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Mica polytypism: Identification and origin
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Ansrucr

Practical methods for identification of the complex mica polytypes have been developed
by introducing a special function characteristic of their layer stacking sequences that is
displayed in their X-ray diffraction patterns. This periodic intensity distribution (PID)
function is the Fourier transform of a stacking sequence. The X-ray diffraction patterns
of a polytype are expressed by the PID function modified by the Fourier transform of the
unit mica layer. The PID function is used to determine the stacking sequences of several
polytypes, and the mechanism by which the most frequently observed polytypes form is
discussed. The axial settings of mica polytypes are defined in order to compute the PID
functions in terms of the layer stacking sequences. Practical methods of obtaining observed
PID functions are given together with tables of the PID functions of the three basic po-
lytype series. The common polytypes have the basic sequences such as lM, 37, and 2M,
and are modified by a stacking fault, but the subsequent sequences are so alranged that
the original direction ofstacking is recovered as readily as possible.

INrnooucrroN Those apparent polytypes that have unit cell repeats in
multiples of three have often been mistaken as complex

Until 1966 only the layer stacking sequences of the lM, mica polytypes. An analysis of simple lM and 2M' twn-
2Mr, 2M2, and 3Z mica polytypes (Smith and Yoder, ning has been developed by Sadanaga and Tak6uchi
1956) were known. The systematic derivation of mica (1961). More complex twinning, consisting of more than
polytypes and their X-ray diffraction patterns (Takeda, three individuals of one kind of polytype or the coales-
1967) enabled us to describe the layer stacking sequences cence of two or more kinds of polytypes, has been dis-
of more than ten complex mica polytypes having unit cell cussed by Rieder (1970). A thorough twin analysis should
dimensions from 40 A to more than 200 A in the c* be completed before the application of the PID function.
stacking direction (Ross et al., 1966). Subsequent X-ray General representations ofpolytypism are given in the
and electron diffraction analysis and transmission elec- IUCr report (Guinier et al., 1984), and applications of
tron microscopy investigations (for example, Rieder, 1970; the OD-theory are mentioned by Dornberger-Schiffet al.
Pandey et al., 1982; Rule et al., 1987; Baronnet and Kang, (1982) and Weiss and Wiewiora (1986). To represent the
1989) have shown that mica polytypes possess some of stacking sequences of mica polytypes, three different
the most complex inorganic structures known. symbolisms have been proposed (Zvyagin, 1960; Ross et

One of the difficulties in determining the layer stacking aI., 1966; Takeda and Sadanaga, 1969). A method of de-
sequence of micas by X-ray diffraction techniques is the riving the space groups in terms of one of these symbol-
relatively large size of the unit layer in comparison with isms, together with a method of generating all possible
that of silicon carbide. A characteristic feature of X-ray stacking sequences for a given layer number, was given
diffraction patterns of mica polytypes is a periodicity of previously by Takeda ( I 97 I ). To derive the PID function,
the intensity distribution along reciprocal lattice rows the symbols representing interlayer rotations must be
parallel to c* of the crystal. However, such periodicity transformed to symbols that give layer positions for a
can be more easily recognized after elimination of the particular set of crystallographic axes. A procedure to cal-
modulation by the Fourier transform of the complex unit culate the PID functions is given here and is compared
layer. In general, the periodicity is observed when the with observed PID values of polytypes frequently found
crystal structure involves only displacements of identical in nature. Because the number of possible polytypes in-
unit layers. The outline of preliminary theory and an ex- creases very rapidly for micas with larger layer repeats, a
ample of its application for this periodic intensity distri- major limitation of the application of this method rests
bution (PID) function is given in a previous manuscript on the availability of fast computers (Mogami et al., 1978).
(Takeda, 1967). The three basic series of complex mica polytypes were

Another difficulty is the frequent presence of twinning. discovered through the application of the PID function
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TABLE 1 . Atomic coordinates in the hexagonal setting of a mica TaBLE 2. Components of displacement vectors in the orthogonal
unit layer with symmetry 1ft1m coordinate for the six stackino operators

Y2M"
OH
O"(apical)
M,
Oo(basal)
K

0
0
%
ry3
Vz + f-3l6tan a
0

V 2 - t -
r / c - t

V 2 - t " - d P *
Y 2 - t o - Y s d , c '
0

Rotation
around c'

f)

Stacking
operarors

(r)

Elements of
stacking operatorst

(x,, y,lv3
0
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0
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0
I
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1 , 1

- 1 , 1
1 , 0
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1 ,  - 1Note: tan o : 4rf2 V@JEF - \a, c.

bv'@JW= , L: d.cos {c-
: 1/(c sin B), 4cos 'y' :

(Ross et al., 1966): this work demonstrated that the po-
lytypism of micas resembles that found in the silicon car-
bide polytypic series. This resemblance suggests that the-
ories of polytype formation proposed silicon carbide may
also be applied to micas. Baronnet (1975) showed a re-
lationship between growth spirals and the formation of
complex mica polytypes. Application of the faulted ma-
trix model to the growth of mica polytypes was under-
taken by Baronnet et al. (1981) and Pandey et al. (1982).
Baronnet and Kang (1989) reviewed the crystal $owth
aspects of mica polytypism with emphasis on the rela-
tionships between the growth mechanisms of the basal
faces and ordering of the unit modules within the mica
structure.

Moorrs oF THE MrcA uNrr LAI'ER

The conventional unit layer that is used to derive mica
polytypes is one layer of the lMmonoclinic mica (Smith
and Yoder, 1956). The symmetry of this layer is best
described by one of the 80 layer-group symbols (diper-
iodic group or two-translational three-dimensional group,
lC2/m after Niggli, personal communication) (Wood,
1964). Even though the refinements of the 2M, (Bunham
and Radoslovich, 1964) and 3?" (Giiven and Burnham,
1967) moscovite and other structures in subgroup sym-
metries have shown that the true symmetry of the unit
layer is lower than lC2/m, this idealized lC2/m is real-
ized to a very good approximation in all mica polytypes
for the purpose of deriving their Fourier transforms.

To describe a mica polytype without rotations of the
unit layers, Sadanaga and Takeda (1968) and Takeda and
Sadanaga (1969) chose a layer designated as the TS unit
layer, which is composed of a plane of alkali ions in the
center and octahedral cations on both sides (see Fig. 1 of
Takeda and Sadanaga,1969). The choice ofthe TS unit
layer explains the symmetry of diffraction patterns of mi-
cas better than the conventional unit layer. It is recog-
nized that the layer-group symmetry is 1P3lm, which is
higher symmetry than lC2/m. This layer, as described
above, having layer-group symmetry lP3lm, is desig-
nated the D layer (ditrigonal layer). A model of the D
layer can be predicted from the unit cell dimensions and
cation-to-O distances (Table l) within tetrahedral and oc-
tahedral sheets (Takeda and Morosin, 1975).

The D layer of the TS unit layer model given by Tak-

f The efements are expressed in the unit of l/sa, Vsb.

eda and Sadanaga (1969) is applicable only to polltypes
with 0, 120, or 240'rotations. To describe all other po-
lytypes, we introduce additional unit layers, in which a
60, 180, or 300" rotation of the atoms in the lower half
of the unit cell forms a trigonal prism around the alkali
cation (K or Na). The layer-group symmetry of this type
of TS unit layer is mP32m (see Fig. 3 of Takeda and
Sadanaga, 1969) and is designated as a T layer (trigonal
layer). A 180" rotation ofthe T layer about the axis per-
pendicular to the layer was designated as the T* layer.
The same 180' rotation of the D layer gives the D* layer.

Using these four unit layers (D, D*, T, and T*), Takeda
and Sadanaga (1969) showed that all the stacking se-
quences of the mica polytypes could be expressed with
only the displacements of these layers along the +a and
+(a + b) axes ofthe hexagonal cell (perpendicular to the
c axis and without any rotational operations). The com-
ponents of displacement vectors in orthogonal coordi-
nates for the six stacking operations are listed in Table 2.
For the poly.types with only the D layers involving 0, 120,
and 240 rotations and with lM-type axial setting, the
shifts of layers are only along the a axis, and the amount
of shift with respect to the preceding one is always - Vra.
However, the axial settings for general polytypes must be
chosen in accordance with their total disolacements as
explained below.

Svnarors oF MrcA proI,rrrpE STACKING sEeLrENcEs

Amelinckx and Dekeyser (1953) were the first to use a
symbol and a diagram to illustrate a mica polytype struc-
ture. Their diagram, employed also by Smith and Yoder
(1956), is an elegant graphical model of describing the
stacking sequences by utilizing the interlayer cation-cat-
ion vectors in the mica structure projected on (001).
Amelinckx and Dekeyser's numerical representation of
stacking sequence are the same as that used laterby Zvy-
agin (1960), who used the alphabetic designations A, B,
and C instead of the numbers l, 2, and 3 to express the
orientation ofa layer relative to the standard coordinates.

The Zvyagin oriented stacking symbol (Z symbol) ex-
presses the stacking sequence of the N-layer mica with a
series of N letters, the 7th letter of the series referring to
the absolute orientation of the "/th layer. By this symbol,
the same stacking sequence may be expressed in several
ways depending on how one defines the standard axes.
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The vector stacking symbols (RTW symbol) of Ross et
al. (1966) give the relative rotations between adjacent
layers, and they do not depend on the axial setting. With-
in the brackets of the RTW symbols are Nnumbers, where
N is the number of mica layers per unit cell. The 7th
number (A,) of the stacking symbol, where 7 designates
any particular number in the sequence of N numbers,
refers to the relative angle ofrotation between theTth and
(/ + l)th mica layer. The letter { can have the values 0,
+1, +2, or 3 that refer, respectively, to 0, +60, +120,
and 180" relative rotations ofthe adjacent layers.

Even though the RTW symbols are useful in generating
all the possible mica polytypes with a given layer repeat,
the Z symbols are much more convenient in deriving the
intensity distribution functions of micas (Takeda, 1967).
However, even the Z symbols give only the orientations
of the layers and not the positions of the layer in the
standard coordinates. The positions must be derived in-
directly with the aid of the RTW or Z symbols.

By using the model of a mica unit layer proposed by
Takeda and Sadanaga (1969), it is possible to derive sym-
bols that give the positions of the individual unit layers
of the stacking sequence (TS symbol); the stacking of lay-
ers in this case involves only the displacements of the
unit layers. A direct derivation of the TS symbols facili-
tates the calculation of the PID functions. The TS sym-
bols give the position of the layer in the specified axial
setting, together with the type of the unit layer. Polytypes
with 0, 120, and 240'rotations and with the lM-type
axial setting are the ones most frequently found in nature.

Since these symbols are composed of a string of num-
bers consisting of 0, l, or 2, they can be regarded as ter-
nary numbers. By convention, we express the sequence
by the string that gives the minimum decimal number.
These abbreviated symbols are useful both in generating
all possible polytypes'{/ith a given layer number and in
computing PID functions. The symbol can be generated
directly by applying the principles used in enumerating
RTW symbols, and the derived symbol itself expresses
the positional coordinates in the particular axial setting.

To convert the RTW symbol into the TS symbol, use
is made of a stacking operator, which causes displace-
ment of the unit layer, in accordance with the interlayer
rotation as expressed by each element of the symbol. This
operation is performed in an orthogonal C-centered crys-
tal structure, and the resulting symbol is transformed into
the final symbol in accordance with the proper axial set-
ting ofeach polytype (Takeda and Sadanaga, 1969). The
/h operator 4, in the sequence is expressed as 4, : mod(c.rr-1
+ A,, 6) where <,r, , is a number indicating the orientation
of the layer, for which the operator is to be applied (in
the same way of expressing the rotation angles as that
used in the RTW symbols), <.,r-, is equal to 4-, except for
c,ro, { is the RTW symbol of the 7th conventional layer,
and mod indicates the mod function. This function mod(n,
6) expresses a number n, in lhe form of m mod 6, where
m is at integer from 0 to 5.

The stacking symbol of the 7th layer, s, or (X,, Y,), can

be obtained from that of the (/ - l)th using theTth op-
eralor rj as s, : sj ,.r, or (X1, Y) : (X1-r, Y,,r)'(x,1, l,) :

(Xj-, + x,i, Yi-, * y,r)' For the first layer, so must be set
to (Xo : 0, Yo : 0). The elements of the six stacking
operators x,, and y,, are given for each r in Table 2.

As was mentioned before, the RTW symbols do not
depend on axial orientation, whereas the TS symbols de-
pend on the axial setting. Therefore, the symbols ob-
tained by applying the stacking operators in succession
are not always compatible with the orthorhombic or
monoclinic settings that so conveniently describe the po-
lytype structures. To be consistent with one of these axial
settings, the last symbol, (X*, Y*), which expresses com-
ponents of the total displacements, must have at least one
zero element. That is, (Xr, Y*) must be in the form (- l,
0), (0, - l), or (0, 0) depending upon their respective axial
setting (Takeda and Sadanaga, 1969). The orientation of
the polytypes is set by the initial values of c.,, namely, <,r0.
If the last symbol has no zero element, the same process
of converting the symbols must be repeated by changing
the value of c.ro.

For those polytypes with the axial settings other than
orthogonal, the following transformation from the or-
thogonal setting to the monoclinic one must be applied:
For (- l, 0)-type, X, : X j + Z', and Yt : Yj, and for (0,
- l)-type, Xt : X j and Y, : Yj + Z',, where X j, Yj, and
Zj are the elements of the /th stacking symbol in the old
orthogonal setting.

The inverse conversion, namely from the abbreviated
TS symbols to the RTW symbols, is also important. This
conversion can be accomplished with simple algorithms.
An intermediate symbol, the binary-represented symbol
Bj of the RTW symbol ,\ of the 7th layer, is expressed in
terms of the new symbols Y., Yi*,, and Y1*, of theTth, (7
+ l)th, and (7 + 2)th layer as

Br:  mod({  - f  Y,*r  I  Y i* r ,3)  ( l )

where mod(z, 3) is the mod function as explained before.
In Equation l, whenT * I or j + 2 (or both) have

values greater than 14 the total layer number, the symbol
Y of the (/ + I - A)th or (i + 2 - N)th must be used.
To convert the binary-represented symbols into the nor-
mal RTW symbols, one must replace the number 2 by
-2, and I by 2, and leave the 0 symbol as it is.

These transformation routines have been included in
the program PTIDN written in FORTRAN IV (this pro-
gram is available from the senior author upon request),
which generates all the possible stacking symbols and
computes the intensity distribution functions. A more de-
tailed explanation of the RTW symbols and the TS sym-
bols is given by Takeda and Sadanaga (1969).

Founren TRANSFoRMS oF THE uNrr LAYERS AND THE
PID ruNcrroN

To study the nature of the Fourier transform of com-
plex mica polytypes, the Fourier transforms of the unit
layers of the four different layer types must be analyzed,
especially with reference to their symmetry relation in
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reciprocal space. The same PID function can be derived
more simply by the introduction of an unconventional
unit layer of mica (Sadanaga and Takeda, 1968). With
the aid of this model unit layer, the derivation of the PID
function can be treated as involving only displacements
of unit layers, and all four Fourier transforms for the D,
D*, T, and T* layers have identical values for the follow-
ing reflections along the c* reciprocal lattice rows:

hk*l wjth ft : 0 mod 3, ft no condition;

w i t h h :  I  m o d  3 ,  k : 0 o r 2 m o d  3 ;

wlth h : 2 mod 3, k : 0 or I mod 3 (2)

where hk*/ is the Miller index (diffraction symbol) for the
hexagonal axes. An example of the Fourier transform of
a representative mica unit layer is given in Figure 2 of
Takeda (1967). These indices should be transformed to
the hexagonal reciprocal lattice row l0/ when the com-
putation is based on the parameters given in Table l.

In general, the Fourier transform of an N-layer mica
polytype is given as (Takeda, 1967)

G*(hkl \ :

) G,1h'k' l1exp 2rilhA,x, + kAy, + (j - l) l (3)
j : r

wherc G,(h'k'l) is the Fourier transform of the 7th unit
layer with indices transformed in accordance with its in-
terlayer rotation around c*, and M,, Ay,, and (y - l) are
the components of a displacement vector from the origin
to the jth layer, along the axes a, b, c, respectively. Be-
cause of the symmetry inherent in the Fourier transform
of the unit layer, G,(h'k'l) can be replaced by the Fourier
transform of the unit layer before the transformation,
Go(hkl). Thus, the intensity distribution is given by the
product of Go(hkl) and the sum of the exponential terms,
SN. The SN terms are designated as the PID (periodic in-
tensitydistribution)function: lc,l : lGol x lSNl.

The PID function is a special type of fringe function
(Lipson and Taylor, I 9 5 8); its value squared and divided
by N (for the N-layer mica) has a form of the interference
function (Guinier, 1963), where the unit scattering power
is divided by the square of the structure factor of the
group of atoms under consideration. However, the inter-
ference function is in general not a periodic or discrete
function, which is characteristic ofthe SN function. A set
ofN values ofthe S'function is characteristic ofthe layer
stacking sequence of polytypes and has been used effec-
tively in the determination of the stacking sequence by
systematically generating SN values for all possible N-lay-
er poly'types. A computer program (PTST) has been writ-
ten to compute the PID function from the RTW symbol
(the program is available from senior author upon re-
quest).

In the above discussion, we assume that the Fourier
transforms of the D, D*, T, and T* layers are exactly
identical at those reciprocal lattice nodes given in Equa-
tion 2. If there are deviations from the ideal model, weak

reflections that violate the structural extinction rules and
slight deviation of the periodicity will be observed.

ExpnnrunNtAl pRocEDURE To oBTATN THE PID
FUNCTION

To characterize the mica polytype by X-ray precession
photography most easily, the following procedure was
used. The mica plate was mounted so that the (001) plane
was perpendicular to the goniometer rotation axis of the
precession camera. Adjustment of the goniometer arcs
was made so that c* was coincident with the dial axis.
Rotation of the crystal about the dial axis was made until
a principal reciprocal lattice net was found. This was ei-
ther the h\l, h3hl, h3hl, \kl, hhl, or hhl net for any mica
polytype. The h3hl andh3hl nets are +60'from Ihe h\l
position, the hhl and hhl nets are +60o from the \kl
position, and the )kl net is 90' from the h\l position. For
many polytypes, the }kl net is orthogonal. For triocta-
hedral micas, it is generally not possible to differentiate
the h}l, h3hl, andh3hl nets from one another by casual
inspection because of the pseudotrigonal nature of the
mica structure.

Using six single-crystal diffraction photographs of the
above mentioned nets, any mica polytype can be identi-
fied. Simpler mica polytypes such as lM, 2Mr, and 2M,
can be identified by comparing the films with the stan-
dard patterns. Al1 threeJayer polytypes and 20 ofthe 26
four-layer polytypes can also be identified by their cell
dimensions, symmetry, and rules for structural extinc-
tions (Ross et al., 1966). Many other polytypes of higher
layer repeats, however, can only be identified by com-
paring their PID functions or SN functions (Takeda, 1967).

To measure the intensities of complex mica polytypes
through the use of a microphotodensitometer, one must
obtain well-resolved X-ray diffraction patterns. For pre-
liminary identification, MoKa radiation is recommend-
ed. For mica polytypes with layer numbers N: 8-15,
CuKa radiation will give better resolution of the reflec-
tions. In the case where N: 15-30, FeKa or preferably
CrKa radiation with a fine slit of diameter 0.3-0.1 mm
must be used to obtain well-resolved diffraction patterns.

In practice, it has been found that measurement of the
periodic intensity distribution along the following three
reciprocal lattice rows is usually sufficient to identifu the
stacking sequence: 021, lll, and Tll. Lattice rows04l,22l,
andZ2l can be used equally well for identification of the
polytype if the reflections are strong enough. Neverthe-
less, one can observe the PID of a polytype directly on
the photograph without any intensity correction and re-
duction because the Fourier transform of the unit layer
of mica is generally constant in the range from 040 to
042 of the lM repeat and also in some other parts of the
pattern (see Takeda, 1961, Fig. 2).

For an accurate analysis, the measured intensities must
be corrected for Lo factors and absorption. Each Fo must
then be divided by the Fourier transform ofthe unit layer
Go(hkl) at the location of each reflection. To obtain the
values of Go(hkl), the structure and composition of the
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0'- (0k/)
30 (h3hl)
60 (hht)
90 (hor)

Tlaue 3. Types of reciprocal lattice nets for identication of three
basic polytypes

Reciorocal
Dial lattice olane.

reading lMsett ing 1M

Reciprocal
lattice plane,

2M, 2M, setting. 2M,

1M(hht)
2M,(0kt)
2M2(hht)
2M2(Oktl-

' Conventional 2M, axial setting of Smith and Yoder (1956) Note that
2M,(0kl) is the characteristic pattern of 2M,.

.. Arbitrarily chosen origin.
t In dioctahedral micas, weak spots appear in a reciprocal lattice row

with h:  0 mod 3.

one-layer mica should be approximately known. If the
structure is not known, the method described by Takeda
and Sadanaga (1969, Table l) may be used to evaluate
the Go(hkl).

If the values of SN are obtained over more than one
repeat, the average values should be used to avoid the
errors in measurements of Fo and errors in evaluation of
Go(hkl). Finally, Sx is scaled by making use of the follow-
ing relation:

N

) 6Y1nt<q7': t'r'. (4)
j : l

ANalvsrs oF MrcA srAcKrNG sEeuENcES

One- and two-layer micas

The method of identifying the six simplest mica poly-
types of Smith and Yoder (1956) has been given by pre-
vious workers (Zvyagin, 1960; Franzini and Schiaffino,
1963). The major difrculty in identifying the polytypes
is mostly due to the complexity of diffraction patterns
caused by twinning or by crystals composed of more than
one polytype. Smith and Yoder (1956) pointed out the
similarity of the single-crystal X-ray diffraction patterns
of the twinned lMpolytype to those of the 37n polytype.
A method of analyzing simple twin operations (Sadanaga
and Tak6uchi, 1 96 1) has been extended by Rieder (l 970)
in a systematic manner to include complex twins.

Our experience shows that one of the easiest ways for
the nonspecialist to identify the simplest mica polytypes

TABLE 4. Crystallographic data of all possible three-layer micas

Member.
Stacking
sequence Axial setting

is to compare the diffraction patterns with standard pat-
terns such as those given in Table 3. In Table 3 standard
patterns for each one- and two-layer mica are shown for
a particular dial setting of the precession camera.

Three-layer micas

Two of the six possible three-layer polytypes (Table 4)
have interlayer rotations 0 or + 120'. The two polytypes
are called ternary members in this text because their
stacking sequence (0,2, or 2) can be expressed by ternary
numbers (0, l, or 2). Both of them, namely 3Tl222l and
3Tc,1022\, are the simplest form of the basic polytlpe
series that commonly occur in nature. The 37 polytype
is well known because it is one of the six forms described
by Smith and Yoder (1956). However, the 3Tc, form is
as simple as the 3Z form and is probably more common
than the 611 form. The cell dimensions and space group
are given by Ross etal. (1966). The other four polytypes,
called sixfold (senary) members, can be identified by the
axial setting, crystal system, space groups, and any special
extra-extinction rules beyond those required for the space
group (i.e., structural presence criteria).

Great care should be taken not to identifu a complexly
twinned crystal as a new polytype. Most of the 3Mforms
reported have been found to be twins. To be sure of the
correct stacking sequence, it is recommended that the ob-
served intensities be compared to the calculated charac-
teristic PID as given in Table 4. In spite of their simple
stacking sequence, the number of crystals identified as 3I
appears to be rather small. The intensity distribution dis-
played by the 3f polytype is very similar to that of the
lM polytype with 3Z-type twinning, especially in trioc-
tahedral micas. Thus, the intensity distribution should be
carefully measured to assure the correctness of a 3I
stacking sequence. The dioctahedral3Tl222l mica crystal
structures identified to date are: muscovite (Giiven and
Burnham, 1967; Amisano-Canesi et al., 1994), parago-
nite (Sidorenko et al., 1977), lepidolite (Brown, 1978),
and protolithionite (Pavlishin et al., l98l; Weiss et al.,
1993). Sadanaga and Tak6uchi (1961) identified a 37
trioctahedral polytype by measuring intensity data. No
3Z poly.type was identified by Ross et al. (1966).

tr'our-layer micas

Among 26 possible four-layer mica polytypes, six po-
lytypes (three ternary and three senary members, Table

Calculated PID

Space group golakr)-" S'g(hhl) or S3(hhL)

1M(Oktl 2M,(Okt)
1M(h0t)t 1M(hot)I
1M(hht) 2Mlhht)
1 M(h0t)  1M(hot l

(h0/)
(3hht)
(hht)
(0k/)

Ternary

Senary

3rl222l
3Tc,1022)
3M,[0331
3M211121
3Ic,[01 1 ]
3re[123]

3 r
3Tc1(2M2)
3M,(2M.)
3M,
3M,
3M.

pej.212

C2lm
C2
C1
C1

1 . 7 , 1 . 7 , 1 . 7
1.3, 0.9, 2.5
3 .0 ,0 ,  0
1 . 7  , 1  . 7  , ' l  . 7
0 ,  0 ,3 .0
1 . 7 , 1 . 7  ,  1  . 7

1 . 7 , 1 . 7 , 1 . 7
0.9, 1.3, 2.5
1.3, 2.5, 0.9
0.9, 1.3, 0.9
0 .9 ,  1 .3 ,2 .5
1.3, 0.9, 2.5

'Ternary polytypes contain no 60, 180, or 300'layer rotations; senary forms contain 60, 180, or 300'layer rotations.
- -  L :  0 ,  1 ,  and2.
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Taeue 5. Calculated PID functions, S4(02t), for the fourJayer ternary polytypes and related senary polytypes"

RTW symbol L 4M1102021 4M,102221 4Ml2m2l 4Tc,[O0221

Space group
TS symbol
Senary counterparts

1.000
1.732
3.000
1.732

C2lc
01 01
4Tc,10213'l

2 646
1 732
1.732
1.732

c 2
001 0
4Tcal1322l,"

4rq10132)

2.000
2.450
0
2.450

C2lc
001 1
4Tc,[1'1221

1.000
0.897
1.732
3.346

c 1
0 1  1 1
4rqi01't2l

0
1

3

Note.' all polytypes have the lM-type axial setting.
. The nine fourJayer polytypes that cannot be identified by symmetry and extra-extinctions other than that of space group (see Ross et al., 1966).

'- 5r1t 1 L) of 4lca has 4Tc2-lype intensity distribution and thus differs from 4Ic5.

5) cannot be identified without comparing their charac-
teristic PID patterns. Three four-layer polytlpes have been
found in natural and synthetic micas. Another ternary
polytype, 4Tc,100221, belongs Io the 10"221series of mica
polytypes that are frequently found, though this particu-
lar member of the series has not yet been identified. Other
members of senary polytypes are distinguished by the
crystallographic data given in Table 6. The extra-extinc-
tion rules (Ross et al., 1966), other than those required
by the space group, are useful in identifying these simpler
mica polytypes, but they are a part of the information
contained in the PID function (Takeda, 1967).

The similarities and dissimilarities in intensity distri-
bution between polytypes follow a clear system. Inten-
sities of some reflections (e.g., 00/) are the same for all
mica polytypes within a given sample. Intensities of oth-
ers (which are called subfamily reflections by adherents
to the OD theory) are identical for polytypes within each
subfamily. All the ternary polytypes are composed of D

TlaLe 6. Crystallographic data and S4(0k/), S4(hhl), or S4(hfil)
for all senary four-layer polytypes

Stacking
sequence Space group

layers and give nearly identical h)[ h3hl, andh3hl pat-
terns. This is because the projections of the crystal struc-
ture in the direction perpendicular to these three planes
are identical. Only the diagnostic reciprocal lattice nets
are different and of value in identification. Therefore,
the mode of stacking the layers must be defined by examin-
ing the \kl, hhl, or hhl nets, with the crystal structure
projections differing in the direction perpendicular to
these planes.

Of the 26 possible four-layer mica polytypes, nine can-
not be distinguished by symmetry and structural presence
criteria alone (Ross et al., 1966). These nine polytypes
are listed in Table 5 and include four ternary and five
senary forms. Symmetry and a use of the PID function,
as expressed along the 02I reciprocal lattice row line,
So(022), distinguish seven ofthe nine polytypes. The other
two polytypes (4Tcr, 4Tcr) can be distinguished by ex-
amining both the 02L and l lI row lines and comparing
these to the S4(02I) and Sa(1 lI) calculated PID functions.

Three polytypes in Table 5 have been identified. The
4Mrl0222l form has been reported by Ross et al. (1966)
and 4Tc,l0l32l by Takeda (1967). The 4M,l0202lpolytype
has been found in synthetic fluorphlogopite coexisting with
lM mica (T. Nishida, 1969 personal communication).

For those polytypes with layer number larger than four,
the method of identification, on the basis of symmetry
and visual inspection, used for the four layer polytypes is
not always efficient. To identify the more complex mica
polytype, the PID functions along several reciprocal lat-
tice rows and symmetry elements must be generated for
all possible N-layer polytypes. These data (Tables 7-10)
are then compared to the observed diffraction data to
define the particular stacking sequence.

Rrsur,rs
The most common polytypes among complex stacking

sequences are based on the lM form with a single 120"
periodic stacking fault introduced every n layers (Ross et
al.,1966). The series is represented by the symboll(0)"221.
The PID functions of the polytypes belonging to this se-
ries have special characteristics: a strong peak at every
Nth reflection (where N : n + 2) along an }kl row line
and a rapid decrease of intensity in an asymmetrical
way from each strong Nth reflection (see Fig. I of Ross
et al.. 1966).

s1(hhl)
S4(0k/) ot (hhl)

Axial
setting

20

2M"

4qtmml
4qt13131
4q123231
4O4[1212]l
4M611111j
4M7[O1211
4M4[0033]
4M5[11221
4Tc2111221
4Tcal1322l
4T'4IO213l
4Tcs[O132)
4Tql2233l
aTc,l1227l
4lqo[0011]
4Tc,i01121
4M6t01011
4M,111311
4Mnf1212l
4Mfl1232)
4IcE[1 1 33]
4Tc\lO123)

Ccmm
C2cm
Cc2m
c222,
C2lc
wa
C2lm
vz

C1
C2lc
c2
C2lc
wz

.000

.0 .0

+ * u +

.000
. .0 .
. .0 .

.0.0

.0 .0

.0 .0

.0.0

. .0 .

. .0.

.0 .0

.000

.000

. .0 .

. .0 .

Note.' the S(hkl) designations for those polytypes that show extra-
extinction beyond that required by the space group are as follows: .000
4 .0 ,0 ,0 ,0 ;  . 0 . 0  2 .0 ,0 ,3 .5 ,0 ;  . ' 0 .  2 . 0 ,2 .4 ,0 ,2 .4 .  Dash  s tands  f o r  no
such extinction.
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TABLE 7. The PID functions, SN(02L), of mica polytypes belonging to the 1M series

7 2 1

I  1 0  1 1
21 22 23

s 6 7 8
1 7  1 8  1 9  2 0

0 1 2 3 4
1 2  1 3  1 4  1 5  1 6

Axial
setting

Polytype
symbol

5Tc1

6Tc,

7Tc1

8Tc1

9Tcl

1 olcl

11Tc1

12Tc1

13Ic,

14Tc1

15Tc1

16Tc1

17 Tc1

18 Iq

19Ic,

20Tc1

21Tc1

22Tcj

23Tc,

1 M

3Tc,

1 M

1 M

9Tc,

1 M

1 M

3Tc,

1 M

1 M

3Tc,

1 M

1 M

9Tc,

1 M

1 M

3Tc.

1 M

1 M

1 . 0 0  2 1 3  4 . 1 7  1 . 1 7

1.35 0.92 0.88 1.13

1 .00 0.87 0.93 1.27

1 .00 1.42 3.35 6.63

3.76 1.58 1.08 0.90

1.00 0.89 0.87 0.95

1.00 1 26 1 89 4.58

1.35 1.06 0.92 0.87

1.00 0.90 0.87 0.88
1.20
1 0 0  1 . 1 8  1 . 5 4  2 . 3 7
o.87 0.91
1 .35 1.10 0.96 0.89

12.42 3.14 1.84
1.00 0.91 0.87 0.87
3.35  1 .96  1 .42  1 .15
1.00  1 .14  1 .38  1 .83
0.94 0.89 0.87 0.88
3.76 2.19 1 .58 1.26
1 19 1.45 1 .93 3.02
1.00 0.92 0 88 0.87
7.87 15.72 3.96 2.30
1 .00 1 .1 1 1.29 1 .59
1.17 1 .03 0.95 0.90
1 35 1 .16 1 .03 0.95
1.43 1.81 2 53 4.37
1.00 0.93 0.89 0.87
2.33 3.67 9.1 1 18.20
1 . 0 0  1 1 0  1 . 2 4  1 . 4 6
1 .55 1 .30 1.14 1 .03

0.87

2.53 4.99

2.94 5 81

1.73 1 .09

0.87 0.94

1 .17 ' t .73

9.11 2.33

0.88 0.96

0.96  1 .12

5.81 11 .59

0.87 0.88

0.90 0.97

2.86 7.05
0.92
1.08 0.97
7 .46 14.89
0.87 0.91
1 .65 1.32
2j3 3.35
0.87 0.87
0.90 0 87

17.37 8.70
0.87 0.88
4.58 2.65
1.80 2.43
0.95 0.91

1 .54

0.90 0.87

1 .19 1 .93

4.17 8.29

1 .40  1 .06

1  . 13  1  . 51

1.44 2.21

2.94 1.73

0.93 1.04

1 .09  1 .31

14.07 3.55

0 90 0.87

0.97 1.O7
1 . 1 2
8.29 16.55
0.89 0.93
o.87 0.88
3.s1 2.23
0.92 0.97
1 89 1.49
3.84 952
0.88 0.87

7.46

2.13  1 .29

0.92 0.87

2.53 9.94

5.40 10.76

1.27  1 .05

1.25 1 .63

1.73 2.69

2.07 1.50

0.87 0.89

1.24  1 .52

4.17 2.42

0.91 0.97
1.66
1.06  1 .20
1 .26 1 .10

f 9.03 4.78
o.87 0.89

0.89

4.99 2.O5

2.73 1.62

0.93 0.88

2,53 6.22

6.63 13.24

1.21 1 .04

0.94 1.04

2.03 3.18

1.73 1 .38

1.O7 1 .21

1 .40 1.73

2.76 1.97
0.94

The PID functions of this series with N : 5-23 are
given in Table 7. Their axial settings indicate the position
Z : 0 and are in accordance with the convention ofTak-
eda and Sadanaga (1969). Within this series Ross et al.
(1966) reported the following: 3Tc'(022), 8Tc,l(0)u221,
l4Tc,I(0),,221, and 23Tc,l(0),,221. The 3Ic, form, al-
ready described above, is the simplest of the series. Among
the four-layer micas 4?"c,[0022] is most likely to be found,
butZvyagpn (1960) predicted that 4Mrl2222l should also
occur because of its high symmetry. Rieder (1970) iden-
tified the 9Tc,l(0),221in Li- and Fe-bearing micas from

the Krusn6 Mountains (Erzgebirge). The 8Ic''[00022202]
polytype (Table 8) has a more complex sequence (Ross
et al., 1966, Fig. 1) but has also been interpreted as a
modification of t}lre lM basic series.

Another common series is based on the 3f basic po-
lytype. General symbols are given as l(222)"01for the (3n
+ l) layer polytypes andl(222)"221 for the (3n + 2)layer
ones. Examples found in nature include 4M2(0222),
8M8l(222),221, and I lM'l(222\221. The PID functions
of the 3 f series are given in Table 9.

The l0Zcr[0022222222] polytype is also considered to

TABLE L Examples of the PID functions S8(02L) for some eightJayer polytypes with modified 1M series related to 8Iq,

L
Polytype Axial
s y m b o l  s e t t i n g 0 1 2 3 4 5 6 7

9Tcr" 1 M 2.000 1.326 3.200 3.464 3.200 4.732 1.326
8M" 1M
gTq  1M
8M" 1M
8M,^ 1M 5292 2.450
8Tq  1M
87q. 1M

1.000 2.039 2.608 2.548

1.268
1.732 1.732

1.732
2.450 1.326 0.000
0.000 2.450
1.268 0.836
0.000 4.857 3.464

b.55 / 1.732

5.292 3.200

2 000 1 .614
2.000 3.887

3.464 2.450 0.000
0.000 5.078 4.732

2.982 0.000

4.147 1.055
2.450 3.200

2.450
2.628
0.639

1.732
4.923
1.326

/vofe; srackingsequences: 8Tc,2looo222o2l,8M'Iooooo222),'Tcoloooo22o2l,8M,IOOOO2Zz2I,8M,4lOOO22222l,8rc'[00000202]'8Tc8I002n222|



722 TAKEDA AND ROSS: MICA POLYTYPISM

Trau 9. The PID functions, SN(02t), of the 3f-series polytypes

Polytype
symbol

5M"
7M"
8M"

1OM3
11Ms
13M3
14Ms
16Ms
17 Ms
19M3
20Ms
22M3

2.65
4.36
4.36
6.08
6.08
7.8'l
7.81
9.54
9.54

11.27
11.27
13.00

1.O7
077
0.72
0.66
0 6 5
0.63
0.62
0 6 1
0.60
0.60
0.60
0.59

2.80
2.'t6
4 .18
4.53
2.42
1.40
1.20
0.98
0.92
0.83
0.80
0.75

1.07

1.73
2.80
5.59
b . v b

3 .12
1 .73
1 .46
1 . 1 6
1 .07
0.95

1 .73
1 .88
3.48
7.01
7.38
3.83
2.07
1 .73
1 .35

1 .88
1 .84
2 .16
4 .18
8.44
8.81
4.53
2.42

1 .73
2.O4
2.47
4.89
9.87

10.24
1.73
1 .88 1.73

2.80
3 . 1 2
1.73
1.O7
0.95
0.81
o.77
0.72
0 7 0
0.67
0.66
0.65

1.73
1.79
2.28 1.78
2.80 1.92
5.59 2.54

ivote.' stacking sequences with layer numbers N: 3n (n is an integer) do not yield the 3f series. Polytype gMs:8Maof Ross et al. (1966), and
11M":11114, of  Ross et  a l .  (1966).

be a modification of the 3Z basic series. This polytype
reveals the same PID intensities as those of the mono-
clinic ones, but the stacking sequence reveals triclinic
symmetry. Theoretical studies of this mica polytype are
given by Sadanaga and Takeda (1968), who proposed
diffraction enhancement of symmetry from triclinic to
monoclinic.

Mica polytypes related to the 2M, basic polytype are
expected because the 2M, polytype is commonly found
in nature (Giiven, l97l). A 24Tc biotite has been re-
ported by Hendricks and Jeferson (1939) from Ambu-
lawa, Ceylon. Smith and Yoder (1956) mentioned that
this 24Tc biotite is a twin of the 8Zc polytype, but they
did not determine the stacking sequence. Takeda (1969)
derived PID values from the intensity distribution given
in the literature for this 24Tcbiotite. The calculated PID
functions for various eight-layer polytypes (Table l0)
shows that the 24Tc mica is a twinned 8Tcrl(22)r221po-
lytype (Fig. 1).

DrscussroN
Of the six predicted ordered mica polytypes (Smith and

Yoder, 1956), only the 6H polytype has not yet been
found in nature. The rarity or nonoccurrence of the 2O,
2Mr, and 6Il mica polytypes is explained by the ditri-
gonal nature of most mica unit layers. The trigonal ar-
rangement of the basal O atoms prevents stacking of the
unit layers by other than 0 or + 120'rotations. Thus, the

6H, 20, and 2M, polytypes, which require 60 or 180"
rotations, are very rare (Rule et al., 1987).

The stacking sequences of complex mica polytypes de-
termined by application of the PID function (Ross et al.,
1966; Takeda,1967) have revealed that mica polytypes
with smaller layer numbers than 6Iloccur quite frequent-
ly. Many of the mica polytypes thus far identified have
layer stacking sequences based on the lM or the 3Z po-
lytypes and form the lM and 3?" series. In addition to
the lM and 3T series, we propose that 2M, is a basic
structure because 8?c, (former 24Tc of Hendricks and
Jefferson, 1939) is based on lhe 2M, sequence with a
periodic stacking fault.

Basic structures found in the mica polytypes, such as
the lM, 2Mr, and 37 series, are also found in silicon
carbide. The basic series found in silicon carbide are sug-
gested to be caused by spiral growth (Frank, 1951). The
presence of these series in mica suggests that the mech-
anism of generating the complex mica polytypes may also
be explained by spiral growth. This origin for mica po-
lytypism has been examined by Baronnet (1975) in his
study of growth spirals in complex mica polytypes. Sup-
ported by their observations on synthetic as well as nat-
ural micas, Baronnet and Kang (1989) proposed that the
principles of the perfect-matrix (Baronnet, 1975) and
faulted-matrix (Baronnet et al., 1981) models of screw
dislocation theory of polytypism can explain the origin
of most of the complex polytypes of micas.

TaBLE 10. The PID functions, SN(02t), of mica polytypes of the 2M, series

Poly-
VPe

symbol
Axial

setting

sTq  1M
6Tq 3Tc.
7Tq  1M
gTq  1M
9TC 9Ic

10Tq  1M
1 1 T c 2  1 M
12Tq 3Tc1

1 0 0
3 8 8
1 0 0
1.00
0.87
2.00
1.00
2.06

2.13
o.47
1.27
0.90
3.76
o . t +
1 . 0 6
1 . 7 3

0.87
3.26
0.87
4.07
1 .93
1 Q a

2.33
0.20

4 .17
1 .65
1 .54
1 .73
0.94
0.54
4.58
0.31

2.65
2.94
1 .78
0.90
0.00
1 .26
0.78

0.93
3.35
1.58
1.32
0.89
1.73

5.31
7.46
4.90
0.92
8 .17

1 .89
1 .73 1.67

1 . 1 7
0.60
5.81
o.23
1 .08
4.05
0.87
5.72

1  . 1 9
1 .89  1 .66
1 .40  9 .11
4.76 2.25

/Vofej stacking sequences arc l(221 P2l or [(22),0].
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On the basis of the structural refinements of coexisting
lM and 2M, poll,types, Takeda and Ross (1975) pro-
posed that the structure of a particular unit layer of a
polytype is directly related to the atomic and geometric
constraints imposed upon it by the two adjacent unit lay-
ers, the constraints varying with the relative orientation
of the OH bond in the adjacent layers. Thus, the unit
layer ofthe lM polytype with adjacent layers in 0'rela-
tive orientation has a crystal structure slightly different
from that of the unit layer of the 2M, polytype, which
has adjacent layers in +120' relative orientation. It is
further proposed that once interlayer constraints form be-
tween adjacent layers, these constraints tend to control
the orientation of the next nucleated layer so as to give
an ordered stacking sequence, usually of the lM or 2M,
type and, more rarely, the 3f type. Once a sequence of
layers has formed through layer-byJayer nucleation, fur-
ther crystal growth often occurs by means of a spiral
growth mechanism. The polytypic form of the final crys-
tal is controlled by the sequence of layers within the pri-
mary platelet and within the dislocation step.

Graphic examination of the complex stacking sequenc-
es (Fig. l), which are not readily explained by the faulted-
matrix model (Baronnet and Kang, 1989), suggests the
following general observation (Baronnet and Takeda, un-
published data). When a stacking fault is introduced with-
in one of the lM, 37", and 2M, structures, the next layer
or the next few layers are so stacked that the last stacking
vectors return as closely as possible to the direction par-
allel to the original direction of the basic stacking se-
quences (Fig. l), and these layers form a new unit for
subsequent growth. This has been confirmed by a recent
HRTEM study of stacking faults in a biotite single crystal
(Baronnet et al., 1992).

We present the following hypothesis, which should be
tested in future studies. When a stacking fault is generated
in the basic polytype structure, the orientation of the next
layer to be stacked on top of the faulted one will be in-
fluenced by the stacking sequences ofthe previous layers,
and, within the next one or several steps, the orientation
of the stacking direction will be recovered as closely as
possible to the original direction. Further crystal growth
then occurs by means of a spiral growth mechanism to
retain the stacking order.

This recovery process of the faulted matrix may be
controlled by a statistical process similar to a "random
walk" and constrained for only a few short steps. There-
fore it cannot be rigorously predicted because the influ-
ence ofthe preceding stacking sequence may not be strong.
The mode of the stacking $equences found in a clintonite
"valuevite" crystal (Ohta et a1., 1978) shows such a sta-
tistical process. Another mechanism for the above recov-
ering sequence was proposed by Takeda and Ross (1993).
During spiral growth of a basic polytype, a platelet with
a stacking fault deposited on a part of the spiral surface
may retain the same orientation as that of the basic se-
quence ifthe spiral grows over the platelet and covers it
in such a manner that the bottom of the covering layer
shifts laterally to match the sequence of the top of the

87tr[(0)622] 8Tt,r(000222O2) 4Tcr(0132)

(A)

. ' t. ' ;

i
ia '

r l

1'
I

3TL,(022)

?i(1,
i '
I '
l '
l '
I '
I'

a
I

, i r  1 1
l l
t l

(B)

. a

i
. . i l

3 .

..?

lr

4M,(222O) 8MrtQ22)?21 ltMtl(222)\221 t0Tr,(22222222O0\

(c)

F\

(22),,01 I(22)^221 8'rc,[(22).Q2] [(22),22220]

Fig. l. Examples of stacking sequences of observed complex
mica polytypes represented by their stacking vectors (Ross et al.,
1966). (A) lMseries, (B) 3?'series, and (C) 2M, series.

platelet. Further studies are required to determine some
of the more complex mica polytypes by the method de-
scribed in this paper.
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