Structural environment of Zr in two inosilicates from Cameroon: Mineralogical and geochemical implications

FRANÇOIS FARGES*
Laboratoire de Physique et Mécanique des Géomatériaux, Université Marne la Vallée (IPGP and UA CNRS 734), 2 allée de la Butte Verte, 93160 Noisy le Grand, France

GORDON E. BROWN, JR.
Department of Geological and Environmental Sciences and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, California 94305-2115, U.S.A.

DANIELLE VELDE
Laboratoire de Pétrologie Minéralogique, Université Paris 6, 4 place Jussieu, 75252 Paris Cedex 05, France

ABSTRACT

The structural environments of Zr in a Na- and Fe$^{2+}$-rich clinopyroxene and an arfvedsonitic amphibole (both with 1-2 wt% ZrO$_2$) from a phonolite of the Rumpi Hills volcanic complex, west Cameroon, were examined using X-ray absorption fine-structure (XAFS) spectroscopy at the ZrK edge. In the clinopyroxene, tetravalent Zr is coordinated by six O atoms. Mean $d_{[Zr-O]} = 2.07(1)$ Å; second neighbors around Zr include (Si,Na) and Fe at $\approx 3.16-3.18(5)$ Å. No evidence was found for Zr second neighbors. These observations are consistent with the presence of Zr in the M1 site. This structural arrangement leads to local bond valence satisfaction and supports the mechanism for Zr substitution in inosilicates suggested by Jones and Peckett (1980). Similarities in the XANES and XAFS spectra of clinopyroxene and arfvedsonite suggest that Zr is located in the M2 site in arfvedsonite, with mean $d_{[Zr-O]} = 2.04(4)$ Å.

The local environment of Zr in these Na- and Fe$^{2+}$-rich inosilicates is like that observed in Zr-bearing garnets and Zr-bearing silicate glasses, in which $^{[6]}$Zr is favored by the presence of nonbridging O atoms, to which Zr preferentially bonds. The similarity of the short-range structural environment of Zr in silicate melts and in $^{[6]}$Zr-, Na-, and Fe$^{2+}$-bearing inosilicates may explain why this normally incompatible trace element behaved compatibly during the crystallization of the phonolites of the Rumpi Hills volcanic complex, in which Na- and Fe$^{2+}$-rich inosilicates are found. Simple bond valence arguments are used to explain why increases in the Fe$^{3+}$/Fe$_{total}$ ratio during later stages of differentiation of the Rumpi Hills peralkaline melt should favor the incompatible behavior of Zr.

INTRODUCTION

Zr is a tetravalent trace element (Dunn and McCallum, 1982) often used as an indicator of magmatic processes (Allègre et al., 1977; Hildreth, 1979; Henderson, 1982; Hofmann, 1988), mainly because of its incompatible character (Treuil et al., 1979), particularly in peralkaline rock suites (Dunn and McCallum, 1982) in which Zr solubility is high (Watson, 1979; Watson and Harrison, 1983). Mineral-liquid partition coefficients for Zr ($D_{\text{mineral-liquid}}$) (e.g., Lemarchand et al., 1987) are low for most minerals (typically $D_{Zr} < 0.1$); however, significantly higher D_{Zr} values have been reported for some titanium oxides, garnets, and inosilicates ($D_{Zr} = 0.1-0.8$: McCallum and Charette, 1978; Larsen, 1979; Dunn and McCallum, 1982; Fujimaki et al., 1984; Watson and Ryerson, 1986; Green et al., 1989; and others). For example, electron microprobe analyses have shown that ZrO$_2$ concentrations up to 8 wt% are not uncommon in small zones of Na- and Fe-rich clinopyroxene, amphibole, and aenigmatite grains from volcanic rocks (trachytes and phonolites) from Mururoa, French Polynesia (Wagner et al., 1988), central New South Wales (Duggan, 1988), and the Rumpi Hills, Cameroon (Nkoumbou, 1990), and in alkaline igneous rocks (nepheline syenites and peralkaline granites) from Greenland (Jones and Peckett, 1980; Pearce, 1989, 1990); however, these minerals may be compositionally zoned, and the average ZrO$_2$ content is often considerably lower.

The reason why Zr readily partitions from alkali silicate magmas into Na-rich inosilicates is poorly understood, primarily because of a lack of direct information on the kind of structural sites occupied by trace to minor Zr in these phases. The present study utilized X-ray absorption fine-structure (XAFS) spectroscopy to examine...
the local environment of Zr in a Na-, Fe-, and Zr-bearing clinopyroxene and in an arfvedsonite sample from a phonolite of the Rumpi Hills volcanic complex (west Cameroon), both containing 1–2 wt% ZrO₂. XAFS is well suited for this study because, unlike single-crystal X-ray diffraction, it is element-specific, and, when fluorescence X-ray detection is employed, it is sensitive to trace to minor levels of a selected element, even in a compositionally complex mineral like the ones examined here. Analysis of Zr K edge X-ray absorption spectra provides average interatomic distances, average numbers of neighbors, and the nature of ligands for the first and second shell of neighbors around Zr (see Calas et al., 1987; Brown et al., 1988).

SAMPLE SELECTION AND CHARACTERIZATION

The volcanic province of the Rumpi Hills in western Cameroon is part of the larger-scale structure called the Cameroon Line (Fitton, 1987; Déruelle et al., 1990). These relatively young alkaline volcanics (1–9 m.y. old), comprising basalts, clinopyroxene-rich basalts, trachytes, and phonolites, can be divided into two series on the basis of stratigraphy (Nkoumbou, 1990). Some of the Rumpi Hills basalts have been dated at <1 m.y. old and are much younger than the rest of the lavas, which may or may not belong to different stratigraphic units. Specimen NK 30, which contains the inosilicates used in the present study, is classified as a peralkaline phonolite on the basis of its chemical composition, CIPW norm, and modal composition (Table 1). This phonolite (as many other rocks of this kind) is characterized by a relatively high Zr content (~1300 ppm).

The phonolite consists of alkali feldspar, nepheline, sodalite, apatite, and three Zr-enriched inosilicates, clinopyroxene, arfvedsonite, and aenigmatite. At the microscopic scale, there are no identifiable Zr-rich minerals. The amounts of clinopyroxene and aenigmatite are roughly equivalent, whereas arfvedsonite is slightly less abundant (Table 1). The textural relationship of these three phases suggests that they probably crystallized at equilibrium and contemporaneously. Selected electron microprobe analyses and average structural formulae for these three minerals are given in Table 2. The Zr content of the clinopyroxenes typically ranges from 0.13 to 5.55 wt% (mean ZrO₂ content ~1.6 wt%), and the arfvedsonite is relatively enriched in Zr (av. ~1.6 wt% ZrO₂). Compared with aenigmatites from other peralkaline rocks, the Rumpi Hills aenigmatite has a low Zr content (~2000 ppm).

EXPERIMENTAL DETAILS

Mineral separation

Approximately 10 g of phonolite NK 30 were crushed to obtain grains close to the average size of the mineral crystals (20–30 μm). Feldspars, nepheline, and sodalite were removed using a Frantz isodynamic separator, whereas clinopyroxene was separated using methylene iodide. The procedure was repeated until the isolated fractions appeared sufficiently pure under the microscope. The relative purity of the clinopyroxene and arfvedsonite fractions (~100 mg of each sample) was also checked.
Fig. 1. Normalized XANES spectra of Zr-containing reference compounds (zircon, ZrO₂, site; zirconolite and baddeleyite, ZrO₂ sites; BaZrO₃, catapleite, and kimzeyite, ZrO₂ sites), the two inosilicates studied, and a glass of diopside composition containing 3 wt% Zr (these last data from Farges, 1989). Note the feature on the low-energy side of the ZrK absorption edge, as indicated by the arrow.

using powder X-ray diffraction (CuKα radiation, operating at 35 kV and 30 mA, calibrated using quartz as an internal standard).

Model compounds for XAFS data collection

A variety of Zr-containing crystalline compounds with well-refined structures were chosen as models of characteristic environments around Zr in minerals and were used to extract XAFS-amplitude and backscattering functions. Nonmetamict zircon from Mud Tanks, Australia (Farges and Calas, 1991), is a model for an Zr environment; Zr occurs in baddeleyite (ZrO₂) and in the (Ca,REE,Th,U)₂Zr₂(Ti,Mg,Fe⁺),O₇ polymorphs (zirconolite, zirkelite, calciofetite, and polymignite: Mazzi and Munno, 1983). The baddeleyite used in the present study was a synthetic reagent-grade monoclinic zirconia, 99% pure. We also used a metamict zirconolite from Sri Lanka (sample 111.35 from Ewing et al., 1982, and Farges et al., 1993) that was annealed at 1100 °C for 4 h to induce recrystallization (Mazzi and Munno, 1983; Bayliss et al., 1989). Zr in sixfold coordination is most common in Ca-, Ti-, and Zr-bearing garnets and Zr-bearing alkali silicates. The Zr-bearing garnet used here (containing 30 mol% kimzeyite, Ca₂(Zr,Ti)₂(Si,Al)₃O₇: Munno et al., 1980) was extracted from an unaltered vein from Iron Hill, Gunnison County, Colorado (Bahmarane and Velde, 1989 unpublished manuscript). ZrK-edge XAFS analysis for that garnet gives a mean Zr-O distance of 2.07(1) Å, in good agreement with Zr-O distances in zirconosilicates and Zr-bearing perovskites. In another kimzeyite crystal from the Stromboli Islands, Munno et al. (1980) suggested that the substitution of Zr by Ti may affect the mean Zr-O distance derived by X-ray diffraction (2.055 Å). The slightly longer mean Zr-O distance derived by XAFS at the ZrK edge confirms this suggestion. Two Na- and Zr-bearing silicates from Mont-Saint-Hilaire, Québec, Canada, were also used as model compounds: catapleite (Na₂O,ZrSi₂O₇·2H₂O: Ilyushin et al., 1981) and elpidite (Na₂O,ZrSi₂O₇·3H₂O: Cannillo et al., 1973). A previously studied Zr-bearing diopсидic glass (CaO·MgO·2SiO₂ + 3 wt% ZrO₂, referred to as Zr-DI) also served as a model compound (Farges, 1989).

Data collection and analysis

All samples were powdered and mounted on Mylar tape. Spectra for reference compounds were collected in transmission mode, whereas XAFS spectra for the two inosilicates were collected in fluorescence mode, with the sample oriented at 45° to the X-ray beam. Data were collected at the Stanford Synchrotron Radiation Laboratory on wiggler beam line IV-1 at the ZrK edge (17998 eV). The storage ring operating conditions were 3 GeV of electron energy and 25–45 mA of electron current, and a Si (220) double-crystal monochromator (energy resolution ≈ 4 eV at the ZrK edge) was used. At all energies, the monochromator was detuned by 50% to eliminate higher-energy harmonics in the incident X-ray beam. The incident- and transmitted-beam intensities were moni-
tored with an ionization chamber using Ar as the absorbing gas. Because self-absorption is unlikely to be a problem for Zr at these relatively low concentrations, absorbance was measured from the fluorescence yield, and its intensity was monitored with a Stern-Heald type detector (Lytle et al., 1984), with Ar in the fluorescence detector ion chamber. Energy vs. absorbance spectra were obtained by averaging three scans for each sample to improve the signal-to-noise ratio. The data analysis procedure used here is the same as that described in Farges et al. (1991).

RESULTS

Zr X-ray absorption near-edge structure (XANES)

ZrK-edge XANES spectra (Fig. 1) for selected Zr model compounds and the two inosilicates show slight but significant differences, depending on the coordination environment of Zr. For

Zr-containing compounds, the XANES spectrum is characterized by a shoulder on the low-energy side of the absorption edge. This feature is not observed in XANES spectra of compounds containing Zr (zirconolite and baddeleyite) or

Zr (zircon) (Fig. 1). The ZrK-edge XANES spectra in the two inosilicates and the Zr reference compounds studied here (catapleiite, BaZrO₃, kimzeyite, and Zr-DI glass) are quite similar and indicate the presence of Zr in both minerals. The relatively narrow XANES spectra of the Zr-bearing inosilicates also suggest that the individual Zr-O distances are similar.

Zr X-ray absorption fine structure (XAFS)

Model compounds. Fourier transforms (FT) of the k³-weighted XAFS spectra at the ZrK edge (Fig. 2) for the reference compounds zircon, baddeleyite, catapleiite, and kimzeyite are in good agreement with previous structure refinements (Table 3). The first peak of the FT of zircon corresponds to four O atoms at 2.13 Å and four others at 2.27 Å. The most intense peak corresponds to four Si and four Zr atoms at 3.64 Å, a distance that corresponds to edge-sharing ZrO₆-ZrO₆ and corner-sharing SiO₄-ZrO₆ polyhedra. A weaker contribution from Si second neighbors is at 2.99 Å, corresponding to two edge-sharing SiO₄-ZrO₆ polyhedra. Other longer-range correlations have not been analyzed, although they are readily apparent in the RDF (Fig. 2). These contributions correspond to other ZrO₆-ZrO₆ and SiO₄-ZrO₆ polyhedra, but at greater distance (4.90 Å). In baddeleyite (Smith and Newkirk, 1965), Zr is coordinated by a capped trigonal bipyramid with individual Zr-O distances ranging from 2.02 to 2.43 Å. The ZrO₆ polyhedra share edges, resulting in seven Zr-Zr contributions centered at 3.47 Å. In catapleiite (Ilyushin et al., 1981), the ZrO₆ polyhedra share corners with six SiO₄ tetrahedra and share edges with six NaO₆ polyhedra. This arrangement generates the second major feature in the FT, which corresponds to mean Zr-Si and Zr-Na distances of ≈3.54 Å and ≈3.71 Å, respectively. Finally, kimzeyite (Munno et al., 1980) is characterized by the presence of ZrO₆ polyhedra sharing edges with CaO₄ polyhedra and AlO₄ tetrahedra.

Sodium iron inosilicates. XAFS spectra and FT for clinopyroxene and arvedsonite are compared with the Zr-DI glass in Figure 3. The first shell of neighbors in each consists of six O atoms. Next-nearest neighbor contributions to the XAFS spectra were best modeled by 3(Si + Na) at 3.16 Å and 2Fe at 3.18 Å from Zr (Table...
Table 3. Crystalline compounds used for ZrK-edge XAFS data reduction

<table>
<thead>
<tr>
<th>Compound</th>
<th>XAFS results</th>
<th>Structure refinement data</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catapleiite</td>
<td>6.0 × O @ 2.07 Å [Δr² = 0.003 Å²]</td>
<td>6 × O @ 2.07(3) Å</td>
<td>a</td>
</tr>
<tr>
<td>Epidote</td>
<td>6.1 × O @ 2.09 Å [Δr² = 0.003 Å²]</td>
<td>6 × O @ 2.08(1) Å</td>
<td>b</td>
</tr>
<tr>
<td>Kimozyite</td>
<td>5.8 × O @ 2.05 Å [Δr² = 0.004 Å²]</td>
<td>7 × O @ 2.17(8) Å</td>
<td>c</td>
</tr>
<tr>
<td>Baddeleyite</td>
<td>7.0 × O @ 2.17 Å [Δr² = 0.012 Å²]</td>
<td>7 × O @ 2.16(8) Å</td>
<td>d</td>
</tr>
<tr>
<td>Zircionite</td>
<td>7.2 × O @ 2.15 Å [Δr² = 0.012 Å²]</td>
<td>8 × O @ 2.20(6) Å</td>
<td>e</td>
</tr>
<tr>
<td>Zircon</td>
<td>7.9 × O @ 2.20 Å [Δr² = 0.010 Å²]</td>
<td></td>
<td>f</td>
</tr>
</tbody>
</table>

Table 4. ZrK-edge XAFS-derived parameters for the clinopyroxene and the arfvedsonite of the NK30 phonolite, compared with a quenched silicate glass

<table>
<thead>
<tr>
<th>Atomic shells</th>
<th>O*</th>
<th>(Mg Na Si)**</th>
<th>Fe**</th>
<th>Fit quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>E₀ (eV)</td>
<td>N</td>
<td>R (Å)</td>
<td>Δr² (Å²)</td>
</tr>
<tr>
<td>CPX</td>
<td>17989</td>
<td>5.8</td>
<td>2.07</td>
<td>0.005</td>
</tr>
<tr>
<td>ARF</td>
<td>17990</td>
<td>4.5</td>
<td>2.04</td>
<td>0.006</td>
</tr>
<tr>
<td>Zr-DI</td>
<td>17991</td>
<td>6.0</td>
<td>2.08</td>
<td>0.007</td>
</tr>
</tbody>
</table>

* Using amplitude and phase-shift function from BaZrO₃ (Foëx et al., 1967).
** Using theoretical amplitude and phase-shift functions of Si (McKale et al., 1988).
† Standard deviation from the least-squares fit to the data.
‡ Spectra with higher signal-to-noise ratio: the fit was realized on the first contribution of O only.
Fig. 3. Fourier transform of the k^2-weighted XAFS spectra for clinopyroxene, arfvedsonite, and a 3-wt% Zr-bearing diopside glass. Peaks in the Zr-X pair correlation functions are labeled to identify X. Peak positions are uncorrected for backscattering phase shift (see corrected interatomic distances in Table 3).
Fig. 4. Least-squares fit of the Fourier-filtered XAFS spectrum of (a) clinopyroxene and (b) arfvedsonite at the Zr K edge. The fit for the Zr-bearing clinopyroxene includes contributions from O nearest neighbors and (Si + Na) and Fe second neighbors. The fit for arfvedsonite includes only contributions from O nearest neighbors because of the poor signal-to-noise ratio. The experimental Fourier-filtered XAFS spectrum is shown as a solid curve, and the calculated spectrum is shown as a dashed curve.

(Si,Na) and possibly Fe second neighbors, as is the case for clinopyroxene. No significant Zr-Zr correlations were observed, indicating no short-range ordering of Zr.

DISCUSSION

Our XANES and XAFS results confirm that Zr is located in sixfold-coordinated sites in the Na- and Fe-bearing clinopyroxene and arfvedsonite from Rumpi Hills phonolite NK 30. Significant differences in the XANES, FT spectra, and XAFS-derived structural parameters for Zr model compounds (zircon, baddeleyite, zirconolite, catapleiite, and kimzeyite) and the two Zr-bearing inosilicates rule out the presence of these common Zr minerals as inclusions within the two inosilicates. The presence of sodium iron zirconium silicate inclusions within these inosilicate structures is also excluded because ZrO₆ polyhedra share corners with SiO₄ and FeO₄ polyhedra in these structures. This polyhedral arrangement results in significantly higher mean Zr-(Si,Na) and Zr-Fe distances (≈3.5-3.7 and 4.3-4.5 Å, respectively; Guiseppetti et al., 1971) than those observed in Zr-bearing clinopyroxenes. We

have also examined Zr using XAFS methods in other Fe- and Zr-bearing zirconosilicates like tranquillityite [Fe₉Ti₄(Zr,Y)₄Si₂O₉], osunamite- or cupidine-type structures such as sogdiane [(K,Na)₅Li₂FeZrSi₂O₉], wöllnerite [Na₂Ca₂Zr(Nb,Ti)₂(Si₂O₆)(O,P)₄], janhaugite [Na₂Mn₂(Ti,Zr,Nb)₂O₆(Si₂O₆)](OH,F)₂], or lavenite [Na₂(Mn,Fe)₃(Zr,Nb)(Si₂O₆)(O,F)₄] and found similar results for second-neighbor Zr-Fe correlations.

Zr in the C2/c clinopyroxene structure

XAFS-derived Zr-O distances in the Rumpi Hills clinopyroxene are in good agreement with the linear correlation (Fig. 5) between the effective ionic radius of M₃ cations and the mean M₁-O distance for most C2/c clinopyroxenes (Ribbe and Prunier, 1977; Cameron and Pako, 1980). Hence, Zr should occupy the M₁ site in C2/c clinopyroxene, which is the only sixfold-coordinated site available in these structures (Cameron et al., 1973; Hawthorne, 1976).

We would like to use our XAFS results to constrain possible second-neighbor cation arrangements around Zr in the M₁ site of C2/c clinopyroxene, as knowledge of the medium-range structure around Zr will contribute to our understanding of the geochemical behavior of Zr. Possible second-neighbor cation arrangements around Zr include those present in end-member pyroxenes like acmite, hedenbergite, and diopside, as well as more exotic pyroxene components like □ZrSi₂O₆, NaZr₂[Si₂O₆]O₂, Na(Fe³⁺Zr)₂Si₂O₆, and CaZrAl₂O₆ (Jones and Peckett, 1980; McCallum and Charette, 1978), where □ represents a vacancy.

Zr-Fe correlations at ≈3.2 Å in the RDF of the Rumpi Hills clinopyroxene are consistent with the presence of significant vacancies around Zr. Furthermore, the lack of observed Zr-Zr correlations rules out local clustering of Zr. Assessment of possible second-neighbor arrangements around Zr cannot be based solely on our XAFS...
results but requires bond valence constraints (see Farges et al., 1991). Possible models of the Zr medium-range environment in the C2/c clinopyroxene structure are presented in Figure 6. Substitution of minor quantities of Zr in the M1 site, with adjacent M1(M2) sites containing Fe\(^{3+}\)(Na), Mg\(^{2+}\)(Ca), or Fe\(^{2+}\)(Ca), results in bond valence sums as high as 2.3 v.u. at the O1 atom (Fig. 6b). Thus this type of substitution appears unlikely. Lengthening of the (Fe,Mg)\(^{3+}\)-O and Si-O bonds to their maximum observed values in silicates around Zr (2.20 and 1.70 Å, respectively; Farges et al., 1991), together with a 0.05 Å radial distortion of the ZrO\(_6\) polyhedra, does not satisfy valence balance.

The presence of \(^{54}\)Na\(^+\) and \(^{60}\)Fe\(^{2+}\) second neighbors around \(^{65}\)Zr (as in the Na(Fe\(_{65}\)Zr\(_{65}\))Si\(_2\)O\(_6\) component) results in bond valence sums of 2.15 and 2.0 v.u. at the O1 and O2 atoms, respectively (Fig. 6c). The Na(Fe\(_{65}\)Zr\(_{65}\))Si\(_2\)O\(_6\) component (or FM-NAZ according to Morimoto et al., 1988) is consistent with our spectroscopic results and bond strength considerations.

The XAFS-derived Zr-O distance for arfvedsonite [2.04(4) Å] is consistent with the three octahedral sites known in this structure (M1, M2, and M3, with M-O distances of 2.115, 2.066, and 2.126 Å, respectively: Hawthorne, 1976). As for clinopyroxene, the XANES spectra for arfvedsonite are significantly different compared with those for alkali zirconosilicates (e.g., catapleite: Fig. 1; see also Farges, 1989). This excludes the presence of these minerals as inclusions within these silicates. In contrast, the similarities of XANES spectra between arfvedsonite and clinopyroxene may suggest that Zr is substituted within this amphibole structure (i.e., with Fe second neighbors around Zr).

Geochemical implications

The peralkaline effect. Zr is expected to have a higher solubility in peralkaline melt compositions than in peraluminous ones (Watson, 1979; Watson and Harrison, 1983) and is dominantly sixfold coordinated by O in similar glasses (Farges, 1989; Farges et al., 1991). In addition,
Zr behaves as a network modifier (Linthout, 1984; Ryerson, 1985) because of a concomitant increase in the proportion of nonbridging O atoms (NBO) to which \[^{16}\text{Zr}\] preferably bonds in the melt (Farges et al., 1991). Because of their strong network-modifying role, the introduction of alkali elements increases the proportion of NBO atoms necessary to accommodate \[^{16}\text{Zr}\], thus inhibiting the formation of \[^{17}\text{Zr}\] or \[^{18}\text{Zr}\]. The lack of such Zr sites in the melt could conceivably inhibit the crystallization of baddeleyite or zircon, as suggested by Farges et al. (1991), which provides a mechanistic explanation for the incompatible behavior of Zr in peralkaline rocks. In contrast, Zr behaves compatibly in the Rumpi Hills rocks, in part because the inosilicate structures crystallizing from these melts provide sixfold-coordinated sites similar to those occupied by Zr in the melt, as well as a medium-range structural environment that leads to local bond valence satisfaction (Fig. 6c). These factors favor an increase in the crystal-melt partition coefficient of Zr for Na- and Fe\(^{2+}\)-rich clinopyroxenes. Similar reasoning may help to explain the observed presence of both \[^{16}\text{Zr}\] and \[^{4+}\text{Ti}\] in other relatively Zr-rich minerals such as kimzeyite garnet (up to 20 wt% Zr; Munno et al., 1980) and ilmenite-ilmenorutile (Zr: 2000 ppm to 4 wt%; Wagner et al., 1988; Pearce, 1990).

Role of \(f_{O2}\). The oxidation state of the melt may play an indirect role in the partitioning behavior of Zr in peralkaline melts. The low \(f_{O2}\) required to stabilize divalent Fe in peralkaline melts (\(f_{O2} \approx 10^{-11}\) atm; Jones and Peckett, 1980) may explain why Zr-rich clinopyroxenes do not occur in most alkaline series where increasing differentiation is likely to increase the Fe\(^{3+}\)/Fe\(^{2+}\) ratio in melts. Such an increase should favor the crystallization of Fe\(^{3+}\)-rich clinopyroxenes, which is an unlikely host for Zr because Fe\(^{2+}\) in M1 sites adjacent to Zr would result in an excess of bond valence at O1 atoms around Zr. In addition to this effect, the incompatible behavior of Zr is also favored under oxidizing conditions by the presence of charge-balanced \[^{16}\text{Zr-O-(Si,Na)}\] linkages within the melt (Farges et al., 1991). Only low-temperature minerals like Na- and Zr-bearing silicates (e.g., catapleite) are likely to crystallize from melts at higher \(f_{O2}\) because the local structure around Zr in such minerals is similar to the local Zr environment in the melt. Thus Zr could become compatible late in the crystallization sequence. This sequence of Zr mineral crystallization, involving alternating stages of Zr compatibility and incompatibility, has been observed in differentiated alkaline igneous rocks such as the nepheline syenites and peralkaline granites from Nasarsuk and Motzfeld, Greenland (Jones and Peckett, 1980), where Na- and Fe-rich clinopyroxenes crystallize before alkali-zirconosilicates.

Zr partitioning into other pyroxenes. The crystal-melt partitioning of Zr into clinopyroxenes should be limited by the presence of divergent alkaline-earth cations in the M2 site. Indeed, because of its higher charge compared with alkali elements, Ca would lead to an excess of bond valence at the O1 and O2 atoms around Zr in the M1 sites. This may explain the moderate crystal-liquid distribution coefficients of Zr for diopside (\(D_{\text{diopside-liquid}} \approx 0.3-0.46\); Watson and Ryerson, 1986; Lemarchand et al., 1987) compared with Na-, Fe-, and Zr-bearing pyroxenes (\(D_{\text{pyroxene-liquid}} > 1\)) and their small increase with magmatic differentiation (Ryerson and Hess, 1978; Watson, 1979; Sisson, 1991). In contrast, rock-forming silicates such as olivines or orthopyroxene, with significant amounts of Mg or Fe\(^{2+}\) in their M2 sites, cannot effectively partition \[^{16}\text{Zr}\] from a melt because this would lead to an excess of bond valence at the associated O atoms.

ACKNOWLEDGMENTS

The authors are indebted to the French Ministère des Affaires Etrangères (Programme Lavoisier) for financial support. We thank C. Nkoudou (Laboratoire de Pétrologie Minéralogique, Université Paris 6) for allowing us to use specimen NK 30 from the Rumpi Hills, Cameroon, P. Bariand (Laboratoire de Minéralogie-Cristallographie, Université Paris 6) and R.C. Ewing (Department of Geology, University of New Mexico at Albuquerque) for providing mineral samples, and W. Jackson, P. O’Day, and B. Hedman (Stanford University) for their assistance with data collection. Reviews from David M. Sherman, E.B. Watson, and Frank C. Hawthorne greatly improved the manuscript. This work was supported by NSF grant EAR-8917437 (G.E.B.). The Stanford Synchrotron Radiation Laboratory is supported by DOE, Office of Basic Energy Sciences, and NIH, Biotechnology Resource Program, Division of Research Resources. IPGP contribution no. 1232.

REFERENCES CITED

Larsen, L.M. (1979) Distribution of REE and other trace elements between phenocrysts and peralkaline under-saturated magmas, exemplified by rocks from the Gardar igneous province, south Greenland. Lithos, 12, 303–315.

Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 70, 407–419.

MANUSCRIPT RECEIVED August 9, 1993

MANUSCRIPT ACCEPTED April 26, 1994