Kegelite from Tsumeb, Namibia: A redefinition

Pete J. Dunn
Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560, U.S.A.

Richard S. W. Braithwaite
Department of Chemistry, The University of Manchester Institute of Science and Technology, Manchester, England M60 1QD

Andrew C. Roberts
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada

Robert A. Ramik
Department of Mineralogy and Geology, Royal Ontario Museum, Toronto, Ontario M5S 2C6, Canada

Abstract

Kegelite, previously an incompletely described species, is redefined. It is monoclinic, $A2/m$, $A2$, or Am, with $a = 21.04(1)$, $b = 15.55(1)$, $c = 8.986(6)$ Å, and $\beta = 91.0(1)^\circ$. The new chemical formula is $\text{Pb}_2\text{AlSi}_4\text{(SO}_4)_2\text{(CO}_3)_4\text{(OH)}_6\text{O}_{2n}$, with $Z = 3$.

Introduction

Kegelite was first described from the Tsumeb Mine in Namibia by Medenbach and Schmetzer (1976). The material they studied was not of sufficient quality to permit single-crystal studies, but they were still able to characterize it as a Pb-Zn-Al-sulfosilicate, reporting the formula $\text{Pb}_2\text{Zn}_n\text{Al}_4\text{Si}_{11.5}\text{S}_3\text{O}_{35}$. We have restudied kegelite, using Tsumeb material that has been found to be cospecific with type kegelite; the X-ray powder-diffraction patterns of these two samples are nearly identical. We provide unit-cell data for kegelite and, because our chemical data are at variance with those previously reported by Medenbach and Schmetzer (1976), we propose a new formula on an interim basis. A more precise characterization of the chemical formula of kegelite must await the discovery of material suitable for a crystal structure determination. The sample studied (NMNH no. 147460) is in the collection of the Smithsonian Institution. This redefinition of kegelite was approved by the Commission on New Minerals and Mineral Names, I.M.A.

Description

The sample studied consists of a small, compact mass of pearly white kegelite intimately associated with quartz; some relict galena is also present. The kegelite forms colorless, translucent to transparent, chlorite-like, platy 0.3-mm crystals, with {100} as the dominant form and a perfect {100} cleavage. The crystals are extremely flexible and are distorted by any contact.

The loose, porous nature of the available kegelite aggregates caused determination of the density to be difficult, but it was determined by the position of the densest flakes relative to reference mineral grains distributed in a density gradient in supersaturated Clerici solution (for details see appendix 1). Kegelite was dispersed over a wide density range, apparently owing to varied amounts of adhering and included air bubbles. A small proportion of kegelite flakes was denser than olivenite from the Tintic district, Utah (Mrose obtained a density of 4.46 g/cm3 for material from this area; see Palache et al., 1951). Kegelite flakes were noted down to the level of magnesioferrite from Längban ($D = 4.549 - 4.544$ g/cm3 for this locality; van de Pijpekamp et al., 1974). This places the density of kegelite at approximately 4.5 g/cm3.

X-ray Crystallography

The best kegelite crystals produced rather poor precession photographs and, as a result, crystallographic interpretations were difficult. The extreme flexibility of the crystals resulted in a pronounced streaking of diffraction nodes in all b-axis and c-axis precession photographs. The $0kl$ zone, which produced the best precession photographs, showed only slight deviations of intensity from hexagonal symmetry. Kegelite is monoclinic with the following space-group absence conditions: (a) $hk0$ with $k + l \neq 2n$, (b) $h0l$ with $l \neq 2n$, (c) $0kl$ with $k + l \neq 2n$, and (d) $hk0$ with $k \neq 2n$. The permissible space groups are $A2/m$, $A2$, or Am, and the diffraction aspect is A^\ast/A^\ast. A fully indexed powder pattern is given in Table 1. Unit-cell parameters, calculated from measurements of zero level precession films, were refined on the basis of 19 powder reflections. These refined unit-cell parameters are $a = 21.04(1)$, $b = 15.55(1)$, $c = 8.986(6)$ Å, and $\beta = 91.0(1)^\circ$. The cell volume is 2939.5 (5.4) Å3 and the axial ratio $a:b:c = 1.3531:1:0.5779$.

Chemical Composition

Kegelite was chemically analyzed using a variety of methods. Heavy elements were determined by electron microprobe, utilizing an operating voltage of 15 kV and a sample current of 0.025 µA, measured on brass. A wavelength-dispersive microprobe scan indicated the absence, in measurable quantities, of any elements with atomic...
number employed > 9, except those reported in Table 2. The standards were synthetic PbO (Pb), celestite (S), synthetic ZnO (Zn), and hornblende (Si, Al, Fe). The data were corrected using a modified version of the MAGIC-4 program. Carbonate was detected by weak effervescence in dilute (1:1) hydrochloric acid and was determined quantitatively using a Leco carbon analyzer. The presence of carbonate in the type material was confirmed.

TGA and EGA (evolved gas analysis) were performed simultaneously on 4 mg of kegelite in vacuum at 10 °C/min, using a Mettler TA-1 thermoanalyzer/inficon IQ200 mass spectrometer. There was considerable overlap of H₂O, CO₂, and SO₂ losses, which occurred over the intervals 200–530, 250–700, and 470–930 °C, respectively. Gas pressure maxima for H₂O and CO₂ were noted at 400 (broad peak) and 505 °C, respectively. Two SO₂ pressure maxima were recorded at 770 and 870 °C. There is indirect evidence for Pb volatilization commencing as low as 800 °C. A combined H₂O + CO₂ value of 9.6 ± 0.4 wt% is derived from the loss between 200–615 °C, the relatively large error being due to CO₂-SO₂ overlap. The H₂O and CO₂ contents were estimated from TGA-EGA data as being 2 and 8 wt%, respectively. An H₂O value of 2.6 wt% was obtained by subtracting the 7.0 wt% CO₂ value (obtained by Leco carbon analyzer) from the combined H₂O + CO₂ value of 9.6 wt%. An XRD pattern of the sample used for this analysis showed a weak 3.34 Å reflection attributable to quartz.

The infrared absorption spectrum of the kegelite specimen, which consisted of crystals carefully picked using a binocular microscope for maximum purity, was measured over the 400–4000 cm⁻¹ range, using a Perkin-Elmer PE 783 precision grating spectrophotometer. In order to minimize the effects of any moisture absorbed into KBr disks, the spectrum was measured in Nujol mull between KBr plates and also by using a 7-mm pressed-KBr disk containing 0.7 mg of kegelite, with a blank KBr disk containing the same weight of KBr as in the sample disk in the reference beam.

The spectrum conclusively shows the absence of H₂O. (There is no sign of the presence of the H-O-H vibration in the 1600–1650 cm⁻¹ region.) The presence of OH in more than one environment is indicated by the OH-stretching vibrations at 3622 and 3400 cm⁻¹. Carbonate shows up strongly, with a very strong absorption at 1390 cm⁻¹ and bending vibrations in the 680–860 cm⁻¹ region. Stretching vibrations of sulfate and silicate overlap in the 900–1150 cm⁻¹ region, with bending vibrations in the 460–610 cm⁻¹ region.

The analytical results for kegelite are given in Table 2, together with those of Medenbach and Schmetzer (1976). Our analysis, calculated on the basis of 48 O atoms, gives the empirical formula Pb₇.₃₅Cu₀.₅₂Al₃.₈₅Si₇.₈₃SO₄₁₉₀₋₀.₄(OH)₁₉₀₋₀.₂₂, or, ideally, Pb₈Al₄Si₄(SO₄)₄(OH)₄O₁₁₀. The presence of OH in more than one environment is indicated by the OH-stretching vibrations at 3622 and 3400 cm⁻¹. Carbonate shows up strongly, with a very strong absorption at 1390 cm⁻¹ and bending vibrations in the 680–860 cm⁻¹ region. Stretching vibrations of sulfate and silicate overlap in the 900–1150 cm⁻¹ region, with bending vibrations in the 460–610 cm⁻¹ region.

The analytical results for kegelite are given in Table 2, together with those of Medenbach and Schmetzer (1976). Our analysis, calculated on the basis of 48 O atoms, gives the empirical formula Pb₇.₃₅Cu₀.₅₂Al₃.₈₅Si₇.₈₃SO₄₁₉₀₋₀.₄(OH)₁₉₀₋₀.₂₂, or, ideally, Pb₈Al₄Si₄(SO₄)₄(OH)₄O₁₁₀. The presence of OH in more than one environment is indicated by the OH-stretching vibrations at 3622 and 3400 cm⁻¹. Carbonate shows up strongly, with a very strong absorption at 1390 cm⁻¹ and bending vibrations in the 680–860 cm⁻¹ region. Stretching vibrations of sulfate and silicate overlap in the 900–1150 cm⁻¹ region, with bending vibrations in the 460–610 cm⁻¹ region.

The analytical results for kegelite are given in Table 2, together with those of Medenbach and Schmetzer (1976). Our analysis, calculated on the basis of 48 O atoms, gives the empirical formula Pb₇.₃₅Cu₀.₅₂Al₃.₈₅Si₇.₈₃SO₄₁₉₀₋₀.₄(OH)₁₉₀₋₀.₂₂, or, ideally, Pb₈Al₄Si₄(SO₄)₄(OH)₄O₁₁₀. The presence of OH in more than one environment is indicated by the OH-stretching vibrations at 3622 and 3400 cm⁻¹. Carbonate shows up strongly, with a very strong absorption at 1390 cm⁻¹ and bending vibrations in the 680–860 cm⁻¹ region. Stretching vibrations of sulfate and silicate overlap in the 900–1150 cm⁻¹ region, with bending vibrations in the 460–610 cm⁻¹ region.

The analytical results for kegelite are given in Table 2, together with those of Medenbach and Schmetzer (1976). Our analysis, calculated on the basis of 48 O atoms, gives the empirical formula Pb₇.₃₅Cu₀.₅₂Al₃.₈₅Si₇.₈₃SO₄₁₉₀₋₀.₄(OH)₁₉₀₋₀.₂₂, or, ideally, Pb₈Al₄Si₄(SO₄)₄(OH)₄O₁₁₀. The presence of OH in more than one environment is indicated by the OH-stretching vibrations at 3622 and 3400 cm⁻¹. Carbonate shows up strongly, with a very strong absorption at 1390 cm⁻¹ and bending vibrations in the 680–860 cm⁻¹ region. Stretching vibrations of sulfate and silicate overlap in the 900–1150 cm⁻¹ region, with bending vibrations in the 460–610 cm⁻¹ region.

The analytical results for kegelite are given in Table 2, together with those of Medenbach and Schmetzer (1976). Our analysis, calculated on the basis of 48 O atoms, gives the empirical formula Pb₇.₃₅Cu₀.₅₂Al₃.₈₅Si₇.₈₃SO₄₁₉₀₋₀.₄(OH)₁₉₀₋₀.₂₂, or, ideally, Pb₈Al₄Si₄(SO₄)₄(OH)₄O₁₁₀. The presence of OH in more than one environment is indicated by the OH-stretching vibrations at 3622 and 3400 cm⁻¹. Carbonate shows up strongly, with a very strong absorption at 1390 cm⁻¹ and bending vibrations in the 680–860 cm⁻¹ region. Stretching vibrations of sulfate and silicate overlap in the 900–1150 cm⁻¹ region, with bending vibrations in the 460–610 cm⁻¹ region.

Acknowledgments

We wish to thank Mr. K. Walkling of the Chemistry Department, U.M.I.S.T., for obtaining infrared spectra and Drs. E. H. Nickel and O. Medenbach for helpful discussions. This paper is Geological Survey of Canada Contribution no. 18887.

References Cited

Appendix 1: Density determination

A 1-ml flat-bottomed glass vial was half filled with Clerici solution and placed under a heat-lamp in a fume-hood until steam evolution ceased, which occurred at a temperature where gas bubbles were just forming. The vial was then cooled and centrifuged to obtain a metastable density gradient of 4.3 to 4.6 g/cm³. A sample of kegelite was wetted in saturated Clerici solution and dispersed into small flakes to minimize entrainment of air bubbles. A few grains of each reference mineral were also added and wetted. The suspension was then gently placed by means of a pipette onto the surface of the supersaturated Clerici solution, and the vial was centrifuged once again. The relative levels of the various minerals were observed using a stereo microscope at high magnification, with diffuse illumination through the bottom of the vial.