Applications of Mössbauer goodness-of-fit parameters to experimental spectra: A discussion of random noise versus systematic effects

GLENN A. WAYCHUNAS
Center for Materials Research, Stanford University, Stanford, California 94305, U.S.A.

Dyar’s (1986) reply to Waychunas (1986), regarding Mössbauer goodness-of-fit parameters and the use of simulated Mössbauer spectra, has largely misinterpreted the results of the Waychunas (1986) paper. Dyar (1986) has mixed systematic effects and random noise in experimental data, making it appear that such disparate effects cannot be separately analyzed. Dyar (1986) has also indicated that the results produced in Waychunas (1986) do not hold for “real” data, in particular, some of her own observations. The results, in fact, will hold for Dyar’s (1984) data, for data collected under other conditions, and for other types of spectroscopy dealing with statistically random events.

It should be emphasized that the original discussion (Waychunas, 1986) does not examine all of the data and results of Dyar (1984), some of which are useful for methodology comparisons, but rather only those directly dealing with goodness-of-fit parameters. The Mössbauer spectrum simulations were performed to understand why good fits seem to get worse as the data get better [improved signal-to-noise (S/N) ratio], and why differing laboratories seem to have obtained widely variant χ² values for good fits would not approach 1.00 (Bevington, 1969), and the utility of χ² as a statistical parameter would be reduced or lost. (It is thus always possible to fit an experimental spectrum with some model fit such that the value of χ² is very close to 1.00.) Other noise may be added to this Gaussian component, but not from spectrometer drift or any of the other effects noted by Dyar. For example, taking the worst case with a widely drifting spectrometer, the changing spectrum will produce altered peak shapes (perhaps simply broadened, perhaps skewed), but the distribution of noise in the background will still be Gaussian. If there is horrendous vibration about the spectrometer, there may be no absorption spectrum observed at all; however, the background noise even in this case will remain Gaussian in distribution. Spectrometer drive variations and sample thickness, size, or texture cannot affect the random-noise distribution at all. The simulations are therefore completely adequate for studying the effects of random noise in an experimental Mössbauer spectrum, regardless of the presence of any systematic effects.

What Dyar (1986) has actually treated when discussing systematic noise are systematic spectral distortion effects rather than a type of noise. For example, cosine smearing distorts the velocity spectrum seen by the absorber with a net effect of line shape change. It cannot affect counting statistics. Hence a badly cosine-smeared spectrum can still be fit (with a proper model) to a χ² value near 1.00. Similarly, a nonlinear drive can be accommodated in the fitting procedure. However, a non-Gaussian distribution of noise could not be so easily accommodated.

The important conclusion to be drawn here is that it will be very difficult to affect the random background of a Mössbauer spectrum in any ordinary experiment and that the background will almost always have a purely Gaussian distribution. This means that random and “systematic” noise can be easily separated in terms of their spectral effects.

RANDOM NOISE VERSUS SYSTEMATIC EFFECTS

Random noise is a part of all Mössbauer spectra because of the inherent randomness of nuclear decay. In the simulation and in all experimental cases that I have observed, the noise has a Gaussian distribution. (In the case of very small counting rates, Poisson statistics may be more appropriate, but this will not be necessary with the usual Mössbauer experimental setup.) If the noise were not Gaussian in distribution, then the χ² (reduced χ²) values for good fits would not approach 1.00 (Bevington, 1969), and the utility of χ² as a statistical parameter would be reduced or lost. (It is thus always possible to fit an experimental spectrum with some model fit such that the value of χ² is very close to 1.00.) Other noise may be added to this Gaussian component, but not from spectrometer drift or any of the other effects noted by Dyar. For example, taking the worst case with a widely drifting spectrometer, the changing spectrum will produce altered peak shapes (perhaps simply broadened, perhaps skewed), but the distribution of noise in the background will still be Gaussian. If there is horrendous vibration about the spectrometer, there may be no absorption spectrum observed at all; however, the background noise even in this case will remain Gaussian in distribution. Spectrometer drive variations and sample thickness, size, or texture cannot affect the random-noise distribution at all. The simulations are therefore completely adequate for studying the effects of random noise in an experimental Mössbauer spectrum, regardless of the presence of any systematic effects.

SPECTROMETER DRIFT

Dyar (1984, 1986) has attributed the degradation of the Mössbauer fit statistical parameters with experimental run duration to instrumental problems, such as the cosine-smeared factor, baseline inconsistencies, and source problems, as well as to long-term electronic drift and spectrometer nonlinearity and drift. However, only a few of these effects can logically be expected to degrade a spectrum as a function of time, the rest being time independent. More significantly, the real problem with all of these possible causes of spectrum degradation is that none of them can affect the Gaussian counting statistics that are the fundamental reason why χ² worsens (for slightly erroneous and worse models) with increasing run time. It is possible that a poor spectrometer could cause a fit model to be less and less correct with increasing run duration, leading to accelerated divergence of the χ² parameter to larger values. However, Dyar (1984, 1986) has presented only limited evidence or observations to link the divergence of the goodness-of-fit parameters to any experimental effects. As an example, consider Dyar’s (1984) Figure 9 and Table 5, which show the effect of
the simulations described in Waychunas (1986).

zero-crossing point or MrsFrr values close to zero that its formulation. Hence, there is no true significance to the

would then descend back over the same path as the orig-

real data. Dyar (1986, p.1266) has stated that "data in

from her 1984 paper that supposedly demonstrates that

M goes negative at small S/N values is due completely to

different calculated the MrsFrr value named M in Waychu-

ing optimum spectral-data collection are incorrectly drawn

false reasons why the model be inadequate in terms of

Several of the rationalizations in Dyar (1984) concerning

varied run duration on χ^2 and misfit (M). The S/N change

represented by a run duration of from 3 to 60 h is ap-

approximately 35 to 156. Over this range in S/N, the sim-

ulations in Waychunas (1986) would predict a χ^2 increase

of about 125%. This is consistent with a χ^2 variation of

from 500 to about 1215, whereas Dyar (1984) observed a

change of about 500 to 950. Since Dyar's fitting model

is probably better than the intentionally slightly incorrect

model used by Waychunas (1986), the variation in χ^2 that

she observed is consistent with only the S/N variation,

and no experimental effects need be invoked. In order to
test this notion further, Gaussian noise could be added
to Dyar's spectra, artificially degrading their S/N. The χ^2

versus S/N behavior derived from fits to such spectra

would then descend back over the same path as the orig-

inal observations if only S/N effects caused the χ^2 vari-

gation.

MISFIT PARAMETERS

Several of the rationalizations in Dyar (1984) concerning

optimum spectral-data collection are incorrectly drawn

because of the confusion created by the fact that there are

two different misfit parameters, which behave differently

and aberrantly at small S/N values. Dyar (1984) evident-

ly calculated the misfit value named M in Waychu-

nas (1986), whereas Dollase (personal communication,

1987) has been calculating the M’ version. The fact that

M goes negative at small S/N values is due completely to

its formulation. Hence, there is no true significance to the

zero-crossing point or misfit values close to zero that

Dyar (1984) used as an indication of optimal fitting. In

fairness to Dyar (1984, 1986), this is not obvious without

the simulations described in Waychunas (1986).

**APPLICATIONS OF SIMULATION RESULTS TO

EXPERIMENTAL SPECTRA**

In her 1986 paper, Dyar has brought up a comparison

from her 1984 paper that supposedly demonstrates that

the simulations in Waychunas (1986) do not agree with

real data. Dyar (1986, p. 1266) has stated that "data in

my 1984 paper show that χ^2 reaches a minimum as misfit

approaches zero in spectra with one million baseline

counts; the simulation of that experiment by Waychunas

holds χ^2 constant and shows misfit decreasing with in-

creasing baseline counts.” Dyar’s 1984 paper shows such

a plot (page 1134, Fig. 8), and from the behavior of misfit,

it is clearly the M misfit version. The proper comparison

is to Figure 3 in Waychunas (1986) though the back-

ground is only held constant at 500,000 counts, an un-

important difference. In this figure, the χ^2 and the M

parameter behave in a manner completely consistent with

Dyar’s plot. Dyar has chosen to consider the inappro-

priate χ^2 curve. The two curves for χ^2 represent a perfect

fit (no change in χ^2) and a slightly poor model-based fit.

Because all experimental spectra are at least slightly in-

correctly fit, the upper χ^2 curve generally applies. (Note

that the M parameter has also been calculated and plotted

for both types of fits, but it is relatively insensitive to the

magnitude of the error involved.) Dyar’s (1986) state-

ment that the χ^2 parameter has been held constant in the

fits to the simulations using a (rigorously) correct model

is also not true. The χ^2 values all come out equal to 1.00

because of the perfect fits and the purely Gaussian statist-

ics in the spectrum—the reason why a good random-

number generator is critical to the simulations.

The best evidence indicating that the results of the sim-

ulations can be applied to real spectra is seen in Dyar’s

(1984) observations themselves. For example, the effect

of sample concentration (Fig. 8) and run duration (Fig.

9) are very similar except at the greatest sample concen-

trations where thickness-broadening effects are signifi-

cant. How can this be if the spectrum is supposedly af-

fected mainly by thickness effects with increasing sample

concentration, but mainly by spectrometer drift or some

other hypothetical time-dependent effect with run dura-

tion? Why should the same model be inadequate in terms

of the goodness-of-fit parameters in the same way for

such differing effects? The answer is that both sets ofspec-

tra are approximately equally affected by S/N effects over

most of the range that Dyar (1984) investigated. It does

not matter how the S/N is changed, whether by sample

concentration or run duration, the effect is the same.

In order to illustrate this, in Figure 1 the results of the sim-

ulation and Dyar’s observations are plotted. Dyar’s

χ^2 values have been converted to χ^2 for this comparison.

Dyar’s run-duration data reside along a smooth parabolic

curve just as do the simulations. This is indicative of a

constant fitting error for both data sets and not a time-

dependent change in spectral form. Dyar’s varying con-

centration data start off along the same curve as the run-

duration points, but diverge to larger χ^2 values with

increasing sample concentration. The estimated trajectory

of these data as sample concentration increases shows

both the divergence due to decreasing fitting error and

reduction of χ^2 due to decreasing baseline counts as sample

absorption drops for the greatest concentration. The simulation

points represent a larger (intentional) fitting error than in

any of Dyar’s fits. Another curve illustrates the effect of
a smaller (least-concave parabola) fitting error with varying S/N. By varying the type of fitting model, a whole family of similar curves can be generated. The separation between such curves is due entirely to fitting-model errors, whereas the trend along the curves is due to S/N alone. The curves follow the empirical relation

$$\chi^2 = 1.00 + [E \times 10^{-4(S/N)}]$$

where E is directly related to the magnitude of the fitting error. For the perfect-fit model (which will fit absolutely anything perfectly), the curve flattens to a constant at χ^2 equal to 1.00 independent of S/N. The χ^2 parameter is thus dominated by the S/N variation for almost all of Dyar’s points rather than by any changing appropriateness of the fit model.

Dyar’s data points for the lowest sample concentrations yield χ^2 values considerably smaller than 1.00. This is presumably due to the magnitude of the uncertainty in χ^2 for low S/N spectra and the fact that a least-squares fitting program always attempts to minimize χ^2. Hence, the lowest rather than the most probable χ^2 values can be generated. However, I have not observed χ^2 values as low as these previously.

This analysis does not imply that such factors as the thickness effect have insignificant effects on a spectrum. Dyar’s percentage transmission data demonstrate that this occurs (Table 4). It is just that, in the range of S/N that Dyar (1984) examined, any model-dictated fitting error may be dominated by the effects of great variations in the S/N ratio. For a different reason, the χ^2 parameters have reduced utility. They diverge meaninglessly at low S/N, independent of any physical effect, and hence should not be used in the manner that Dyar (1984) described.

Dyar (1986) has stated that her results (those that were obtained by the zero-crossing points of M) are well corroborated by theoretical considerations. It is true that sample thickness leads to a “blackness” or self-absorption effect and that this broadens spectral lines. But the effect has no threshold (Gutlich et al., 1978; Margulies and Ehrman, 1961; Ure and Flinn, 1971) so that the ideal sample concentration is almost zero if no broadening effects are desired. More realistically, an “ideal” sample is constituted by an absorber that maximizes the resonant absorption and minimizes the total nonresonant absorption and the line broadening. Theoretical estimates for minerals depend on the particular recoil-free fractions but are about 5- to 6-mg Fe cm$^{-2}$ (Greenwood and Gibb, 1971; Gutlich et al., 1978). But if the fitting program refines the line widths and line shapes, there should be minimal variation in the goodness-of-fit parameters directly due to thickness effects. Hence, whether one can expect to see thickness effects with a goodness-of-fit parameter at any concentration level depends on the flexibility of the fitting model. If variations in line shape occur, these could be seen by examining the refined line-shape parameters, thereby verifying the presence of the broadening effect. However, since there is no significance to the χ^2 values calculated at the lower S/N ratios, it can only be fortuitous that Dyar has obtained thickness values reasonably similar to theory.

As a further example, consider the assumption that the simulations can be used to predict optimum sample concentration from the behavior of the goodness-of-fit parameters. Since there is no actual physical spectroscopy in the simulations, this is, of course, apocryphal. However, using the background data for 500,000 counts, the optimal absorption as determined by the χ^2 zero-crossing point is about 3%. For silicate minerals, this would be equivalent to a sample concentration of about 5 mg Fe cm$^{-2}$, remarkably close to the theoretical estimates. This illustrates why Dyar’s (1984) result is fortuitous and that most of the degradation she observed in the χ^2 parameter is due to S/N effects.

Finally, one implication that researchers might obtain from Dyar (1984, 1986) is that the S/N effects can be neglected in the analysis of experimental data. Depending on the type of experiment being performed, this assumption can result in poorly tested models and the choice of improper or poor run conditions, namely, sample concentrations that are too small and run durations that are too short. If one does wish to optimize experimental run conditions, both S/N and experimental factors should be considered. Fortunately, S/N effects can be easily modeled and appropriate corrections made, as desired, to χ^2. The χ^2 parameter affords a direct indication of model inappropriateness and should not be modified. S/N variations do not actually change the form of the spectrum, only its quality. In contrast, experimental effects such as thickness broadening must be accommodated by a change in the fitting model, since the spectrum is truly altered by such effects.

References Cited

Manuscript received July 16, 1987

Manuscript accepted January 20, 1989