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Ringso topology and the density of tectosilicates

L.tns Srrxnuon, M.S.T. Burowrusrr
Department of Geology and Geophysics, University of California at Berkeley, Berkeley, California 94720, U.S.A.

Ansrucr

A review of density data for tectosilicates shows that variations in density within a single
framework type are typically an order of magnitude smaller than the twofold variations
among different framework types. To help explain this large range of densities, we have
analyzed the geometric and topologic properties of different frameworks. We used the
geometry and statistics of clusters to construct a predictive model for the framework
density of tectosilicates. Ring statistics and geometries, together with a simple theory of
the effects of ring formation on framework density, lead to the definition of a framework-
specific characteristic ring size. We show that this characteristic ring size increases with
increasing framework density.

INrnooucrroN

Tectosilicates, including the ubiquitous silica poly-
morphs and feldspars as well as feldspathoids, scapolites,
and the technologically important zeolites, are the most
abundant minerals in the Earth's crust (see, e.g., Hurlbut
and Klein, 1977). Although the few hundred distinct spe-
cies vary widely in color, habit, composition, and other
physical properties, we focus here on how variations in
density are controlled by differences in the underlying
framework structure, the continuous three-dimensional
network of corner-sharing SiOo and AlOo tetrahedra com-
mon to all tectosilicates. In addition to its fundamental
crystallographic significance, the relationship between
density and framework structure is central to the design
and synthesis of new low-density zeolites important to
industry (Smith and Dytrych, 1984; Davis et al., 1988;
Brunner and Meier, 1989) and may also elucidate the
relation between the highly variable framework struc-
tures and compression of silicate liquids (Stixrude and
Bukowinski, 1989).

Although the total number of tectosilicate species is
Iarge, many have topologically identical frameworks, and
only about 80 distinct underlying framework structures
have been observed in naturally occurring and synthetic
specimens (Meier and Olson, 1988; Smith, 1977, 1978,
1979; Smith and Bennett, 1981, 1984). The variation in
density among different types of frameworks is much
larger than variations within a single framework type. For
example, the differences in molar volume among the
myriad feldspar species are more than an order of mag-
nitude smaller than the difference between the molar vol-
ume of the densest known framework, coesite, and that
ofthe sparsest, faujasite, which differ in density by a factor
of two, whereas other theoretically proposed structures
are less dense by a factor of three than coesite (Meier,
1986). The goal ofthis paper is a description ofthe ge-

ometry and topology of framework structures that can
explain this remarkable variation in density.

The fact that local geometries [as measured by (Si,Al)-O
and (Si,Al)-(Si,Al) distances and coordination numbersl
in different framework structures are nearly identical
makes the wide range of observed densities even more
remarkable. This has led several authors to examine the
relationship between density and topological elements of
frameworks such as clusters and rings. For instance, a
correlation between cluster populations and density has
been observed @runner, I 979; Akporiaye and Price, I 989)
and a relationship between the smallest ring in a frame-
work and its density has recently been noted (Liebau,
1988; Brunner and Meier, 1989).

Here we combine topologic and geometric measures of
clusters and rings to examine more closely their relation-
ship to density. We first review the concept of framework
density and describe in some detail its wide variability
among tectosilicates. We then describe the notion of a
cluster and present a simple predictive model that relates
the topology and geometry of clusters to framework den-
sity. Finally, we critically examine the definition of a ring
and introduce a theory for the effect of ring formation on
cluster size and, thus, framework density.

Fru,unwonxs AND FRAMEwoRK DENsrrY

Framework density (FD), used by many previous au-
thors in studies of tectosilicates (e.9., Brunner and Meier,
1989), is defined as the number of tetrahedrally coordi-
nated atoms, or T atoms (usually Si or Al), per unit vol-
ume. This is a convenient measure, since it allows us to
directly compare tectosilicates with different chemical
compositions. The wide range of FD for the framework
types considered in this study is shown in Table l. Al-
though many species may share a single framework type,
the variability of FD within a single framework type is
much less than the total variability in FD. For example,

0003-{04x/90/09 l0-t I 59$02.00 I  1 5 9



Framework

I  160

Tlale 1. Tectosilicate framework densities
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Reterence

Lawton and Rohrbaugh
(1seo)

Gramlich and Meier (1970)
Robson et al. (1973)
Fischer (1966)
calligaris er al. (1982)
Meier and Kokotailo (1965)
Gard and Tait (1972)
Stades and Gard (1959)
Merlino et al. (1975)
Barrer and Villiger (1969)
Rinaldi et al. (1974)
Galli (1971)
Fischer (196i1)
Alberti and Vezzalini

(1 983)
Bartl and Fischer (1967)
Meier (1961)
Sieber and Meier (1974)
LOns and Schulz (1967)
Jarchow (1965)
Pechar et al. (1983)
Gottardi and Meier (1963)
Perotta (1967)
Gerke and Gies (1984)
Gies (1983)
Kokotailo et a]. (1985)
Rohrman et al. (1985)
Schlenker et al. (1985)
Kocman 6t al. (1974)
wyckoff (1982)
Wyckoff (1982)
Colville and Ribbe (1968)
Deiseroth and Muller-

Buschbaum (1973)
Peacor (1973)
Tak6uchi et al. (1973)
Levien ard Papike (1976)
Haga (1973)
cohen et al. (1977)
Levien et al. (1980)
Geisinger et al. (1987)
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Fig. l. Summary of density data for the feldspar framework

type, plotted as the volume per T atom vs. the average radius
cubed ofthe interstitial cations, taken from Shannon (1976). The
alkali feldspar series is plotted as circles and the alkaline-earth
series as squares. End-member compositions are indicated by
enlarged symbols. The data from the Ca-Sr-Ba series are from
Bambauer and Nager (1981), the Na-K series from Kroll et al.
(1986), and the K-Rb series from McMillan et al. (1980). The
difference between high (Al-Si disordered) and low (Al-Si or-
dered) structural states (not shown) is comparable to the size of
the larger symbols. The total variation in framework volume (or
framework density) shown is less than 120,6, small compared
with the variation among different framework types (Fig. 3).

cations from the structure. Then, since in the actual struc-
ture each T atom is bonded to four O atoms, each of
which in turn is bonded to one other T atom, we think
of T atoms that share a common O as being linked to
one another in the simplified structure. The relationship
between simplified and actual structures is illustrated
schematically in Figure 2. Since all of the properties con-
sidered here, including framework density and measures
of cluster and ring size, are identical in both the simplified
and actual structures, the two structural representations
are completely equivalent for the purposes of this paper.

This conceptual picture of tectosilicate structure can b€
used to examine the relationship between framework
density and measures of local geometry, such as bond
length and coordination number. In many crystal struc-
tures, variations in these quantities can be related directly
to variations in density. For example, the densities of
many materials with simple structures, such as metals,
can be characterized entirely by a packing fraction ofat-
oms that depends mostly on interatomic distance and
coordination number (e.g., Kittel, 1976). These concepts
can sometimes be fruitfully applied to silicates: the dif-
ference in density between quartz and stishovite can be
attributed to the increase from tetrahedral to octahedral
coordination (Stishov and Popova, 196l) and the in-
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zsM-18

Linde-A
Rho
Gmelinite
Chabazite
zK-'
Offretite
Erionite
Levyne
Linde-L
Phillipsite
Stilbite
Gismondine
Heulandite

Laumontite
Mordenite
Losod
Sodalite
Cancrinite
Natrolite
Dachiardite
Epistilbite
Dodecasil
Melanophlogite
zsM-22
zsM-23
zsM-48
Bikitaite
Parac€lsian
Tridymite
Feldspar
CaGarOo

Cristobalite
CaAl,SirO"
Marialite
Banalsite
Cordierite
Quartz
Coesite

14.27 3.090 14.13

12.88 3.201 14.17
14.17  3 .101 14 .19
14.59 3.131 15.04
14.47 3.141 15.06
14.68 3.128 15.09
15.52 3.131 16.00
15.64 3.136 16.19
15.23 3.177 16.39
16.37 3.104 16.43
15.82 3.144 16.50
16.29 3.125 16.68
15.29 3.197 16.77
17.12 3.115 17.36

17.78 3.084 17.51
17.03 3.130 17.53
15.78 3.221 17.70
17.20 3.136 17.81
16.58 3.179 17.87
17.73 3.111 17.92
17.34 3.148 18.16
17.65 3.13€ 18.22
18.47  3 .111 18 .68
18.96 3.124 19.41
19.73 3.092 19.57
20.00 3.081 19.64
19.92 3.091 19.75
20.29 3.100 20.29
2'1.45 3.090 21.24
22.21 3.081 21.81
n.zs 3.096 22j6
21.49 3.131 22.14

23.28 3.074 22.70
23.36 3.075 22.80
21.75 3.141 22.63
22.52 3.128 23.14
23.15 3.146 24.20
26.52 3.057 25.43
29.28 3.086 28.87

Note.'The mineral chosen to represent each framework type is listed
along with the reference to its structure. For alternative species see com-
pilations by Meier and Olson (1988), Smith (1977, 1978, 1979), and Smith
and Bennett (1981, 1984). L is the average T-T distane. Units ot FD and
FD* ar€ nm-3 and L is in angstroms. FD. is defined by fD' : FD(UL)",
where the standard T-T distance L is chosen to be 3.1 A.

it has long been recognized that the FD offeldspars varies
inversely with the ionic radius of the interstitial cation
(see the review by Smith and Brown, 1988). However,
Figure I shows that this variation, along with changes in
FD due to differences in Al-Si ordering and relative con-
centration, is less than l2o/o compared with the twofold
total variability among different framework types. Thus,
a description of the geometric and topological variations
among different framework types on which FD depends
most strongly is central to an understanding of the den-
sities of tectosilicates.

The measure of framework density suggests a simpli-
fied conceptual picture oftectosilicate structure that will
be useful in characterizing different framework types (see
also Smith, 1982, p. I 6 I ff). Since framework density de-
pends only on the number of T atoms, we form the sim-
plified structure by removing all O atoms and interstitial



Fig.2. Relationship between actual tectosilicate structure and
the simplified conceptlral structure used in this paper. On the
left is the bitetrahedron, the largest structural unit shared by all
tectosilicates, consisting of two T atoms (solid circles) surround-
ed by their coordinating O atoms (open circles). A portion ofthe
sodalite structure, together with its simplified version (far right),
derived by eliminating O atoms and interstitial cations and draw-
ing links between T atoms that share a common O.

crease with pressure in the density of quartz can be at-
tributed to a decrease in T-T distance (Stixrude and Bu-
kowinski, 1988, 1989). However, the variability of local
geometries among different framework types is insuffi-
cient to explain the observed variability of FD among
tectosilicates. Applying our simplified conceptual picture
of tectosilicate structure, we see that each T atom is al-
ways linked to four other T atoms, and thus all frame-
work structures are fourfold coordinated. Further, the
variations in T-T distance, although inversely related to
FD, are insufficient to explain the total variability of FD.
This is illustrated in Figure 3, which shows that the vari-
ability of FD* (FD scaled to a standard T-T distance) is
9090 of the variability of FD itself. The inability of local
geometries to explain framework densities provides the
primary motivation for the examination of larger scale
framework elements such as clusters and rings.

Cr,usrnns
Clusters in tectosilicate framework structures are the

physical expression of the coordination sequences first
applied extensively to tectosilicates by Meier and Moeck
(1979) and Brunner (1979). A cluster consists of a cen-
tral T atom, the four T atoms linked to it, all the T
atoms linked to these four and so on. The four T atoms
linked to the central T atom are referred to as the first
linked neighbors. All the T atoms linked to the first linked
neighbors (except of course for the central T atom) are
referred to as second linked neighbors. All the T atoms
linked to the second linked neighbors (except the first
linked neighbors) are referred to as third linked neighbors
and so on. More specifically, for a cluster of size Q with
numbers of first through Qth linked neighbors i{,, N., Nr,
. . . , Na, the total number of T atoms in the cluster Mn
is given by:

o
Mo:r*Pry  ( l )

1 l 6 l

TECTOSIL ICATES
FRAMEWORK DENSITY

a
a ,

FD'=FD(L/1")5

1 2 1 6 2 0 _ 2 1 2 A
FD (nm- ' )

Fig. 3. The framework density of all the frameworks listed
in Table I plotted against their framework density scaled to a
standard T-T distance (I,. : 3.1 A). fnis shows the wide vari-
ability of framework density among tectosilicates and the in-
ability of variations in T-T distance (Z) to account for this
variability.

As an illustrative example, the number of Oth linked
neighbors for a cluster in a Bethe lattice (Bethe, 1935;
Domb, 1960) with a coordination number of four (Fig.
4) is given by

Nn:4 x 3o- t  (2)

and the total number of T atoms in such a cluster of size
Q is given by:

a - r
M a : l  +  4  x  ) 3 i : 2  x  3 0  -  l .  ( 3 )

t:0

This particularly simple framework, sometimes referred
to as a tree, will prove usefirl when we discuss rings be-
low. In addition to Nn and Mn we have computed D,
the average distance to the Oth linked neighbor shell for
each of the framework structures considered in this study
up to Q: 6. Some of the resulls of these computations,
discussed in detail in Appendix 1, are listed in Tables 2
and 3.

In order to relate clusters to tectosilicate density, we
construct a simple model that allows the calculation of
framework density from the number of,T atoms in a clus-
ter (Nn and Mn) and the spatial dimensions of the cluster
(Dn). In this model, we consider a framework to be com-
posed of many clusters of a given size Q. Although one
may divide the framework into clusters in such a way
that the overlap among clusters is minimize4 in general,
adjacent clusters will share some number of T atoms. We
assume that only the outermost T atoms, -those in the
Qth linked neigfubor shell, are shared and that each of
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Fig. 4. Bethe lattice complete through the third linked neigh-
bor shell.

these Nn atoms is shared on average between two clusters.
If we also approximate the shape of each cluster as a
sphere, the calculated framework density for our model is

FD: (Mo-, + YzN)/V(D) (4)

where

V(Dd: 4zrD3n/3' (5)

In order to assess the validity of this simple model, we
compare FD calculated from Equation 4, using Q: 6, to
the actual FD for all the framework structures listed in
Table l. Figure 5 shows the excellent agreement between
Equation 4 and actual framework densities: the root-
mean-square deviation between model and data is 3010.
We chose O : 6 since this is the smallest cluster size that
contains all the fundamental rings of the framework
structures examined here (see Table 4 and discussion of
rings below). For much larger Q, the approximation that
only atoms in the Qth shell are shared will become less
accurate, whereas for a much smaller @ different frame-
works become indistinct: in the limit of Q: 1, all frame-
works have Nn:4. Nevertheless, the calculated FD val-
ues are insensitive to small changes in Q: for Q: 5, the
root-mean-square deviation between calculated and ac-
tual FD is 4ol0. Thus, although the assumptions upon
which the model is based can only be approximately cor-

the model is remarkably accurate in predicting ac-
framework densities from the properties of micro-

scopic clusters ofT atoms, suggesting a close association
between the structure of clusters and that of the entire
framework.

Further examination of the properties of clusters shows
that the variability of topological measures (Ma,Na),rather
than geometric measures (Dn), of cluster size are primar-
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TABLE 2. Cluster statistics

Framework Ar, N2 ,V" M ,v, ^1.

zsM-18
Linde-A
Rho
Gmelinite
Chabazite
zK-s
Offretite
Erionite
Levyne
Lind+L
Phillipsite
Stilbite
Gismondine
Heulandite
Laumontite
Mordenite
Losod
Sodalite
Cancrinite
Natrolite
Dachiardite
Epistilbite
Dodecasil
Melano-

phlogite
zsM-22
zsM-23
zsM-48
Bikitaite
Paracelsian
Tridymite
Feldspar
CaGa,Oo
Cristobalite
CaAlrSi20s
Marialite
Banalsite
Cordierite
Quartz
Coesite

4.000 9.529
4.000 9.000
4.000 9.000
4.000 9.000
4.000 9.000
4.000 9.000
4.000 9.333
4.000 9.333
4.000 9.33i]
4.000 9.333
4.000 9.000
4.000 10.222
4.000 9.000
4.000 10.667
4.000 10.000
4.000 11.667
4.000 10.000
4.000 10.000
4.000 10.000
4.000 8.800
4.000 1 1.667
4.000 1 1.667
4.000 11.647

4.000 12.000
4.000 12.000
4.000 12.000
4.000 11 .667
4.000 12.000
4.000 10.000
4.000 12.000
4.000 10.000
4.000 11 .000
4.000 12.000
4.000 11 .000
4.000 1 1.000
4.000 1 1.000
4.000 10.667
4.000 12.000
4.000 10.000

17.294 29.294 45.176 65.412
17.000 28.000 42.000 60.000
17.000 28.000 42.000 60.000
17.000 29.000 45.000 65.000
17.000 29.000 45.000 64.000
17.000 29.000 45.000 64.000
18.000 30.667 48.667 72.000
18.000 30.667 48.667 71.333
18.000 30.667 48.000 68.667
18.333 31.000 47.000 68.000
18.000 32.000 49.000 69.500
19.111 34.667 57.111 80.000
18.000 32.000 48.000 67.000
20.444 36.000 59.383 85.333
19.393 32.667 52.000 74.000
22.OOO 38.000 60.333 88.000
20.000 34.000 53.000 76.000
20.000 34.000 52.000 74.000
20.000 34.000 54.000 78.000
18.800 35.200 52.800 75.600
22.000 38.667 63.000 93.000
22.000 39.333 64.333 92.333
23.824 40.588 64.000 92.353

24.783 42.261 67.652 98.000
23.000 41.000 64.667 94.339
23.000 41.167 65.000 95.167
23.833 40.667 64.3&1 93.667
24.OOO 42.667 69.333 98.667
21.000 37.000 57.000 81.000
25.000 44.000 67.000 96.000
21.000 38.000 57.000 81.000
24.000 41.000 63.000 91.000
24.000 42.000 64.000 92.000
24.000 41.000 62.000 90.000
22.000 41.000 64.667 92.000
23.000 42.000 66.000 97.000
23.393 M.667 66.000 102.000
30.000 52.000 80.000 116.000
22.500 47.000 83.000 126.000

rect,
tual

Note.' No is the mean number of neighbors in the Oth linked neighbor
shell of a single T atom averaged over all T atoms in the structure'

ily responsible for the observed variation in framework
density. There is, for example, a good correlation between
cluster population (M) and framework density (Fig. 6).
Similar correlations between Nn and FD have been ob-
served by several previous authors using slightly different
data sets (Brunner, 1979; Akporiaye and Price, 1989). In
contrast, Figure 7 shows that the geometry of clusters, as
measured by Dn, is nearly independent of framework type.
The standard deviation of Du for all framework structures
is only 100/0. An explanation of variations in the topolog-
ical size of clusters, and thus framework density, is there-
fore of primary importance. In the next section we show
that variations in ring statistics provide this explanation.

RrNcs

Although a lucid discussion of the possibility for wide
structural variation in tetrahedral frameworks appeared
as early as 1932 it Tachaiasen's pioneeiing work on
glasses, the systematic description of the topology of dif-
ferent framework types is more recent, apparently origi-
nating with Bernal's (1964) suggestion that rings, rather



A/ote.' Do is the mean distanc€ from a single T atom to neighbors in its
Oth linked neighbor shell averaged over all T atoms in the structure.

than the coordination numbers so profitably employed in
describing ionic and metallic materials, should be the pri-
mary topological measure of covalently bonded struc-
tures. Thus, the characterization of physical models of
silica glass built shortly thereafter (Evans and King, 1966;
Bell and Dean, 1966) included the first complete mea-
surements of the ring statistics of a tectosilicate structure
(King, 1967). However, the definition of a ring used in
these early papers, very similar to that used by Smith
(1977,1978,1979) and Smith and Bennett (1981, 1984)
in their more recent work on the derivation of crystalline
tectosilicate structures, differs from the one used in the
present study; a detailed discussion of the definition of a
ring is therefore required.

In the most general sense, a ring may be taken as any
returning path in the framework. However, this is not a
very useful definition since there is an infinite number of
such rings, and the number of rings of a given size in-
creases without limit with the size of the ring. Thus for
practical and aesthetic reasons, identification of a small
set of rings as being somehow fundamental is desirable.
The older definition, first given by King (1967), counted

1 163

CLUSTER MODEL
FOR FD

t 2  1 5  2 0  -  2 1  2 8
FD (nm- ' )

Fig. 5. Illustration of the excellent agreement between ob-
served framework density and that predicted by the simple mod-
el relating cluster density to macroscopic density, which is de-
scribed in the text (Eq. 4).

the set of six smallest rings, one through each of the six
pairs of T-T links emanating from a T atom, as funda-
mental. This definition, however, leads to ambiguities in
ring counting (Smith, 1978) and igrrores the common oc-
currence of more than one ring of the same size passing
through a single pair of T-T links (Belch and Rice, 1987).
On a practical level, many different framework structures

250
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Fig. 6. Plot showing the good correlation (r: 0.88) between
the cluster population (M) and framework density, indicating
that most of the variation in cluster density is accounted for by
changes in the number of T atoms in a cluster rather than by
changes in geometric size.
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TABLE 3. Cluster geometry

Framework D, D64D3D2

zsM-18
Linde-A
Rho
Gmelinite
Chabazite
zK-5
Offretite
Erionite
Levyne
Linde-L
Phillipsite
Stilbite
Gismondine
Heulandite
Laumontite
Mordenite
Losod
Sodalite
Cancrinite
Natrolite
Dachiardite
Epistilbite
Dodecasil
Melanophlogite
zsM-22
zsM-23
zsM-48
Bikitaite
Paracelsian
Tridymite
Feldspar
CaGar04
Cristobalite
CaA12Si,Oo
Marialite
Banalsite
Cordierite
Quartz
Coesite

3.090 5.082
3.201 5.307
3.101 5.215
3.131 5.210
3.141 5.243
3.128 5.195
3.131 5.176
3.136 5.176
3.177 5.269
3.104 5.089
3.144 5.237
3.125 5.059
3.197 5.330
3.115 5.058
3.084 5.096
3.130 5.067
3.221 5.350
3.136 5.232
3.179 5.240
3.1 1 1 5.169
3.148 5.095
3.133 5.071
3.111 5.087
3.124 5.090
3.092 4.999
3.081 4.978
3.091 5.026
3.100 5.028
3.090 5.031
3.081 5.031
3.096 5.030
3.131 5 .110
3.074 4.978
3.075 4.984
3.141 5.043
3.128 5.100
3.146 5.061
3.057 4.953
3.086 5.037

7.210 9.350
7.504 9.504
7.286 9.217
7.251 9.231
7.332 9.310
7.229 9.235
7 .173 9.187
7.168 9.163
7.274 9.231
6.936 8.810
7.279 9.121
7.236 9.359
7.377 9.238
7.231 9.324
6.993 9.010
7.325 9.403
7.355 9.356
7.132 9.084
7.222 9.209
7.109 8.726
7.353 9.441
7.322 9.396
7.192 5.248
7.222 9.284
7.O40 9.097
7.007 9.061
6.950 9.098
7.091 9.126
6.834 8.594
6.845 8.908
6.841 8.595
6.893 8.844
6.732 8.740
6.723 8.593
7.003 8.748
6.926 8.829
6.805 8.585
6.710 8.689
6.822 8.402

11.398 13.470
11.524 13.609
1 1  .216 13 .179
11.222 13.228
1't.267 13.223
1 1  .195 13 .1  14
11.240 13.254
11.200 13 .187't1.221 13.223
10.893 13.024
1 1 .062 13.173
1 1 .332 13.388
11.213 13.373
11.272 13.399
10.946 12.860
11.507 13.682'11.420 13.508
11.050 13.089
11.285 13.306
10.828 12.996
11.506 13.685
11 .419 13.646
11 .390 13.549
11.382 13.623
11.225 13.335
1 1 .184 't3.274
11.151 13 .301
11.188 't3.423
10.496 12.503
10.921 13.027
10.504 12.577
10.889 12.922
10.666 12.728
10.569 12.557
10.776 12.926
10.807 12.980
10.810 12.770
10.867 12.931
10.176 12.405
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Fig. 7 . Summary of cluster geometry in tectosilicates, show-
ing the average distance to each ofthe first six linked neighbor
shells for all frameworks listed in Table l. The horizontal width
of the symbols shown for each Do (pairs of Gaussian curves
drawn out to + twice the standard deviation) is proportional to
the probability of finding a framework with a particular value of
Dn. The observed Dn values are compared with two limiting
cases: (1) Dn expected ifevery atom in the Qth linted neighbor
shell closed a planar ring of slze 2Q, and (2) Dn expected if every
atom in the Qth shell lay at the end of a chain of length Q with
T-T-T angles equal to the ideal tetrahedral angle of 109.47". The
total variation in Dn values is small compared with variations
in cluster density (Fig. 6) and compared with the two limiting
cases shown, indicating that cluster geometry is approximately
independent of framework type.

have identical ring statistics by this definition (Smith,
1977), suggesting that a new definition would be useful.
We find the simplest and most appealing definition of a
fundamental ring, introduced by Marians and Hobbs
(1989b), to be any ring that cannot be divided into two
smaller ones. It is free of the ambiguities of the older
definition and results in a much greater variability of ring
statistics among different framework structures. Some of
the differences between this and the older definition of
fundamental rings are illustrated schematically in Fig-
ure 8.

We used this new definition of a fundamental ring and
an algorithm described in Appendix I to determine the
ring statistics for all the framework structures examined
in this study (see Table 4). These are the first measure-
ments of ring statistics of tectosilicates, oth€r than the
silica polymorphs (Marians and Hobbs, 1989b), that are
based on the new definition.

To analyze the ring statistics of tectosilicates, we intro-
duce a simple theory of the effects of ring formation on
framework density. We shall argue that, in general, ring
formation tends to decrease framework density, and that
forming a small ring affects the density much more than

Fig. 8. On the left is a schematic representation of a portion
of the cristobalite structure showing the 12 fundamental six-
membered rings that pass through each T atom (after Marians
and Hobbs, 1989a). The older definition of a fundamental ring
(see text) allows only six rings to pass through any T atom. On
the right is a schematic representation of a portion of a hypo-
thetical framework. The older definition of fundamental rings
would consider as fundamental the two four-membered rings
and the six-membered ring. The definition used in this paper
also counts the two four-membered rings but counts the seven-
membered ring instead of the six-membered ring, since the latter
can be divided into two smaller rings (see dso Smith, 1978).
Note that each structure shown is complete through the second
linked neighbor shell of rhe enlarged central atom and, for clar-
ity, includes only those third linked neighbors that close rings;
in the case ofcristobalite, this is half of the 24 tolal third linked
neighbors.

forming a larger one. To illustrate this we will consider
only clusters, rather than entire frameworks, and assume
that ring formation affects only cluster topology (Ma,Nn)
and not geometry (Dn). These limitations are justified,

since we have shown that cluster topology is closely re-
lated to framework density (Fig. 5) and that cluster ge-
ometries of frameworks with widely varying ring statis-
tics are very similar (Fig. 7). Further, we make the
simpli&ing assumption that the relative efect of different
sizes of rings is the same for all frameworks. This allows
us to base our discussion on a simple framework, the
Bethe lattice described earlier, which will yield an ana-
lytic expression for the effect of ring formation on frame-
work density.

Figure 9 shows the effect of ring formation for different
sizes ofrings on the cluster topology ofthe Bethe lattice.
For example, the formation of a three-membered ring
belonging to the central T atom means that two first
neighbors ofthe central T atom become linked to each
other. However, because of the restriction that every T
atom can be linked to only four others, these two first
neighbors must now break their links with T atoms in
the second neighbor shell of the central T atom, thus
pruning from the tree two branches radiating outward
from two T atoms in the second neighbor shell. Similarly,
forming a four-membered ring belonging to the central T
atom means that two T atoms in the second neighbor
shell must coalesce into one. Again, the restriction of four-
coordination then requires that four branches be pruned
beginning in the third neighbor shell. More generally, for
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Taau 4. Ring statistics

\n fo t  K :

Framework 1 21 1

zsM-18
Linde-A
Rho
Gmelinite
Chabazite
zK-s
Offretite
Erionite
Levyne
Linde-L
Phillipsite
Stilbite
Gismondine
Heulandite
Laumontite
Mordenite
Losod
Sodalite
Cancrinite
Natrolile
Dachiardite
Epistilbite
Dodecasil
Melanophlogite
zsM-22
zsM-23
zsM-48
Bikitaite
Paracelsian
Tridymite
Feldspar
CaGa.Oo
Cristobalite
CaAlrSi106
Marialite
Banalsite
Cordierite
Quartz
Coesite

0.18
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

2.12
3.00
3.00
3.00
3.00
3.00
2.67
2.67
2.67
2.67
3.00'1.78

3.00
1.33
2.00
0.33
2.OO
2.00
2.00
4.00
0.33
0.33
0.35
0.00
0.00
0.00
0.33
0.00
2.O0
0.00
2.00
1.00
0.00
1.00
1.00
1.00
1.33
0.00
2.O0

1.76
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.22
0.00
3.33
0.00
5.00
0.00
0.00
0.00
0.00
5.00
5.00
4.41
5.22
3.33
3.33
1.67
3.33
0.00
0.00
0.00
0.00
0.00
0.00
3.33
0.00
0.00
0.00
0.00

o.71
5.00
1.00
1.00
1.00
1.00
2.00
2.00
2.00
1.67
0.00
4.00
0.00
1.38
6.00
0.00
4.00
4.00
4.00
0.00
0.00
0.00'1.24

0.78
5.00
5.00
7.50
4.00
3.00

12.00
4.50
6.00

12.00
6.00
2.00

10.50
4.67
6.00
1.50

1.24
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
1.00
2.00
6.00
6.00
6.00
4.00
4.00
4.00
6.67
4.00
2.22
4.00
1.33
2.67
2.00
0.00
0.00
0.00

12.80
1.33
1.33
0.00
0.00
0.00
0.00
1.33
2.67
8.00
0.00
s.00

16.00
0.00

20.00
5.33
2.00
0.00

40.00
2.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
7.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

40.00
0.00
9.00

0.00
0.00

10.00
0.00
0.00
0.00
3.33
3.3!!
0.00
6.67
5.00
1 . 1  1
0.00
1 . 1  1
3.33
3.33
5.00
0.00

10.00
0.00
6.67
3.33
5.29
2.61
1.67
1.67
0.83
0.00
0.00
0.00

22.50
0.00
0,00
0.00
3.33

10.00
6.67
0.00
2.50

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

11.00

0.71 4.48
8.00 4.94
0.00 4.96
7.00 4.98
1.00 4.86
0.00 4.83
9.33 5.19
5.33 5.10
1.38 4.85
0.33 s.fft
0.00 4.80
0.00 5.11
0.00 4.52
2.O0 4.98

20.00 5.69
1.q) 5.3!l

14.00 5.40
82.00 5.56
20.00 5.74
0.00 5.32
3.67 5.51
0.00 5.23
0.00 5.33
0.00 5.25
0.00 5.58
0.00 5.58
0.00 5.72
0.00 5.67
0.00 5.43
0.00 6.00
0.00 6.09
0.00 6.33
0.00 6.00
0.00 6.47
0.00 5.51
0.00 5.99
0.00 6.93
0.00 7.38
9.00 6.00

/vofe.'The average number ot rings ot size Kpassing through a single T atom averaged over all T atoms in the structure is given by f(rg.
' Characteristic ring size defined by Equation 1 1.

a tree of size Q, the number of T atoms pruned from the
tree, P(Q,K) by the formatl:l,o, u ring of size K is:

P ( Q , K ) : 2 x  >  3 i : 3 @ - s - l  ( 6 )

for odd-membered rings and

@ - s  I

P ( Q , K ) : l + 4 x  )  3 i : ) x 3 o - s -  I  ( 7 )

for even-membered rings, *]rere ,S is the linked neighbor
shell in which a ring closes: S is l/2(K - l) for odd rings
and l/2K for even rings. We define the relative pruning
efficiency, P*(K) as the large Q limit of P(Q,K) norrnal-
izedlo P(Q,3):

P*(K) : nm P(Q,K)/P(Q,3). (8)

Thus, for odd-membered rings:

P*(K) : l/3vdK 3) (9)

and for even-membered rings:

P*(K): 2/3h(K-2) (10)

A plot of P*(K) (Fig. 9) shows it to be rapidly decreasing
function of ring size, emphasizing the greater effect of
small rings on framework density.

Our theory predicts that a measure of ring size that
takes into account the greater role played by small rings
will increase with increasing framework density. Thus, we
define a characteristic ring size:

K*: > Kf(K)w(K)/> f(K)w(/O, (ll)

where the sum are over K f(K) is the number of K rings
in a structure (Table 4) and W(K) is a weighting function
which is a decreasing function of K. If, as the theory sug-
gests, we identify W(K) with P*(K), we find a significant
positive correlation between K* and framework density
(Fig. l0). We attribute this result to the greater pruning
efficiency of small rings compared with large ones. Thus,
despite the simplifications built into our theory, it serves
to elucidate the close relationship between ring.statistics
and framework density.
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Fig. 9. The etrect of ring formation on framework density.
The inset shows a cluster of size 3 from the Bethe lattice, with
T atoms indicated by symbols and T-T links indicated by lieht
lines. The bold lines indicate the effect ofring formation. In the
upper right portion of the cluster, a three-membered ring is
formed by linking two T atoms in the first linked neighbor shell,
as shown by the solid bold line. The dashed bold line indicates
the pruning required by the constraint of four-coordination.
Similarly, in the bottom left portion of the cluster, a four-mem-
bered ring is formed by equating two T atoms in the second
linked neighbor shell, indicated by the bold line encircling the
two T atoms. Again, the bold dashed line indicates the portions
of the cluster that must be pruned to maintain four-coordina-
tion. The large circles plotted are the relative pruning efrciencies
for different-sized rings from Equations 9 and 10. The line is an
exponential fit to guide the eye. The plot shows that small rings
have a much greater effect on framework density than large ones.

Our observation that characteristic ring size increases
with framework density is fully consistent with previous
observations, including the recent work ofliebau (1988)
and Brunner and Meier (1989), noting a systematic trend
toward lower observed framework density with decreas-
ing size of the smallest ring in the framework. Connec-
tions between the existence of small rings in a network
and small values of Nn have also been noted (Brunner,
1979; Akporiaye and Price, 1989), again fully consistent
with our results.

The perhaps counterintuitive relationship between ring
size and framework density is topological in nature, via
the pruning mechanism, and is not attributable to any
greater propensity for large rings to crumple or fold up
compared with small rings, as has been suggested (Mar-
ians and Hobbs, 1989b). In fact, rings with larger topo-
logical size (K) are also geometrically larger. By measur-
ing the geometry of rings in tectosilicates, we show that
plausible measures of the effective density of a ring de-
crease with increasing ring size K. We define an effective
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Fig. 10. Plot showing the positive correlation (r: 0.83) be-
tween characteristic ring size, K* (Eq. I l), and framework den-
sity (FD) as predicted by the theory of the effects of ring for-
mation on framework density described in the text and
summarized in Figure 9.
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Fig. I l. Geometry of rings in tectosilicates as measured by
the radius ofgyration (Eq. 13) and illustrated schematically in
the upper left portion ofthe figure. Each symbol represents the
average radius ofgyration for all rings ofsize Kin one structure.
The single example of three-membered rings (in ZSM-18; R" :

1.7419) is not shown for convenience. Observed values are com-
pared with two limiting cases: (1) planar rings, for which Ro is
a maximum and (2) the value of Ro expected if the etrective
density of rings (Eq. 12) remained constant with increasing ring
size starting at K: 3. The two lower curves correspond to effective
ring dimensionalities of 3 (lowermost curve) and 2 (see Eq. 15).
All Ro values are scaled to a standard T-T distance of 3. I A to
facilitate comparison.
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density ofa ring:

p(K) u. K/R(, (r2)
where Ro is the radius of gyration (root-mean-square dis-
tance from the center of mass):

RL: 0/2K') 2 r",

where ru is the distance between T atoms i and j and d is
the effective dimensionality of a ring, which may be
thought ofas lying between two and three, since rings are
nearly planar structures. We have determined Ro for all
the rings of this study and compared these values to the
value of Ro for planar rings:

Ro (Planar) : l/2Lcsc(tr/K), (14)

where Z is the T-T distance, and to variations in Ro for
constant effective ring density:

R"[p(K) : constant] d Kt/d. (15)

Figure I I shows that, although rings deviate systemati-
cally from planarity with increasing ring size, the fact that
Ro increases much more rapidly than Equation 15 for d
: 2 ot d:3 means that any plausible measure of effective
ring density will decrease with increasing ring size. Thus,
rings crumple only slightly, and one should not think of
increasing characteristic ring size with increasing density
as being accommodated by the crumpling of rings. This
indicatos that the density of rings, which are two-coor-
dinated, nearly two dimensional structures, cannot be
simply related to the density of three-dimensional four-
coordinated frameworks.

Suvrtvrnnv

We have examined in detail the density of tectosili-
cates, minerals based on frameworks with identical co-
ordination numbers and nearly identical bond lengths yet
vastly different densities. We have shown how topologi-
cal elements of frameworks, such as clusters, can be used
to form predictive models of framework density. We de-
scribed the advantages of a new definition of rings and
presented the first measurements of ring statistics of tec-
tosilicates, other than the silica polymorphs, based on
this definition. Finally, we have described a simple theory
that relates ring formation to framework density and used
this to define a characteristic ring size that shows a strong
positive correlation with framework density. The coun-
terintuitive increase in ring size with increasing density
is attributed to a topological pruning mechanism and is
not related to deformation of rings.

Although the picture relating ring statistics to frame-
work density presented here is simple and can be refined,
it provides a basis for rationalizing the densities of tec-
tosilicates. It provides further support for the importance
of structures containing four- and three-membered rings
in the search for new low-density zeolites. Finally, it is
sufficiently general to provide a first-order description of
the complex changes in silicateJiquid framework struc-

ture caused by increasing pressure (Stixrude and Bukow-
inski, 1990).
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AppnNorx 1. Mn,c.suREMENT oF cLUsrER AND
RING STATISTICS

The description ofthe algorithm for finding cluster parame-
ters, Nn anld Mn, and ring statistics, (1Q, is presented in a way
that allows the results to be easily reproduced by hand, at leasl
for a small Q. For Q Larger than three or four, the logical oper-
ations are too numerous. We used a computer program to gen-
erate all the results of this paper. Throughout, the quartz struc-
ture is used as an example, since it contains the smallest number
of T atoms per unit cell.

The first step is to identiff each atom in the structure with a
four-part label: (iS,k,l), where I uniquely identifies all the atoms
in the unit cell and j,k,l define a lattice translation vector in the
basis defined by the lattice vectors a,b,c (i.e., t: ia + fi + kc,
where t is a translation vector). T-T links are then identified by
searching for all T atoms that lie within a certain distance of
each T atom in the unit oell (3.5 A is an appropriate cutofffor
all the structures in this study). The result is a linkage table that
contains all linkage information for the entire structur€. That is,
if we know that (tI,0,0,0) is linked to (iz,l,O,l), then (i 1,0 +.1',0
+ H,0 + /,) is linked to (i2,1 + 1,0 + l{,1 + l') for all j"lc,l'.
As an example, if we identifo the atoms in the unit cell of quartz
in the following way:

T atom Atomic coordinates fu: 0.4697\

(1,0,0,0) (u,0,0)
(2,0,0,0) (0,u,2/3)
(3,0,0,0) (-u,-u,t/3),

then the resulting linkage table is

T atom Linked to

(1,0,0,0) (2,0,-1,-1), (2,r,0,-r),(3,0,-1,0), (3,0,0,0)
(2,0,0,0) (1, - l ,0,1), (1,0,1,1), (3, - 1,0,0), (3,0,0,0)
(3,0,0,0) (1,0,0,0), (1,0,1,0), (2,0,0,0), (2,1,0,0).

Because the linkage table establishes the linkage for the entire
structure, all subsequent operations involved in finding cluster
and ring statistics involve only the linkage table, and no further
reference to atomic coordinates is made.

The cluster up to O : 3 of atom (1,0,0,0) in quartz is shown
in Figure lA. The first neighbor shell is obtained directly from
the linkage table, whereas the second neighbor shell is construct-
ed by finding the linked neighbors ofthe atoms in the first linked
neighbor shell and so on for larger Q. For instance, the linkage
table tells us that the first linked neighbors of atom (2,0,0-1,0-
l )  a re  (1 , -1 ,0 -1 ,1 - l ) ,  (1 ,0 ,1 - l , l - l ) ,  (3 , -1 ,0 -1 ,0 - l ) ,  and (3 ,0 ,0 -
1,0-1). Once the cluster is constructed, the number of distinct
neighbors in each neighbor shell are counted to give Nnall,d Mn

The fact that several atoms appear more than once in the Q
: 3 shell indicates that six-membered rings exist (although they
are not necessarily fundamental). Similarly, if two atoms in the

0 : 3 shell were linked to each other (this does not occur in our
example), this would indicate five-membered rings (again not
necessarily fundamental). To determine whether a ring is fun-
damental, we compzue minimal path distances to path distances

tt69

Fig. lA. The cluster of atom (1,0,0,0) in quartz up to O: 3.
The bold lines indicate a fundamental six-membered ring.

along the ring (Marians and Hobbs, 1989b). The path distance
between two T atoms is simply the number of T-T links tra-
versed along any framework path connecting the two. Although
there are an infinite number of such paths in an infinite frame-
work, we are primarily interested in the minimal path distance,
which can be found directly from the clusters. The minimal path

distance between one T atom and a T atom in its Oth neighbor
shell is equal to p. Thus, the minimal path distances between
all pairs of T atoms in the entire structure are found from the
clusters of the T atoms in the unit cell. Marians and Hobbs
(1989b) have shown that a ring is fundamental if the shortest
distance between any pair ofT atorns along the ring is equal to
its minimal path distance. Thus, the steps involved in determin-
ing a fundamental ring are (l) construct a potential ring by in-
spection of the cluster; (2) determine the shortest path distances
along the ring, again by inspection ofthe ring; and (3) compare
these path distances with minimd path distances. For the ring
outlined in the cluster above:

(1,0,0,0) - (2,0,- l ,-  l )  -  (1,- l ,-  1,0)

I

(3,0,- 1,0) - (2,0,- 1,0) - (3,- l ,-  1,0),

we see that the shortest path distance along the ring between, for
example, (2,0,-1,-l) and (2,0,- 1,0) is three. From the cluster
of atom (2,0,0,0), we see that the minimal path distance between
(2,0,0,0) and (2,0,0,1) is three, and thus the minimal path dis-
tance between (2,0,- l,- l) and (2,0,- 1,0) is also three, the same
as the shortest path distance along the ring. By checking all T
atom pairs in the ring in this way, we would find that this par-

ticular six-membered ring is fundamental.
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