The high-pressure stability of talc and 10 Å phase: Potential storage sites for H$_2$O in subduction zones

ALISON R. PAWLEY,* BERNARD J. WOOD

Department of Geology, University of Bristol, Wills Memorial Building, Bristol BS8 1RJ, U.K.

ABSTRACT

The pressure-temperature conditions of the reactions governing the high-pressure stability of talc were investigated in experiments on the bulk composition Mg$_5$Si$_2$O$_{10}$(OH)$_2$ + H$_2$O at 2.9–6.8 GPa, 650–820 °C, using piston-cylinder and multianvil apparatus. The reaction talc = enstatite + coesite + vapor was bracketed between 800 and 820 °C at 2.90–2.95 GPa and between 770 and 780 °C at 3.77–4.02 GPa. The lower-pressure bracket, which is just above the quartz-coesite phase transition, is consistent with some of the previous brackets on the reaction talc = enstatite + quartz + vapor and with the position of the talc dehydration reaction calculated using THERMOCALC v2.4 (Powell and Holland, 1988; Holland and Powell, 1990; Holland, personal communication). This revised version of THERMOCALC incorporates new compressibility and thermal expansivity data for talc (Pawley, Redfern, and Wood, in preparation). Agreement between experimental and calculated curves continues up to 4 GPa, but at higher pressures the talc dehydration reaction occurs at lower temperatures than calculated, so that by 4.6 GPa the thermal stability of talc is at <730 °C. At ~5 GPa, 710 °C, there is an invariant point involving talc, 10 Å phase, enstatite, coesite, and vapor. This point marks the highest pressure at which talc is stable. Above it, the thermal stability of 10 Å phase expands with increasing pressure. Its maximum stability is unknown. Talc is a common hydrothermal alteration product of peridotite and may transport H$_2$O in subducting slabs from shallow depths to depths of ~150 km. It may also crystallize in overlying mantle-wedge peridotite after infiltration of fluid from the slab, and its dehydration in the mantle wedge may lead to partial melting. The 10 Å phase may transport H$_2$O in silica-enriched hydrated peridotite to depths of at least 200 km.

INTRODUCTION

The presence of H$_2$O in the Earth’s mantle affects mantle properties in many ways. For example, fluid released in dehydration reactions may trigger partial melting and magma generation, and rheological and seismic properties are affected by even very small amounts of H$_2$O incorporated in fluids, melts, or minerals. Much of the H$_2$O in the mantle is introduced at subduction zones, where cold oceanic crust, hydrothermally altered at midocean ridges, is recycled back into the mantle. The principal consequence of this H$_2$O recycling is the abundant volcanism above descending slabs (e.g., Gill, 1981), which is the result of dehydration-melting reactions in the mantle wedge overlying the slab, involving H$_2$O released in dehydration reactions within the slab. It is unlikely, however, that all the H$_2$O present in the slab is released below arc volcanoes because some important dehydration reactions occur at greater depth. Lawsonite, for example, may be stable to depths of up to 300 km (Pawley, 1994; Schmidt and Poli, 1994) and antigorite up to 200 km (Ulmer et al., 1994). The presence of subduction-related H$_2$O-bearing partial melt has been suggested to be responsible for low S-wave velocity anomalies at 300–500 km depth (Nolet and Zielhuis, 1994), and it has been proposed that deep-focus earthquakes occurring at depths of up to 650 km are triggered by dehydration reactions (Meade and Jeanloz, 1991).

The above examples demonstrate the complexity of the processes of H$_2$O storage and release in subduction zones. Before these processes can be adequately understood, however, it is necessary to determine the stabilities of likely hydrous phases within the slab and mantle wedge and to compare the pressure-temperature positions of their dehydration reactions with models of the thermal structure of subduction zones. In this study we performed phase-equilibrium experiments to determine the stability of an important hydrous mineral, talc, and investigated the stability of its high-pressure, low-temperature hydration product, the 10 Å phase.

Talc is a common product of the hydrothermal alteration of ultramafic rocks. The extent of its occurrence depends on the bulk Mg:Si ratio, such that it is most abundant where dissolved SiO$_2$ has been introduced into the rock from hydrothermal solutions. Its composition
does not usually vary much from the end-member formula \(\text{Mg}_9\text{Si}_9\text{O}_{10}(\text{OH})_2 \). The most common substitutions being up to about 0.15 Al replacing Si and about 0.1 Fe replacing Mg (Deer et al., 1962). \(\text{H}_2\text{O} \) contents are usually close to the ideal 4.7 wt%. Therefore, provided silicification accompanies hydration, large amounts of \(\text{H}_2\text{O} \) may be stored within talc in altered ultramafic rocks, which in subduction zones should occur in both the slab and the overlying mantle wedge. The occurrence of altered ultramafic rocks in the slab is indicated by the exposure of serpentinized peridotite on the ocean floor (e.g., Cannat, 1993) and by the presence of altered peridotite within ophiolites, and fluids released from subducting slabs should cause hydrothermal alteration of the overlying mantle wedge. Both slab and mantle wedge are expected to be considerably colder than surrounding mantle and so may retain \(\text{H}_2\text{O} \) to much greater depth. Knowledge of the stability of talc at high pressures and low temperatures is therefore important for determining the ability of hydrothermally altered ultramafic rocks to store and transport \(\text{H}_2\text{O} \) into the mantle.

Several previous experimental studies relate to the stability of talc. These have not produced consistent results. The most widely studied reaction is the dehydration reaction

\[
\text{Mg}_9\text{Si}_9\text{O}_{10}(\text{OH})_2 = 3\text{MgSiO}_3 + \text{SiO}_2 + \text{H}_2\text{O} \quad (1)
\]

which has been investigated by Chernosky et al. (1985), Kitahara et al. (1966), Jenkins et al. (1991), Wunder and Schreyer (1992), and Bose and Ganguly (1993). In these studies, temperatures of the intersection of Reaction 1 with the reaction coesite = quartz (at \(-2.8 \text{ GPa}\)) ranged from about 800 to 830 °C, and the \(P-T \) slope of the reaction at this pressure varied from negative to positive. The higher pressure reaction

\[
\text{Mg}_9\text{Si}_9\text{O}_{10}(\text{OH})_2 = 3\text{MgSiO}_3 + \text{SiO}_2 + \text{H}_2\text{O} \quad (2)
\]

has been less extensively studied. From the results of synthesis experiments in the system MgO-SiO$_2$-H$_2$O, Yamamoto and Akimoto (1977) suggested that the thermal stability of talc decreases from 830 °C at 2.9 GPa to 740 °C at 5.5 GPa, at which point the talc stability field is pinched out because of the intersection of Reaction 2 with the reaction

\[
\text{Mg}_9\text{Si}_9\text{O}_{10}(\text{OH})_2 = \text{Mg}_9\text{Si}_9\text{O}_{10}(\text{OH})_2 + x\text{H}_2\text{O}. \quad (3)
\]

Bose and Ganguly (1993) studied Reaction 2 at pressures up to 4.5 GPa and also observed the formation of 10 Å phase at pressures above the talc stability field. However, the stability of 10 Å phase was called into question by Wunder and Schreyer (1992), who suggested that it is in fact metastable with respect to talc, in which case the maximum pressure stability of talc would not have been determined in these previous experiments.

Calculations of the \(P-T \) position of Reaction 2 using thermodynamic datasets (e.g., Berman, 1988; Holland and Powell, 1990) diverge considerably at high pressures, largely because of differences in the equation of state of \(\text{H}_2\text{O} \) used. These discrepancies, and the differences between the previously measured positions and slopes of Reaction 1, indicate the importance of conducting a further phase-equilibrium investigation of the high-pressure stability of talc. Our results show that Reaction 2 has a negative slope and intersects Reaction 3 at \(-5 \text{ GPa}, 710 °C \), above which 10 Å phase is stable. These results have important implications for the stability of talc and 10 Å phase in subduction zones.

Experimental Technique

The starting material for the experiments was a sample of natural talc, of ideal composition except for a 1% replacement of Mg by Fe. For most experiments a 50:50 stoichiometric mixture of talc and enstatite + quartz was used. This mixture allowed reversal experiments to be performed. The enstatite + quartz was produced by dehydrating talc at 2 GPa, 900 °C. Some experiments used enstatite + coesite, synthesized from talc at 3.2 GPa, 1000 °C, to observe the first appearance of talc, and other experiments used only talc as starting material. Excess SiO$_2$ in the form of coesite was added to several experiments to ensure that coesite dissolution did not lower the activity of SiO$_2$ in Reaction 2. The presence of quartz rather than coesite in some of the experiments was not considered significant because reaction to coesite was assumed to be faster than the rate of the talc dehydration reaction, and indeed in all the experiments quartz reacted completely to coesite. Samples were sealed in 2 mm diameter Pt capsules with \(\sim 10 \text{ wt%} \) distilled \(\text{H}_2\text{O} \).

For experiments at pressures up to 4 GPa an end-loaded piston-cylinder apparatus was used, with NaCl as the pressure medium. Piston-in experiments were conducted and a \(-0.05 \text{ GPa} \) pressure correction applied. Quartz-coesite calibration experiments showed that a \(-0.05 \text{ GPa} \) pressure correction was sufficient for piston-in experiments, and no pressure correction was necessary for piston-out experiments. The pressure uncertainty is \(\pm 0.05 \text{ GPa} \). Temperatures were measured using a W3Rh/W25Rh thermocouple, with no correction for pressure.

Experiments at \(>4 \text{ GPa} \) were performed in the multianvil apparatus at Bristol University. This is a Walker-style apparatus (Walker et al., 1990). The anvil was 1 in. tungsten carbide cubes (Hertel) with truncated-edge lengths of 12 mm. The octahedral pressure medium was made of MgO castable ceramic (old-style Ceramacast 584, Aremco Products). LaCrO$_3$ furnaces were used (5 mm o.d., 3 mm i.d., 13 mm long) in most experiments, with stainless steel discs at both ends to provide electrical contact with the tungsten carbide cubes. The axial W3Rh/W25Rh thermocouple was placed in direct contact with the Pt capsule containing the sample, with MgO spacers and insulators around the thermocouple and capsule. Experiments were pressurized cold, and then heated while maintaining constant pressure.
TABLE 1. Results of experiments on the bulk composition
\(\text{Mg}_4\text{Si}_2\text{O}_9(\text{OH})_2 + \text{H}_2\text{O} \pm \text{SiO}_2 \)

<table>
<thead>
<tr>
<th>Expt.</th>
<th>Starting material*</th>
<th>(P) (GPa)</th>
<th>(T) (°C)</th>
<th>(t) (h)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>T01</td>
<td>TEQ</td>
<td>2.90</td>
<td>800</td>
<td>16</td>
<td>Ta grew</td>
</tr>
<tr>
<td>T03</td>
<td>TEQ</td>
<td>2.95</td>
<td>800</td>
<td>15</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T011</td>
<td>TEQ</td>
<td>3.77</td>
<td>770</td>
<td>24</td>
<td>Ta grew</td>
</tr>
<tr>
<td>T016</td>
<td>TEQ</td>
<td>3.78</td>
<td>780</td>
<td>8</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T09</td>
<td>TEQ</td>
<td>3.78</td>
<td>800</td>
<td>17</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T010</td>
<td>TEQ</td>
<td>3.82</td>
<td>800</td>
<td>18</td>
<td>no reaction</td>
</tr>
<tr>
<td>T14</td>
<td>TEQ</td>
<td>4.02</td>
<td>780</td>
<td>8</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T25</td>
<td>TEQ</td>
<td>4.72</td>
<td>770</td>
<td>19</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T27†</td>
<td>TEQ + Cs</td>
<td>4.6</td>
<td>700</td>
<td>15</td>
<td>no reaction</td>
</tr>
<tr>
<td>T26</td>
<td>TEQ + Cs</td>
<td>4.6</td>
<td>730</td>
<td>7</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T28†</td>
<td>TEQ + Cs</td>
<td>4.6</td>
<td>730</td>
<td>6</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T19</td>
<td>En + Cs</td>
<td>4.9</td>
<td>730</td>
<td>8</td>
<td>no reaction</td>
</tr>
<tr>
<td>T20</td>
<td>Ta + Cs</td>
<td>4.9</td>
<td>730</td>
<td>12</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T21</td>
<td>En + Cs</td>
<td>4.9</td>
<td>730</td>
<td>19</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T22</td>
<td>En + Cs</td>
<td>4.9</td>
<td>730</td>
<td>25</td>
<td>no reaction</td>
</tr>
<tr>
<td>T23</td>
<td>Ta + Cs</td>
<td>4.9</td>
<td>730</td>
<td>12</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T24</td>
<td>Ta + Cs</td>
<td>4.9</td>
<td>730</td>
<td>19</td>
<td>En + Cs grew</td>
</tr>
<tr>
<td>T25</td>
<td>Ta + Cs</td>
<td>4.9</td>
<td>730</td>
<td>24</td>
<td>10 A + En + Cs grew</td>
</tr>
<tr>
<td>T27†</td>
<td>TEQ + Cs</td>
<td>5.6</td>
<td>730</td>
<td>7</td>
<td>10 A + En + Cs grew</td>
</tr>
<tr>
<td>T28†</td>
<td>TEQ + Cs</td>
<td>5.6</td>
<td>730</td>
<td>7</td>
<td>10 A + En + Cs grew</td>
</tr>
<tr>
<td>T29†</td>
<td>TEQ + Cs</td>
<td>5.6</td>
<td>750</td>
<td>1</td>
<td>10 A + En + Cs grew</td>
</tr>
<tr>
<td>T30†</td>
<td>TEQ + Cs</td>
<td>5.6</td>
<td>800</td>
<td>19</td>
<td>En + Cs grew</td>
</tr>
</tbody>
</table>

Note: the first seven experiments are piston cylinder, the rest are multianvil. Ta = talc; En = enstatite; Cs = coesite; TEQ = stoichiometric mix of talc, enstatite, and quartz; and 10 A = 10 A phase.

* Ten weight percent H2O was added to all samples except T012, to which 15 wt% H2O was added.
** The observation of “no reaction” in this and later experiments does not apply to the reaction of quartz to coesite, which in all experiments went to completion.
† Experiments that used a Fecralloy furnace instead of a LaCrO3 furnace.

Pressures in the multianvil apparatus were calibrated at room temperature using the Bi I-Bi II and Bi III-Bi V transitions and at high temperature using the SiO2 quartz-coesite and CaGeO3 garnet-perovskite transitions (at 2.8 GPa, 800 °C and 6.1 GPa, 1000 °C, respectively). The pressure uncertainty is ±5%, corresponding to ±0.2–0.3 GPa. The thermal gradient in the hot spot is assumed to be ±20 °C/mm on the basis of calibrations made at 900–1500 °C using two thermocouples with no sample present (details of pressure and temperature calibrations are given in Frost and Wood, in preparation). Because separation of the thermocouple tip from the top of the sample (by Pt) is ~0.5 mm, uncertainties on quoted temperatures are assumed to be ±10 °C. At low pressures there was some difficulty achieving an electrical connection through the LaCrO3 furnace, and so a furnace made of an Fe-Cr-Al alloy (Fecralloy) foil was used instead. A duplication of one of the LaCrO3 experiments reproduced its result.

After each experiment, capsules were weighed, punctured, dried, and reweighed. Any that did not lose weight were discarded. The method of sample examination depended on whether the thermal gradient was small (piston-cylinder experiments) or large (multianvil experiments). In the former, all of which used the talc-enstatite-quartz starting mix, the entire sample was examined by powder XRD. A 50% change in the relative heights of the five strongest talc and enstatite peaks was taken to indicate that reaction had occurred. For the multianvil experiments, the sample closest to the thermocouple was examined optically and by XRD. The rest of the sample, at a lower temperature, was also examined, but products are not shown in Table 1 or in the figures.

RESULTS

Experimental results are listed in Table 1 and plotted in Figure 1. Experimental products comprise one to four of the phases talc, enstatite, coesite, and 10 A phase.

Talc in the experimental products is indistinguishable from the starting-material talc; that is, it occurs as irregular plates up to 80 μm in diameter. Therefore, growth of talc in experiments on talc-enstatite-quartz mixtures could only be determined by XRD. No talc was produced in experiments on enstatite + coesite.

Enstatite forms euhedral crystals with dimensions up to 50 × 10 μm. It has straight extinction in all samples, indicating that it is orthorhombic.

Coesite was difficult to distinguish optically, but in all reversal experiments in which there was no reaction or in which enstatite grew, the presence of coesite was identified by XRD, indicating that some of it did not dissolve in the fluid.

The 10 A phase forms euhedral hexagonal crystals up to 60 μm in diameter and 4 μm thick. Its refractive index is consistent with previous observations (\(n_r = 1.554, n_c = 1.574 \), Wunder and Schreyer, 1992). Its (001) peaks in XRD patterns are fairly broad, indicating a certain degree
of disorder, perhaps because of variable amounts of interlayer H₂O. Electron microprobe analysis indicated that it has the same Mg:Fe:Si ratio as the talc starting material, consistent with previous observations (e.g., Yamamoto and Akimoto, 1977). Previous studies have suggested various H₂O contents, e.g., expressed as Mg₅Si₄O₁₀(OH)₂₋ₓ·xH₂O, values of x of 0.65, 1, and 2 have been suggested by Wunder and Schreyer (1992), Bauer and Sclar (1981), and Yamamoto and Akimoto (1977), respectively. The first two of these values were measured in weight-loss experiments. In an experiment on a mixture of Mg(OH)₂ and SiO₂ with bulk composition Mg₅Si₄O₁₀(OH)₂₋ₓ·xH₂O, we synthesized close to 100% 10 Å phase (a little talc is also present) with <1% weight loss on puncturing the capsule after the experiment and drying at 110 °C. This suggests that the estimate of x = 2 by Yamamoto and Akimoto (1977) may be correct. This value is also suggested by oxide totals obtained in electron microprobe analyses, which averaged 86.1%, close to the value of 87.0% expected for the composition Mg₅Si₄O₁₀(OH)₂₋ₓ·xH₂O. A high H₂O content is also suggested by Fourier-transform infrared spectroscopy of 10 Å vibrations of the silicate framework, suggesting that the OH groups in talc are preserved on hydration to 10 Å phase. This observation contrasts with the suggestion of Bauer and Sclar (1981) that the 3677 cm⁻¹ vibration is less intense in 10 Å phase than in talc.

Discussion

At 3 GPa, just above the quartz-coesite reaction, the data on Reaction 2 are consistent with the data of Jenkins et al. (1991) on Reaction 1 at 2.5 GPa. These are shown in Figure 1, together with some of the data of Chernosky et al. (1985), including data on the reaction involving β-quartz at 0.05–0.2 GPa. Because Reaction 1 has been well bracketed, it can be used to extract thermodynamic data for talc. Jenkins et al. (1991) used the brackets, together with mineral thermodynamic data from Holland and Powell (1990), to calculate the enthalpy of formation of talc, ΔHₜₙₐₑ. However, the calculation requires knowledge of the other thermodynamic properties of talc, including its thermal expansivity and compressibility. At the time of the study of Jenkins et al. (1991), there were no published thermal expansivity data for talc, and so this had to be estimated. The compressibility data, measured in a piston-cylinder apparatus by Vaidya et al. (1973), were considered by those authors to be inaccurate. Therefore, the calculated value of ΔHₜₙₐₑ was subject to some uncertainty. To allow the calculation to be refined and reactions involving talc to be calculated to higher pressures and temperatures, the thermal expansivity of talc was recently measured and the compressibility re-measured (Pawley, Redfern, and Wood, in preparation). The compressibility of 10 Å phase was also measured. Thermal expansivity data were obtained by using powder X-ray diffraction to determine cell parameters of the sample heated in air, and the compressibility was measured using synchrotron radiation, with the sample compressed in a diamond-anvil cell. The thermal expansivity of talc is described by the equation \(V/V_0 = \left[1 + (K'/K)P\right]^{1/K'} \), for talc, \(K = 41.6 \pm 0.9 \) GPa and \(K' = 6.5 \pm 0.4 \). For 10 Å phase, \(K = 32.2 \pm 5.5 \) GPa and \(K' = 9.2 \pm 2.8 \). The talc data have been incorporated by Holland and Powell in their latest version of THERMOCALC (version 2.4, Holland, personal communication), in which thermal expansivities are represented by the equation \(\alpha = \alpha_0 - 10\alpha_0 T^{-1} \) and compressibilities by the Murnaghan equation with \(K' = 4 \). The revised value of \(\Delta H_{\text{talc}} \) in the dataset is \(-5891 \text{kJ/mol}\). The position of Reaction 1 calculated using THERMOCALC v2.4 is shown in Figure 1. It reaches a maximum temperature of 807 °C at 1.9 GPa.

Reaction 2 is bracketed to lie between 800 and 820 °C at 2.90–2.95 GPa and between 770 and 780 °C at 3.77–4.02 GPa. These brackets are in good agreement with its position calculated using THERMOCALC v2.4, but at higher pressures the experimental curve bends back to lower temperatures than the calculated curve. The experimental curve (solid line in Fig. 1) follows the calculated curve (dashed line) to 4 GPa and then decreases in slope to pass below 4.6 GPa, 730 °C, where talc reacted to enstatite + coesite + vapor. The divergence between calculated and experimental curves is not great, considering the uncertainties involved, namely the multianvil pressure uncertainty of \(\pm 0.2 \) GPa and temperature uncertainty of \(\pm 10^\circ \text{C} \), and uncertainties in the thermodynamic data used in the calculation.

At high pressures, Reaction 3, 10 Å phase = talc + vapor, was encountered. In the experiments at 5.3–5.6 GPa, 720–750 °C, with talc in the starting material, 10 Å phase was produced, and enstatite + coesite grew. The 10 Å phase cannot be in equilibrium with enstatite + coesite in a pressure-temperature field with H₂O in excess and so must represent metastable crystallization from talc within the enstatite + coesite + vapor field. Therefore, the metastable extension of Reaction 3 was crossed, and the samples lie on the high-temperature side of the reaction

\[
10 \text{ Å phase} = \text{enstatite} + \text{coesite} + \text{vapor} \tag{4}
\]

Presumably, with longer experimental durations enstatite + coesite would increase at the expense of 10 Å phase in this field. The absence of 10 Å phase crystallizing from talc at 4.9 GPa, 730 °C and 5.6 GPa, 800 °C, suggests that these points lie below Reaction 3. Because there was no 10 Å phase in any of the starting material, Reaction 3 was not reversed and could lie at a lower pressure than the pressure conditions of its synthesis.
At 6.8 GPa, 650 °C, a sample of talc + H₂O reacted completely to 10 Å phase over a period of 44 h. The long duration and absence of enstatite in the experimental product suggests that these conditions are within the field of stable 10 Å phase, i.e., on the low-temperature side of Reaction 4. Although the position of Reaction 4 is very poorly constrained, its slope can be estimated by calculating the volume change for the reaction. The ΔV_{Reaction4} was calculated at 5 GPa, 710 °C, the approximate position of the invariant point involving Reactions 2, 3, and 4. Assuming that the thermal expansivity of 10 Å phase is the same as that of talc, and that 10 Å phase has two H₂O p.f.u. (Bauer and Sclar, 1981), ΔV_{Reaction4} ≈ 2.1 cm³/mol (calculated using volume data from THERMO-CALC v2.4; cf. ΔV_{Reaction2} ≈ −1.5 cm³/mol). If 10 Å phase has three H₂O p.f.u. (Yamamoto and Akimoto, 1977), ΔV_{Reaction4} ≈ 3.4 cm³/mol. Being a dehydration reaction, ΔS_{Reaction4} is probably positive, and therefore dP/dT (=ΔS/ΔV) is positive. Therefore, in contrast to the behavior of talc, the stability field of 10 Å phase expands with increasing pressure above 5 GPa.

Implications for H₂O Recycling in Subduction Zones

Our results on the stability of talc and 10 Å phase are compared in Figure 2 with other recent phase equilibrium data relevant to the stability of hydrous phases in altered peridotite in subduction zones. Also shown are parts of two P-T paths calculated for the tops of subducting slabs in mature subduction zones (Peacock et al., 1994). These calculations assume that shear heating in the slab is not important at temperatures above a brittle-ductile transition, and therefore lead to steep P-T paths. The subduction rate is 10 cm/yr, and the brittle-ductile transition occurs at 300 and 500 °C for the paths labeled (1) and (2), respectively. Temperatures are higher for slower subduction rates, higher brittle-ductile transition temperatures, and subduction of younger oceanic crust. They are also higher for mantle-wedge material, and so dehydration of talc in mantle-wedge peridotite at 3–4 GPa could be partly responsible for triggering partial melting and arc magmatism. On the other hand, temperatures decrease with depth in the slab, so the temperature at the base of a 7.5 km thick basaltic crust is ~200 °C lower than at the top of the crust (Peacock, 1990). Therefore, the stabilities of talc to 5 GPa and 10 Å phase to >6.8 GPa indicate that H₂O may be transported in Si₃O₇-rich compositions in subduction zones to a depth of at least 200 km.

The occurrence of the reaction talc + forsterite = enstatite + water at a much lower pressure and temperature than Reaction 2 (Guggenbuehl, 1994) shows that for bulk compositions on the MgO-rich side of the enstatite-H₂O join (inset to Fig. 2), i.e., typical mantle compositions, talc stability is greatly reduced. The higher pressure part of this reaction is in fact metastable because it occurs within the stability field of antigorite (Ulmer et al., 1994). So for these bulk compositions, antigorite is the main hydrous phase until the P-T path crosses the reaction antigorite = forsterite + enstatite + vapor. Thereafter, talc can be present only if the bulk composition lies to the Si₃O₇-rich side of the enstatite-H₂O join. Solution re-predissolution of SiO₂ during seafloor alteration may produce large volumes of silica-rich compositions in the oceanic crust (as well as silica-depleted regions). With increasing pressure the solubility of SiO₂ in H₂O increases (Manning, 1994), and so SiO₂-metasomatism in subducting slab and overlying mantle wedge may be widespread and lead to more extensive talc crystallization.

When the stability field of 10 Å phase is entered, 10 Å phase should crystallize from talc through either Reaction 3, talc + vapor = 10 Å phase, or the reaction talc = 10 Å phase + enstatite + coesite, depending on whether excess vapor is present. The approximate positions of these reactions are shown in Figure 2, as is Reaction 4, 10 Å phase = enstatite + coesite + vapor, which passes through 7 GPa at >730 °C and is expected to extend to higher temperatures with increasing pressure. The maximum pressure stability of 10 Å phase is unknown, and therefore the fate of H₂O incorporated in 10 Å phase in subduction zones can only be conjectured. It may be that P-T paths passing through its stability field cross Reaction 4, causing H₂O to be liberated, or they may cross a different, as yet unknown, high-pressure breakdown reaction. In either case, the stability of 10 Å phase could determine the maximum depth to which H₂O is sub-
ducted in SiO₂-enriched peridotites, making this phase an important one for further study related to H₂O recycling in subduction zones.

ACKNOWLEDGMENTS

Financial support for this study was provided by NERC grant GR3/8362. We thank Tim Holland for providing the updated version of THERMOCALC, Evgeny Wassermann for useful discussions, and Jianzhong Zhang for a helpful review of the manuscript.

REFERENCES CITED

MANUSCRIPT RECEIVED JANUARY 20, 1995
MANUSCRIPT ACCEPTED MAY 4, 1995