{Ca}_{1.4}(\text{Na,K})[\text{Be}_{1.7}\text{Al}_{2.7}\text{Si}_{12.9}\text{O}_{40}(\text{OH})_{11}](\text{OH})_2\cdot 34\text{H}_2\text{O}$. Roggianite is considered to be a zeolite-group mineral: it has an appreciable ion-exchange capacity and attains almost complete rehydration after heating to 750 °C. J.L.J.

Uranophane

Uranophane was considered previously to have the formula $(\text{H}_2\text{O})_2\text{Ca}(\text{UO}_2)_2(\text{SiO}_4\text{OH})_2\cdot 3\text{H}_2\text{O}$, but X-ray determination of the crystal structure showed that charge balance is attained by (OH) in (SiO_4OH) tetrahedra rather than by the presence of (H_2O). The new formula is $\text{Ca}(\text{UO}_2)_2(\text{SiO}_4\text{OH})_2\cdot 5\text{H}_2\text{O}$.

Discussion. The new formula should apply also to uranophane-beta, which is dimorphous with uranophane. J.L.J.

ERRATUM

Toward a practical plagioclase-muscovite thermometer by Nathan L. Green and Steven I. Usdansky (v. 71, p. 1109-1117). Page 1111: The equation for T in the right-hand column contains a misplaced parenthesis. The following equation should therefore be substituted:

$$T = 19456.4 + 12230B + 27320C + 18810D + 8473E + 28226F - 65407G + 65305.4H - 2087.6587 + P(-0.0431 - 0.4564 + 0.6653B + 0.364C + 0.364D + 2.112G + 0.9699H)(7.5805 - 8.3147 \ln K_\phi - 1.6544A - 0.7104B + 10.3C + 10.3D - 114.104G + 12.5365H).$$