Surface structural controls on pyrite oxidation kinetics: An XPS-UPS, STM, and modeling study

CARRICK M. EGGLESTON,1,* JEAN-JACQUES EHHRHARDT,2 and WERNER STUMM3

1L-219, Earth Sciences Division, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, U.S.A.
2Laboratoire de Chimie Physique pour l'Environnement, Université Mixte de Recherche-UMR 9992, CNRS-Université Henri Poincaré, Nancy I, France
3Institute for Environmental Science and Technology (EAWAG), Swiss Federal Institute of Technology, CH-8600 Dübendorf, Switzerland

ABSTRACT

X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS, respectively) and scanning tunneling microscopy (STM) were used to observe the initial oxidation of pyrite surfaces in air. The results show the growth of oxide-like oxidation products, with minor contributions from sulfate. UPS shows a decrease in the density of electronic states in the uppermost valence band of pyrite, corresponding to oxidation of surface Fe2+. This allows reliable interpretation of STM images, which show that initial surface oxidation of Fe2+ proceeds by growth of oxidized patches. The borders of oxidized patches contain small segments oriented in the (110) and (100) directions. STM of as-received pyrite cube surfaces, oxidized in air for years, also show the importance of the (110) crystallographic directions, on the surface, in controlling reaction progress.

A model in which oxidation probabilities for Fe2+ surface sites are proportional to the number of nearest-neighbor oxidized (Fe3+) sites was tested using a Monte Carlo approach and reproduces the surface patterns observed in STM.

An oxidation mechanism consistent with the XPS, UPS, STM, and Monte Carlo results is proposed. The rate constant for electron transfer from surface-exposed pyrite Fe3+ to O2 is small. Electron transfer is more rapid from pyrite Fe2+ to Fe3+ present on the surface as an oxidation product, such as in the patches we observed. Fe2+ in oxide is a better reductant than Fe2+ in pyrite, so electron transfer to O2 from the oxide is also fast. However, this two-step mechanism is faster overall only if electron transfer to the surface oxide patches is irreversible (e.g., because of S2 oxidation or electron hopping within the surface oxide patches). Cycling of Fe between the Fe2+ and Fe3+ forms, particularly along borders between oxidized and unoxidized areas, is thus a key feature of the pyrite oxidation mechanism. An understanding of the surface electronic and band structure aids definition of the redox potentials of electrons in various surface states. Rates of electron transfer from these states to O2 are estimated using a kinetic theory of elementary heterogeneous electron transfer.

INTRODUCTION

Pyrite is the most common sulfide mineral at the Earth's surface and is a key agent of electron cycling in the near-surface environment. Weathering of pyrite is estimated at 36×10^{12} g/yr (Garrels et al. 1973), involving 0.02 moles of electrons per square meter of land-surface area (Wehrli 1990). This current often drives other processes, such as formation of acid mine drainage (Barton 1978), mobilization and redox cycling of metals in sediments from mining and other environments (Moore and Luoma 1990; Calmano et al. 1994; Nimick and Moore 1994), degradation of pollutants (Kriegman-King and Reinhard 1994), reduction of aqueous trace metal complexes to form ore deposits (Jean and Bancroft 1985; Bakken et al. 1989), and nutrient and metal cycling at oxic-anoxic boundaries on lake bottoms and in estuaries (Morse 1994). Pyrite oxidation is also important in technological applications ranging from hydrometallurgy (Buckley and Woods 1987; Karthe et al. 1993) to solar energy conversion (Ennaoui et al. 1986).

Geochemical understanding of pyrite oxidation is largely based on wet-chemical studies of overall rates and stoichiometries. Important oxidants (e.g., O2 and Fe3+) have been identified and widely applicable rate laws developed (e.g., Singer and Stumm 1970; Williamson and Rimstidt 1994). Reaction mechanisms are less well known. Predicting and controlling the environmental aspects of pyrite oxidation, such as the role of Fe2+ at pyrite...
surfaces in the reductive degradation of organic pollutants (e.g., see Kriegman-King and Reinhard 1994; Matheson and Tratnyek 1994), requires a better understanding of pyrite oxidation mechanisms. Detailed studies of surface atomic and electronic structure during oxidation help to constrain proposed mechanisms in a way that wet-chemical approaches cannot.

For most processes controlled by surface reactions, many types of surface sites, each with a different structure and reactivity, may contribute to the overall reaction. Surface structure is a fundamental control on reactivity. Different sites have different structures because they occur on different crystallographic faces, because they are at step, kink, or other defect sites on an otherwise flat surface, and because several types of sites may exist on an ordered surface plane. A source of much controversy in studies of mineral-water reactions is the fact that surface structure and the ratio of “more active” to “less active” sites are usually unknown, are sensitive to sample preparation, and are not uniform from laboratory to laboratory. Knowledge of controls on the reactivity of particular pyrite surface sites would improve our ability to predict and model pyrite oxidation rates.

We used X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and scanning tunneling microscopy (STM) to characterize fresh and oxidized pyrite (001) surfaces to understand oxidation mechanisms better, with particular attention given to the role of Fe$_{2+}$-Fe$_{3+}$ cycling at the pyrite surface (e.g., see Moses and Herman 1991) and to the relative reactivities of different surface sites. We oxidized pyrite in air, but because water adsorbs readily at room pressure, a thin film of water was present. The results show oxidation of Fe$_{2+}$ and growth of an Fe$_{2+}$-(hydro)oxide product in patches on the surface. We show that such patterns of oxidation can be explained if Fe$_{3+}$-containing oxidation products influence oxidation of further structural Fe$_{2+}$.

SUMMARY OF OVERALL OXIDATION STOICHIOMETRIES

Lowson (1982) reviewed electrochemical and wet-chemical pyrite oxidation studies. Biegler and Swift (1979) concluded that in aqueous solution pyrite oxidizes by a combination of the half-reactions

\[
\begin{align*}
\text{FeS}_2 + 8\text{H}_2\text{O} & \rightarrow \text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16\text{H}^+ + 15\text{e}^- \quad (1) \\
\text{FeS}_2 & \rightarrow \text{Fe}^{2+} + 2\text{S} + 3\text{e}^- \quad (2)
\end{align*}
\]

for which the dominant pathway depends on Eh and pH; the sulfate route dominates under ambient conditions. At low pH, pyrite is oxidized by O$_2$ and Fe$_{2+}$ (McKibben and Barnes 1986; Moses et al. 1987; Moses and Herman 1991; Rimstidt and Newcomb 1993; Williamson and Rimstidt 1994) according to the stoichiometries

\[
\begin{align*}
\text{FeS}_2 + \frac{1}{2}\text{O}_2 + \text{H}_2\text{O} & \rightarrow \text{Fe}^{2+} + 2\text{SO}_4^{2-} + 2\text{H}^+ \quad (3) \\
\text{FeS}_2 + 14\text{Fe}^{3+} + 8\text{H}_2\text{O} & \rightarrow 15\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16\text{H}^+. \quad (4)
\end{align*}
\]

In Equations 1 and 4, O in SO$_4^{2-}$ comes from H$_2$O, but in Equation 3 it comes from O$_2$. Taylor et al. (1984a, 1984b) and Reedy et al. (1991) showed by isotopic labeling that Equations 1 and 4 more accurately describe the source of O in SO$_4^{2-}$.

McKibben and Barnes (1986) present a rate law,

\[
R = -kM_{\text{Fe}^{2+}}^{0.58\pm0.1} M_{\text{H}^+}^{0.50\pm0.1}
\]

in which rate R is normalized to pyrite surface area and $k = 10^{-9.74}$ mol/(cm2·min) (30 °C). Rimstidt and Newcomb (1993), using several reactors and data analyses, obtained results in accord with Equation 5 for Fe$_{2+}$ dependence. Williamson and Rimstidt (1994) added to the database, compiled literature data, and produced rate laws as a function of P_{O_2}, pH, and [Fe$_{\text{aq}}^{3+}$] (where brackets indicate concentration).

At near-neutral pH, high rates, and low Fe$_{3+}$ solubility make pyrite oxidation studies difficult. Moses and Herman (1991) concluded that adsorbed Fe may act as a “conduit” between pyrite and dissolved O$_2$, with Fe$_{3+}$ accepting electrons from pyrite and the resulting Fe$_{2+}$ donating electrons to O$_2$. Several researchers have characterized oxidized, air-oxidized, and solution-oxidized pyrite surfaces with the use of surface spectroscopies (e.g., Brion 1980; Buckley and Woods 1987; Karthe et al. 1993; Nesbitt and Muir 1994). Evidence was found for the formation of Fe$_{3+}$ oxyhydroxides of uncertain structure and the formation of basic iron sulfates. If oxidation products are not transported away from the surface (e.g., in air or in near-neutral pH solutions), solids can accumulate. These results, together with those of Moses and Herman (1991), focus attention on the role of oxidation products in electron transfer.

EXPERIMENTAL METHODS

Pyrite

Cubes (1 cm3) were obtained at a mineral show (unknown locality) and fractured in air. For STM, the flattest possible surfaces are needed. We grooved the pyrite cubes with a diamond stylus and split the cubes by tapping on a blade in the groove. This produced rough surfaces, but small regions (1 mm2 or less) were found nearly parallel to (001). We imaged only the flattest surfaces in detail. No attempt was made to control humidity or temperature exactly (laboratory temperature was 21 ± 1.5 °C).

Scanning tunneling microscopy

STM is based on tunneling currents between the sample and an atomically sharp metal tip rastered across the surface. The principles of STM and its use in mineralogy are discussed in Eggleston (1994). We used tungsten tips. Specific imaging conditions are given in the figure captions. All imaging was performed in air. The flatness of surfaces is important in STM. If the sample surface is not flat, tip and sample shapes become convoluted, complicating interpretation. Pyrite does not cleave, so obtaining...
flat surfaces was a problem. We therefore show the flatness of our surfaces in several figures.

STM studies of sulfides (Parkinson 1990; Eggleston and Hochella 1991, 1994) suggest that STM can affect the oxidation process. The reasons for this are probably electrochemical, but physical erosion of the surface by the tip is possible. Here, because oxidation is slow, we avoided this problem by imaging our samples only for brief periods after fracture and after oxidation. We could not image the exact same area before and after oxidation but did image nearly the same area. The STM results agree with the UPS and XPS data, so we are confident that the STM results are not artifactual.

Photoelectron spectroscopy

Spectra were obtained with a VSW HA150 MCD electron energy analyzer. A nonmonochromatic MgKα source was used for XPS. Energy resolution was 0.9 eV. Base pressure was 2×10^{-9} mbar. The energy scale was calibrated using the Au 4f $7/2$ (84.1 eV) and Ag 3d $3/2$ (368.2 eV) lines. Raw spectra were Fourier smoothed. An integral base line was drawn, and peaks were fitted with a Gaussian-Lorentzian peak shape. One sample was fractured in air and quickly inserted into the vacuum chamber. The total time elapsed between fracture and vacuum ($<1 \times 10^{-3}$ mbar) was 3 min. Given the slow oxidation rates for pyrite found in other studies (Buckley and Woods 1987; Karthe et al. 1993), the only consequence of this was some contaminant C and O on the surface. This sample was labeled "fresh." UV photoelectron spectra were collected in the same vacuum chamber with the use of an He UV lamp emitting 21.21 eV light. The energy resolution for UPS was 0.2 eV as judged on the Fermi edge of a gold sample. Photoelectrons were collected along the surface normal.
Pyrite electronic structure

The pyrite structure can be derived from that of NaCl, with S₂ anions in the Cl position. Figure 1 summarizes the electronic structure of pyrite by comparing full non-empirical band-structure calculations (Bullett 1982) to spectroscopic data. Li et al. (1974) showed experimentally that the peak at the top of the valence band is primarily due to Fe 3d states, in agreement with the calculations. The top of the valence band (VB) is composed of occupied Fe 3d t₂g states, with S 3p states deeper in the VB (Bullett 1982). The conduction-band (CB) minimum is dominated by unoccupied Fe 3d e_g states. In STM, electrons tunnel either from the top of the VB to the tip or from the tip to the CB. Therefore, STM imaging at either polarity should give images dominated by Fe 3d states. Unless multiple-tip artifacts interfere with imaging, the centered square unit cell of the Fe²⁺ positions should be seen. There is some S 3p state density at the CB minimum, but our results are consistent with an Fe 3d-dominated CB. S atoms are present but do not have electronic states that the STM can "see" under the conditions used. Oxidation of Fe²⁺ alters the electronic structure by removing state density from the VB and CB edges (Fig. 2) and should be readily evident in STM imaging. Unoxidized Fe²⁺ should be seen as points of high tunneling current, and with oxidation the bright Fe²⁺ sites should “disappear” to form dark sites of low tunneling current.

RESULTS

Photoelectron spectroscopy

Our goal was not to conduct an exhaustive XPS study of pyrite oxidation but to obtain XPS, UPS, and STM results in parallel to be used in mutually constrained interpretations. Survey spectra were taken for fresh, 1 d, and 5 d air-oxidized surfaces (Fig. 3). The fresh surface had significant C and O contaminants. Some trends are apparent. With air exposure, Fe and S peaks decrease, whereas O and C peaks increase. C is a ubiquitous contaminant. O adsors to the surface and acts as an oxidant.

XPS spectra of the Fe 2p spin-orbit-split ½ and ½ peaks are found in Figure 4; only the ½ peak was fitted. The tail-off of intensity toward higher binding energy (BE) in the 709–716 eV range is common for pyrite, including those samples fractured in ultra-high vacuum (UHV) (Van...
resulting from oxidation occur at about 711-712 eV. Such sites could occur as defects resulting from fracture (Mclntyre and Zetaruk 1977; Mills and Sullivan 1983).

Surface Fe2+, after contact with air but before oxidation, is probably partly coordinated from air (note the O peak in the fresh-fracture spectrum by O-containing species (e.g., O, OH-, H2O) adsorbed from air). Such sites might occur as defects resulting from fracture and formation of ferric oxide or hydroxide-like oxidation products (e.g., Fe2+-O environments). Ennaoui et al. (1986), Karthe et al. (1993), and Sasaki (1994) found that pretreatments that cause surface defects (such as grinding or Ar+ bombardment) also increase the relative intensity of the high BE tail.

In comparison with recent XPS studies of pyrite, we used a simplified peak-fitting approach. Rather than include many small peaks that constitute extra fitting parameters (even if they can be physically justified), particularly in the absence of independent information on the relative populations of possible contributing factors, we simply fitted the Fe 2p ½ spectra using a minimum number of peaks. Fe 2p ½ binding energies for various model compounds are listed in Table 1. The binding energies of peaks 1-3 in Figure 5 are given in Table 2. The results of the fitting of Fe 2p ½ peaks, along with other relative intensity data from this study, are given in Table 3. In Table 3, data series that show consistent trends are given in italics.

The fresh-surface spectrum (Fig. 4A) may be fitted using only two peaks: a narrow peak at 707.1 eV and a broad peak (peak 2 in Table 2) at 709.6 eV. After 1 d in air (Fig. 4B) three peaks are needed to fit the spectrum, but peak 2 can be largely replaced by a narrower peak (peak 3) at 711.2 eV characteristic of Fe3+ in oxides or oxyhydroxides (Table 1). After 5 d in air (Fig. 4C) peak 2 is no longer needed. The ratio of peak 3 to the total Fe signal increases from 0 to 0.28 (Table 3), consistent with the consumption of pyrite to form oxidation products (ferric oxide and oxyhydroxide, small amounts of ferric sulfate and basic sulfates such as jarosite). One interpretation of the loss of peak 2 with oxidation is that peak 2 intensity represents several surface defects of unknown structure, possibly including a few Fe3+-O environments from incipient oxidation. Subsequent oxidation consumes some of these defects and forms more Fe3+-O environments as products. Some of the defects, such as Fe2+-O sites, may be important as initiators of the oxidation reaction. Indeed, Fe3+-O environments have a binding energy of ~709.5 eV (Table 1), where peak 2 is centered.

The Fe 2p spectra are consistent with oxidation of Fe2+ and formation of ferric oxide or hydroxide-like oxidation products (e.g., see the Fe1/2 Fe ratio in Table 3). The thickness T of the oxidation product layer can be estimated from

$$T = -\lambda T \ln(I_0/I_F)$$

Table 1. Binding energies for Fe 2p ½ peaks in various model compounds in comparison with fitted peaks in Figure 5

<table>
<thead>
<tr>
<th>Model compound</th>
<th>Binding energy (eV)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeS</td>
<td>707.5</td>
<td>Pratt et al. (1994)</td>
</tr>
<tr>
<td>FeS2</td>
<td>707.5</td>
<td>Jones et al. (1992)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>707.0</td>
<td>Nesbitt and Muir (1994)</td>
</tr>
<tr>
<td>Fe2+</td>
<td>707.4</td>
<td>Brion (1980)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>707.4</td>
<td>Karthe et al. (1993)</td>
</tr>
<tr>
<td>Fe2+</td>
<td>707.5</td>
<td>Ennaoui et al. (1986)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>707.0</td>
<td>Buckly and Woods (1987)</td>
</tr>
<tr>
<td>Fe2+</td>
<td>707.0</td>
<td>Mycroft et al. (1980)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>706.7</td>
<td>Van der Heide et al. (1980)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>709.5</td>
<td>McIntyre and Zetaruk (1977)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>709.5</td>
<td>Mills and Sullivan (1983)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>711.0</td>
<td>McIntyre and Zetaruk (1977)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>711.0</td>
<td>Harvey and Linton (1981)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>711.6</td>
<td>Mills and Sullivan (1983)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>711.0</td>
<td>McIntyre and Zetaruk (1977)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>711.0</td>
<td>Harvey and Linton (1981)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>711.3</td>
<td>Brion (1980)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>713.5</td>
<td>Brion (1980)</td>
</tr>
<tr>
<td>Fe3+</td>
<td>712.2</td>
<td>Brion (1980)</td>
</tr>
</tbody>
</table>

Table 2. Binding energy data (eV) for the fitted Fe 2p ½ peaks in this study (Fig. 5)

<table>
<thead>
<tr>
<th>Peak 1</th>
<th>Peak 2</th>
<th>Peak 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh fracture</td>
<td>707.1</td>
<td>709.6</td>
</tr>
<tr>
<td>1 d in air</td>
<td>707.1</td>
<td>709.0</td>
</tr>
<tr>
<td>5 d in air</td>
<td>707.1</td>
<td>711.9</td>
</tr>
</tbody>
</table>
where λ is the attenuation length (related to the mean-free-path) of photoelectrons in the solid product layer, I is the intensity originating from the material covered by the layer, and I₀ is the intensity that would originate from a solid with no covering layer. For pyrite (see Seah and Dench 1979; Hochella 1988), λ is 10 ± 1 Å. We approximated I₀ by adding the intensities of peaks 1 and 3 (Fig. 4). The product layers are, assuming uniform layers and no concentration gradients, 1.9 and 3.3 Å thick for 1 and 5 d air exposure, respectively. A monolayer is 2.7 Å. One day of air exposure oxidizes less than a monolayer of Fe²⁺ sites.

XPS S 2p peaks have been analyzed extensively in other XPS studies of pyrite; we again chose to use a minimum number of peaks to fit the data. The main S 2p peak (peaks 2 and 3, Fig. 5) is split into 1/2 and 1/2 peaks, which dominate the spectrum. Following Karthe et al. (1993), peak 1 is attributed to an FeS-like environment; intensity in the region of peaks 4 and 5 is commonly attributed to polysulfides. Intensity in the 167.5–170 eV region (peak 6) increases with oxidation and has been attributed to a jarosite-like basic ferric sulfate (Karthe et al. 1993). Nesbitt and Muir (1994) concluded that surface Fe²⁺ oxidizes before disulfide; our results are consistent with this (e.g., compare the S6/2Fe trend to the Fe3/2Fe trend in Table 3).

The XPS-VB and UPS-VB spectra are of primary interest here because they can be directly related to STM results. Unlike core-level peaks, VB peaks reflect orbital mixing (bonding), so interpretation of VB peaks can be problematic. For pyrite, we are fortunate because the peak at the top of the VB is dominated by Fe 3d states (Fig. 1), and because C- and O-containing contaminants and oxidation precursors or products have little or no state density in this energy region (Fig. 2).

The XPS-VB spectrum of the fresh surface is in agreement with previous studies, both spectroscopic (Fig. 6A) and computational (Fig. 1). The peak at 0.8 eV is due to Fe 3d states of Fe²⁺ in pyrite (Fig. 2). The decrease in intensity of this peak (Fig. 6B), which we call the XPS-VB peak, is partly due to signal attenuation by overlying contaminant layers or oxidation products. There is little systematic change in the ratio of this peak to the total Fe 2p 1/2 or S 2p intensities (Table 3). The ratio of XPS-VB to total Fe 2p increases slightly, which is counterintuitive if the XPS-VB peak represents Fe²⁺ that is consumed by oxidation. Because the kinetic energy (KE) of VB photoelectrons ejected by 1253 eV MgKa radiation is in the

<table>
<thead>
<tr>
<th>Signal ratio</th>
<th>Fresh fracture</th>
<th>1 d in air</th>
<th>5 d in air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ S/2 Fe</td>
<td>0.48</td>
<td>0.64</td>
<td>0.60</td>
</tr>
<tr>
<td>FeS/2 Fe</td>
<td>0.81</td>
<td>0.77</td>
<td>0.72</td>
</tr>
<tr>
<td>FeS/2 Fe</td>
<td>0.19</td>
<td>0.07</td>
<td>—</td>
</tr>
<tr>
<td>FeS/2 Fe</td>
<td>—</td>
<td>0.16</td>
<td>0.28</td>
</tr>
<tr>
<td>S/2 Fe</td>
<td>—</td>
<td>0.11</td>
<td>0.05</td>
</tr>
<tr>
<td>XPS-VB/Σ S</td>
<td>0.93</td>
<td>0.81</td>
<td>0.88</td>
</tr>
<tr>
<td>XPS-VB/Σ Fe</td>
<td>0.43</td>
<td>0.52</td>
<td>0.53</td>
</tr>
<tr>
<td>UPS-VB/Σ S</td>
<td>0.93</td>
<td>0.41</td>
<td>0.31</td>
</tr>
<tr>
<td>UPS-VB/Σ Fe</td>
<td>0.43</td>
<td>0.26</td>
<td>0.18</td>
</tr>
<tr>
<td>UPS-VB/Σ Fe</td>
<td>0.42</td>
<td>0.31</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Note: Ratios listed are peak-intensity ratios only, not stoichiometric ratios. Σ S = total S signal (summed peaks); Σ Fe = total Fe signal (summed peaks); FeS = Fe peak 1 (and so forth); XPS-VB = lowest binding energy peak in the XPS valence-band spectra; UPS-VB = lowest binding energy peak in the UPS valence-band spectra. Data that indicate consistent trends are shown in italics.

Figure 5. XPS S 2p spectra (eight scans). Fitted peaks are numbered in A and B. Bottom solid line is background, top solid line is sum of background and fitted peaks. (A) Fresh surface, (B) 1 d in air, (C) 5 d in air.
In the 1230–1250 eV range, it is possible that their escape depth is larger than that of Fe 2p photoelectrons (KE ≈ 540 eV), making the XPS-VB spectra less surface sensitive than the core-level spectra; contaminants and oxidation products would attenuate the Fe 2p signal more than the VB signal, resulting in artificial increases in the XPS-VB/Fe 2p ratio. Another possibility is that, because X-ray photoionization probabilities for VB states are small, small changes in photoionization probability with changes in local bonding environments may affect peak ratios.

The UPS-VB spectra are more useful (Fig. 7). The relative intensities are different from those of the XPS-VB spectra because of different photoionization probabilities for UV light. The 0.8 eV peak represents Fe 3d t_2g states of Fe^{2+} (see Fig. 2), and we call it the UPS-VB peak. The absolute and relative intensities of the UPS-VB peak decrease with air exposure, and the attenuation is directly related to loss of Fe^{2+} by oxidation and the appearance of Fe^{3+} in core-level spectra (Table 3). The UPS-VB peak intensity varies inversely with the Fe 2p intensity attributed to Fe^{3+}-oxide or oxyhydroxide (Fig. 8), as expected when consumption of one material is proportional to the growth of another material. The UPS-VB peak corresponds to electrons that the STM sees, and the loss of these states from the surface should be visible in STM images.

Scanning tunneling microscopy

Preparation of flat surfaces for STM was difficult. Microtopography images (100–600 nm on a side) were used to assess local flatness and to select areas for high-resolution imaging. However, it was necessary to obtain images quickly. The reason for haste is apparent in Figure 9. The areas that had been previously imaged appear rough when imaged again. The roughness was probably caused by STM-accelerated oxidation, although it could also have been caused by physical scouring of the surface by the STM tip (see Eggleston 1994).

Figure 10 shows the flattest surface we produced (the two images were obtained within minutes of fracture). There is clear evidence of a double (possibly triple) tip, which artifactually complicates microtopography near step edges. Surfaces rougher than those in Figures 9 and 10
were impossible to interpret reliably because of the many multiple-tip artifacts that rough surfaces cause.

Fresh pyrite (001) surfaces, between steps, appear almost atomically flat (Fig. 11). In Figure 11A, two steps cross the image nearly vertically; the step on the left is a single molecular layer high, and the step on the right is two layers high. There is evidence of a double tip. The step edges exhibit a sawtooth pattern related to lineations at 45° to the step edges (i.e., in ⟨110⟩ directions). The root-mean-square (rms) roughness of the terrace alone (excluding the steps) is 0.018 nm, and the maximum roughness is about 0.06 nm. Much of this roughness was caused by a vibration artifact; the nonartifactual roughness of the surface is less than the above values suggest (Figs. 11B and 11C). The ⟨110⟩ lineations are less than a single atomic layer high and therefore cannot be steps but must represent local defects that affect electronic structure or work function.

The ⟨110⟩ lineations are probably related to twinning. Lowson (1982) cited “indistinct” cleavage along ⟨100⟩ and ⟨111⟩ twinning planes. A ⟨111⟩ plane intersecting the surface in Figure 11A would give lines as observed. Martello et al. (1994) examined the relationship between pyrite oxidation reactivity and stacking fault density, but the lineations we observed are not the same as their ⟨010⟩ stacking faults.

Figure 12A is an STM image of a slightly different area of the surface shown in Figure 11A, after 1 d of air exposure. The near-vertical trend of the step edges is still evident, but the terraces have greater topographic roughness, which is distributed over the surface differently than in Figure 11A. The rms and maximum roughnesses are 0.06 and 0.28 nm, respectively (Figs. 12B and 12C). Increased roughness is unequivocally due to a surface reaction because possible artifacts of STM were avoided. The patterns of roughness on the oxidized surfaces are instructive; in Figure 13, edges between dark and light areas parallel to ⟨110⟩ and ⟨100⟩ directions are marked.

Because of the many ⟨110⟩ lineation defects (Fig. 11A), it was difficult to find large areas for uninterrupted atomic-scale imaging of the terrace. Figures 14 and 15 are examples of high-resolution imaging of an unoxidized surface. In Figure 15B, a ⟨110⟩ lineation is seen as an unusually bright row of atoms next to an unusually dark row. This could have been caused by relaxation of atomic positions or by altered electronic structure. If the ⟨110⟩
lineations represent twin planes intersecting the surface, the S_p pairs may be oriented differently on opposite sides of the defect, leading to a local work-function difference that would be expressed in STM as an apparent topography difference (and that would imply an electric dipole across the defect).

One of the possible contributions to tail-off in the Fe 2p ½ XPS peaks (Fig. 4) is defects. Figure 11A shows that surface defects exist, with a frequency of about 0.15 defects/nm perpendicular to their orientation. Fe atoms have a frequency of 3.04 atoms/nm in this direction, giving a defect density of about 0.05 defects per surface Fe atom. Assuming that a defect affects only one atom where it crosses a line of atoms, this gives 5% of surface sites as defects, which is near the XPS detection limit. If we assume two atoms are affected where a defect crosses a line of atoms, and add defect sites at steps, 10–15% of surface sites would be affected by defects, which is in rough agreement with the XPS results for peak 2 in the Fe 2p ½ spectra (Table 3). If these defects contribute to the XPS spectra, the XPS results imply that defects as seen in Figure 15B should not be seen on oxidized surfaces. Indeed, as the results below indicate, the (110) lineations are not clearly evident on the oxidized surfaces.

Whenever atomic resolution was reliably obtained (Figs. 14 and 15), a centered square unit cell was observed, as
expected from the Fe\(^{2+}\) substructure; it was also observed on pyrite imaged in oil (Eggleston and Hochella 1992) and is consistent with the top of the VB and the bottom of the CB, both being dominated by Fe 3d states (Bullett 1982).

The images in Figures 16 and 17 are from the same surface as shown in Figures 11A and 12, but after 26 h of exposure to air. Figure 16A is an image of a terrace between two parallel steps. Atomic-scale periodicity is visible, albeit noisy. There is an obvious double-tip artifact (repeated shapes are marked by pairs of white arrows). Despite these problems, some areas of the terrace clearly show the unoxidized structure of the pyrite surface, and other areas appear dark. These are the same dark areas seen in Figures 11A and 12. The overall elevation difference between the left and right edges is due to steps (oriented vertically) on the original fracture surface, whereas the dark patches within the terraces stem from postfracture oxidation. The surface is not complete-
ly oxidized, consistent with the XPS result. The oxidized surface has relatively large oxidized and unoxidized areas rather than randomly oxidized individual sites. The borders between oxidized and unoxidized areas do not follow one crystallographic direction for long distances, but they often occur in short segments in (110) directions, with a smaller number in (100) directions (see solid arrows in Fig. 16A).

Figure 16B shows the area marked in Figure 16A, 3 min later. The pattern of unoxidized areas is almost identical to the earlier image, confirming that little alteration took place during STM imaging for a few minutes. Figure 16B, though still affected by acoustic noise and double-tip artifacts, shows the expected Fe$^{2+}$ substructure (unit cell marked). Solid arrows point to patch borders oriented in (110) or (100) directions.

Figure 17 shows two tiled images of another terrace on the same surface as in Figure 16. Again, borders between light and dark areas occur in short segments in the (110) and (100) directions (solid arrows). As in Figure 16A, the area on the right edge of the imaged areas is completely oxidized, and fingers of oxidation extend leftward...
Figure 17. Two 20 × 20 nm images tiled together. Conditions: setpoint current = 1.0 nA, bias = 100.0 mV. Solid arrows show the end points of a few examples of crystallographically oriented borders between oxidized and unoxidized areas.

into the terrace, suggesting overall oxidation progress from right to left. The unoxidized portions of the terrace exhibit a few single and double dark (presumably oxidized) sites. In neither Figure 16 nor 17 are the (110) linear defects evident.

We imaged several as-received pyrite surfaces (Fig. 18), i.e., the natural growth surface exposed to air for an unknown number of years. Because these surfaces were "dirty," image noise was severe. We assume that oxidation over many years leads to electronic “topography” that reflects oxidation rather than growth mechanisms. This assumption is probably a good one at the 30-40 nm scale but may not be safe for much larger (>1 mm) areas and their topography. In Figure 18, the sample was oriented with [00] and [010] parallel to the edges of the image. Borders between light and dark areas are often parallel to (110) directions (a few are marked with arrows). In Figure 18A, two lines are drawn parallel to borders that, though not always parallel to (110) at the microscale, bear an overall trend in this direction. The width of this dark region is similar to the separation of (110) lineations in Figure 12A, suggesting that oxidation reactivity differs from area to area in a way related to defects (see also Martello et al. 1994).

Electron tunneling spectroscopy (ETS) has been used to study the electronic structure of individual surface sites (e.g., Avouris 1990; Crommie et al. 1993) and to distinguish between oxidized and unoxidized regions of galena surfaces (Eggleston and Hochella 1991, 1993, 1994). During continuous spectrum acquisition, with the tip drifting over the surface of the sample shown in Figure 18, two distinctly different types of spectrum were obtained (Fig. 19), one with a higher apparent density of states (DOS) at the top of the VB (type A) than the other (type B). Possibly, the tip encountered relatively fresh surface for spectra of type A and more oxidized surface for spectra of type B. The DOS between -100 and -300 mV (Fig. 19A) would stem from surface states of Fe$^{2+}$. Using ETS,
Fan and Bard (1991) showed a fresh-surface band gap
comparable to the bulk band gap of pyrite (0.9 eV) and
an apparent defect state within the gap. In Figure 19B,
the gap appears to be only 0.2 eV, suggesting that the
band gap is indeed filled in by surface states. This is con-
sistent with photoelectrochemical studies (e.g., Jaeger-
mann and Tributsch 1988; Fan and Bard 1991; Mishra

DISCUSSION

Site specificity and autocatalysis

Because Fe³⁺ is an oxidant for pyrite as well as a re-
action product, it is natural to inquire if pyrite oxidation
is, at least initially, autocatalytic. The idea is that the
greater the number of oxidized neighbors (acceptors)
around an unoxidized surface site, the greater the prob-
ability is that the unoxidized site will oxidize in a given
time interval. This notion can be tested using a simple
Monte Carlo (MC) simulation.

We first define an Nᵢ site as an Fe²⁺ site with i Fe³⁺
nearest neighbors (Fig. 20). We have a reaction of the
form

\[\text{Nᵢ} + \text{oxidant} \rightarrow \text{oxidized surface site} + \text{reductant} \]

for which a rate law, first order in each reactant, is

\[\text{rate}_{\text{Nᵢ}} = k_{\text{ox}}[\text{Nᵢ}][\text{oxidant}] \]

where \(k_{\text{ox}} \) is a rate constant for electron transfer to the
oxidant and brackets indicate concentration. If the ox-
didant is nearest-neighbor Fe²⁺, then Equation 8 is simply

\[\text{rate}_{\text{Nᵢ}} = k_{\text{ox}}[\text{Nᵢ}](i) \]

Site specificity of rate is contained in i; obviously, this
only applies to Nᵢ sites with i > 0. For MC calculations,
the rate constant is replaced by a probability, i.e.,

\[\text{rate}_{\text{MC,Nᵢ}} = P_{\text{ox}}[\text{Nᵢ}](i) = (P_{\text{ox}}(i))[\text{Nᵢ}] \]

Given \(P_{\text{Nᵢ}} \), \(P_{\text{Nᵢ}} = 2P_{\text{Nᵢ}}, \) \(P_{\text{Nᵢ}} = 3P_{\text{Nᵢ}}, \) and so forth; i.e., the
rate of oxidation of particular sites becomes proportional
to the number of oxidized nearest neighbors.

The MC simulations used a 100 × 100 square-site ar-
ray (Figs. 20B and 20C show the relation between a square
array and the pyrite unit cell). In some experiments, one-
half of the area was “pre-oxidized” to create a situation
similar to a [100] step on the pyrite surface. A site-ac-
counting routine tracked the number of Nᵢ sites during
oxidation progress. Oxidation probabilities for given Nᵢ
sites (e.g., \(P_{\text{Nᵢ}}, P_{\text{Nᵢ}}, P_{\text{Nᵢ}}, \) etc.) were input parameters.

Patterns from the various MC experiments (Fig. 21), each
for different input parameters, may be compared to
Figures 16A and 17. Figures 21A and 21B are the closest
match. \(P_{\text{Nᵢ}} \) through \(P_{\text{Nᵢ}} \) are proportional to i (Eq. 10) in
both cases, which differ only in \(P_{\text{Nᵢ}} \). Higher \(P_{\text{Nᵢ}} \) increases
the number of oxidation nuclei on the fresh surface in
Figure 21B relative to Figure 21A and increases the num-
ber of more reactive (\(P_{\text{Nᵢ}}, i > 0 \)) sites initially produced,
so that the overall rate is greater (Fig. 21B took 65% of
the iterations needed for Fig. 21A). In both cases, several
edge segments in (110) directions are evident. Figure 21C resulted from making all $P_{N'} > P_{N^0}$ identical; there are few border segments of any length and too many N^4 sites relative to the STM images. Figure 21D shows the effect of making $P_{N'}$ for $P_{N'} > P_{N^0}$ a nonlinear function of i (see caption), which does not match the STM results very well because oxidized patch nuclei grow quickly to a size larger than observed in STM for a similar amount of total oxidation. Because our STM results show only the oxidation of Fe^{2+}, the MC simulations consider only Fe^{2+} sites (S_2 oxidation is ignored). S_2 oxidation is, however, part of a complete chemical model.

Comparison of Monte Carlo results with XPS and STM results

In a square lattice, any model in which reaction probability depends on nearest-neighbor interaction leads to a patchy surface, with patch edges parallel to the axes of the lattice (e.g., see Blum and Lasaga 1987; Wehrli 1989; Lasaga 1990). The STM and MC results for pyrite (001) are thus not surprising because interaction between nearest-neighbor Fe sites occurs in (110) directions (see Fig. 20C). A quantitative comparison between the STM and MC results can be made by plotting the ratio of the number of N^1 sites to the number of N^2 sites (abbreviated N^1/N^2) against the fraction of surface sites oxidized. This ratio is a measure of the relative enrichment of the surface in sites along (110)-oriented borders (N^1) vs. those along (100)-oriented borders (N^2, see Fig. 20A). We used the XPS Fe 2p data to quantify the fraction of oxidized sites; the N^1/N^2 ratio was determined by counting individual sites in the STM images. The XPS results have an uncertainty of ±10%. The STM results are based on counting of sites in the clearest images, but some subjectivity is inevitable in classifying sites. Results are plotted in Figure 22, along with MC results for various starting conditions. In two cases, the results are significantly different from the XPS and STM results and from the other MC results; these correspond to all $P_{N'} > P_{N^0}$ being identical and to a large P_{N^0}/P_{N^1} ratio.

Because of the uncertainties inherent in XPS and STM, and because the MC surface pattern is not extremely sensitive to the relative reaction probabilities, our conclusions are approximate. With this caveat, however, we conclude that a P_{N^0}/P_{N^1} ratio of between 10^{-3} and 10^{-2}, and $P_{N'}$ (for $P_{N'} > P_{N^0}$) proportional to i, approximates the STM and XPS results well. This conclusion is consistent with autocatalytic initial oxidation.

Electronic structure and surface states

During initial pyrite oxidation, patches of a ferric oxide or oxyhydroxide product form. These small and extremely thin patches constitute surface states. We model these
Figure 23. Band edges of pyrite (Wei and Osseo-Asare 1995) and hematite (Hoffmann 1990), and the \(\text{O}_2 \) reduction potential (Sawyer 1991), vs. SHE at pH = 7.

Figure 24. (A) Band structure of the bulk and surface of pyrite, given the formation of an oxide (hematite-like) surface state. The unfilled and bold-cross-hatched "peaks" represent the CB and VB of a hematite-like surface state, respectively. (B) Band bending resulting from equilibration between the pyrite bulk and surface, including the hematite-like surface states (see text). Electron transfer to \(\text{O}_2 \) is shown, along with subsequent breakdown of \(\text{O}_2^- \) to form \(\text{H}_2\text{O} \) eventually. The Fermi level, \(E_F \), is specific to each phase.

Electron-transfer rates

We are now prepared to estimate rate constants for elementary ET steps in pyrite oxidation that are consistent with the STM, XPS, and MC results. Our questions are as follows: (1) Can we safely ignore ET to second-nearest-neighbor \(\text{Fe}^{3+} \), as the Monte Carlo model has assumed? (2) What are the relative rates of ET to \(\text{O}_2 \) from the pyrite VB and from the hematite CB? (3) Is it appropriate to model electron exchange between the pyrite VB and hematite CB as an equilibrium? (4) What ET steps are rate controlling?

We can assess relative and absolute ET rate constants using Marcus theory (Appendix). The rate constant for electron transfer \(k_{ET} \) is written

\[
k_{ET} = \nu_s \kappa_{el} \kappa_n
\]

(11)
where \(v_t \) is an attempt frequency, and \(k_d \) and \(k_a \) are transfer coefficients for interaction of degenerate donor and acceptor electronic states and for changes in atomic positions needed to bring electronic states into degeneracy, respectively.

Question 1. For site-to-site ET as a function of distance between sites, \(v_t \) and \(k_d \) do not change, and we need only consider \(k_o \) (e.g., Graetzel 1989):

\[
k_o = k_o,0 \exp[- \beta (r - r_o)]
\]

where \(r \) is the distance of interest, and \(k_o,0 \) is \(k_o \) at reference distance \(r_o \). For isolated atomic Fe 3d orbitals, \(\beta = 1.64 \times 10^{11} \text{ m}^{-1} \). The difference in distance \((r - r_o) \) for nearest- and second-nearest-neighbor Fe at the pyrite surface is 1.59 Å, giving \(k_o/k_o,0 = 4.7 \times 10^{-12} \); ET to second-nearest neighbors is thus negligible. However, \(\beta \) in crystals may be smaller than for isolated atoms. Decreasing \(\beta \) by an order of magnitude (an exaggeration), we have \(k_o/k_o,0 = 7.4 \times 10^{-2} \), so ET to second-nearest-neighbor Fe3+ remains relatively unimportant.

Question 2. For \(N^0 \) sites oxidizing in air (or, more precisely, in the thin water film formed on solid surfaces in contact with humid air), we invoke the following reaction between surface sites and \(\text{O}_2 \) molecules:

\[
\text{Fe}_{\text{edge},S}^{2+} + \text{O}_2 \rightarrow \text{Fe}_{\text{edge},S}^{3+} + \text{O}_2 \quad (k_i)
\]

The S subscript identifies sulfur as the primary coordinating anion. Here and below, the \(k_i \) is the \(i \)th rate constant. For \(N^i (i > 0) \) sites, we postulate a two-step alternative pathway (pathway 1 in Fig. 25):

\[
\begin{align*}
\text{Fe}_{\text{edge},S}^{2+} + \text{Fe}_{\text{edge},O}^{3+} & = \text{Fe}_{\text{edge},S}^{3+} + \text{Fe}_{\text{edge},O}^{2+} \quad (k_2, k_{-2}) \\
\text{Fe}_{\text{edge},O}^{2+} + \text{O}_2 & \rightarrow \text{Fe}_{\text{edge},O}^{3+} + \text{O}_2 \quad (k_4)
\end{align*}
\]

in which the subscript “edge” identifies Fe at an edge between oxidized and unoxidized areas, and the S or O subscript identifies the primary (though not necessarily exclusive) coordinating anion. The hypothesized Fe coordination environments are consistent with possible contributors to the tail-off in the Fe 2p XPS spectra. Equation 14 describes ET from the pyrite VB to the oxide CB, and Equation 15 describes ET from the oxide CB to \(\text{O}_2 \). Below, we consider the relative rates for the reactions in Equations 13 and 15.

Rate constants for heterogeneous ET can be estimated from the following expression, which is based on Marcus theory (e.g., see Sutin 1983) and Equation 11:

\[
k_{\text{ET},\text{net}} = \nu_d k_o \exp \left[- \frac{(\lambda + \Delta G^{t'})^2}{4kT\lambda} \right]
\]

in which \(\Delta G^{t'} \) is the overall thermodynamic driving force \((\Delta G^{t'} = E_{e6} - E^{t'} \), where \(E_{e6} \) is the energy level of the donor state at the surface, and \(E^{t'} \) is the reduction potential of the acceptor molecule). The reorganization energy \(\lambda \) is defined in the Appendix. For ET to \(\text{O}_2 \) from an oxide surface, \(\lambda \) is taken to be \(\sim 1 \text{ eV} \) (\(\lambda \) for the solid surface is small relative to that of \(\text{O}_2 \); Goodenough 1972; Kesselmann et al. 1994).

We are comparing ET from Fe2+ to \(\text{O}_2 \) in both cases, so \(\Delta G^{t'} \) is probably the only variable to change significantly. The \(\Delta G^{t'} \) value for ET from the VB of pyrite to \(\text{O}_2 \) is estimated to be 0.88 eV, and for ET from the CB of hematite to \(\text{O}_2 \) it is estimated to be 0.33 eV. Therefore,

\[
\frac{k_{\text{ET},\text{pyr},\text{VB}}}{k_{\text{ET},\text{hem},\text{CB}}} = \exp \left[- \frac{(\lambda + \Delta G^{t'}_{\text{pyr},\text{VB}})^2}{4kT\lambda} \right] / \exp \left[- \frac{(\lambda + \Delta G^{t'}_{\text{hem},\text{CB}})^2}{4kT\lambda} \right] = 3.4 \times 10^{-8}.
\]

This ratio is approximate because the band-edge positions that determine \(\Delta G^{t'} \) (Fig. 23) are not precisely known, but it is probably accurate within an order of magnitude.

A related way to estimate the rates of Equations 13 and 15 is found in a linear free-energy relation (LFER) by Wehrli (1990) for oxidation of Fe2+ and other metal cations by \(\text{O}_2 \). This LFER has been used to estimate oxidation rates of Fe2+ on surfaces (Wehrli 1990; Stumm and Sulzberger 1992). The LFER is simply

\[
\log k_i = \log k_0 + \Delta E_\gamma/0.059
\]

so that \(\Delta \log k = [(\Delta E\gamma - \Delta E_\delta)/0.059. \) For \(\Delta E_\gamma - \Delta E_\delta \), we use the difference between the pyrite VB and the hematite CB (0.58 eV), giving \(\Delta \log k = 9.83. \) Overall, these approaches both suggest that oxidation by \(\text{O}_2 \) of the pyrite VB should be roughly nine orders of magnitude slower than that of CB electrons from hematite.

Question 3. Equation 14 describes intrasurface ET, similar to n-type conduction by electron hopping. For hematite, the activation energy for site hopping by electrons at 25 °C is \(<0.1 \text{ eV} \) (Goodenough 1972). The activation energy of n-type conduction is smaller in pyrite than in hematite (Shuey 1975). Therefore, for ET between neighboring surface sites, hematite-like \(\lambda \) domi-
Table 4. Approximate rate constants for electron transfer between various species involved in pyrite oxidation (from Marcus cross relation, Eq. A-2)

<table>
<thead>
<tr>
<th>ET process</th>
<th>k_1 (s^{-1})</th>
<th>k_2 (s^{-1})</th>
<th>log K_{12}</th>
<th>log f</th>
<th>k_{Er} (s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>VB(1) to O$_2$(2)</td>
<td>1.08×10^{11}</td>
<td>1.18×10^6</td>
<td>-14.88</td>
<td>-10.1</td>
<td>1.2×10^{-3}</td>
</tr>
<tr>
<td>CB(1) to O$_2$(2)</td>
<td>1.08×10^{11}</td>
<td>1.18×10^6</td>
<td>-14.88</td>
<td>-10.1</td>
<td>1.2×10^{-3}</td>
</tr>
<tr>
<td>VB(1) to CB(2)</td>
<td>1.08×10^{11}</td>
<td>1.18×10^6</td>
<td>-9.81</td>
<td>-9.49</td>
<td>24.2</td>
</tr>
<tr>
<td>CB(1) to VB(2)</td>
<td>1.08×10^{11}</td>
<td>1.18×10^6</td>
<td>9.81</td>
<td>-9.49</td>
<td>1.6×10^{11}</td>
</tr>
</tbody>
</table>

By Marcus theory, $\lambda = 4\Delta G^* < 0.4$ eV; we assume 0.3 eV. Goodenough (1972) concluded that $v_0 = 2 \times 10^{13}$ s$^{-1}$ (which includes the effect of k_w) is a good approximation for hematite. We used this value in all of our calculations. Self-exchange rate constants were calculated from Equation A-1 in the Appendix and listed in Table 4. Table 4 does not account for collision frequency or electrostatic effects for surface-to-O$_2$ ET. These approximations are intended to compare only roughly the resulting rate constants with those for ET to O$_2$. The most important results are (1) the rate for the CB-to-VB transition is far faster than that for ET to O$_2$, so that treating Equation 14 as an equilibrium appears reasonable; and (2) similar to the calculation under Question 2 above, the rate for ET to O$_2$ is about nine orders of magnitude faster from the oxide CB than from the pyrite VB.

To bring theory in line with observation, we must add a reaction that decreases the rate of back reaction in Equation 14. One possibility is that the product species Fe$_{\text{edge},s}^{3+}$ is a precursor to S$_2$ oxidation by Fe$^{3+}$ and thus disallow back reaction. Another possibility is that electrons in the Fe$_{\text{edge},s}^{3+}$ sites hop to Fe$^{3+}$ sites deeper in the oxide patch before they hop back to the original site (similar to k_1 for oxide self-exchange in Table 4), in effect “trapping” the electron in the oxide CB. Both possibilities are combined in Equation 19, with rate constant k_3:

$$\text{Fe}_{\text{edge},s}^{3+} + \text{trap} \rightarrow \text{Fe}_{\text{edge},s}^{3+}\text{trap} \quad (k_3).$$

We simply postulate a reaction that traps electrons in the oxide CB. S_2 oxidation and electron hopping clearly occur in the pyrite oxidation process and thus constitute reasonable reactions to which we can appeal.

Considering kinetic equations and applying the steady-state approximation for intermediate species, we find that the effective (pseudo first-order) rate constant for O$_2$ reduction is k_1[Fe$^{3+}$] in Equation 13 (pathway 1) and

$$k_1[k_{\text{Fe}_{\text{edge},s}^{3+}}[\text{trap}] / (k_3[\text{Fe}_{\text{edge},s}^{3+}] + k_3[\text{trap}])[\text{Fe}_{\text{edge},s}^{3+}]] (20)$$

in Equations 14, 15, and 19 (pathway 2). This can be greatly simplified by realizing that all the species in Equation 20, except possibly [trap], are surface species. For example, [Fe$_{\text{edge},s}^{3+}$] is simply i in Equation 9. By the same token, [Fe$_{\text{edge},s}^{3+}$] = 1, because in any VB-to-CB hopping event, only one Fe$_{\text{edge},s}^{3+}$ site is created and available for back reaction. Thus, Equation 20 can be simplified to

$$(i)k_2M[\text{Fe}_{\text{edge},s}^{3+}]$$

where $M = k_3[\text{trap}] / (k_2 + k_3[\text{trap}])$. The substitutions made to obtain Equation 21 follow an equation in Goodenough (1972) describing n-type conduction in hematite by activated electron hopping from metal center to metal center:

$$\tau_{\text{hop}}^{-1} = n^+\tau_0^{-1} \exp[-\Delta G_{\text{def}}/kT]$$

where τ_{hop} is the time between hopping events, τ_0 is a time between attempts, $\Delta G_{\text{def}} = \lambda/4$ (Appendix), and n^+ is the number of possible destinations for the hop ($n^+ = i$ in the number of possible destinations for the hop ($n^+ = i$ in the number of possible destinations for the hop). Equation 22 resembles equation A-1 (see Table 4) and the number of destinations (acceptor sites) with which the donor can react, i. The rate constant $k_{\text{VB-cb}}$ can be equated with k_1 in Equation 14. Equation 24 resembles the rate constant in Equation 9, used in the MC simulation of the STM and XPS results.

What value of k_1 is needed to ensure that pathway 2 (Fig. 25) is two to three orders of magnitude faster than pathway 1, as suggested by the MC results? Using estimates of k_2 (VB to CB) and k_{CB} (CB to VB) from Table 4, we find

$$k_1/[k_3[\text{trap}] / (k_3[\text{trap}] = 3 \times 10^{-3}$$

$$k_3[\text{trap}] = 1.84 \times 10^{10}.\quad (25)$$

The trapping reaction(s) must be fast but not unreasonably fast. For example, electron hopping to sites deeper
in the oxide patch, equivalent to self-exchange within the oxide, is described by a rate constant of 10^{11} s$^{-1}$ (k_{11}, Table 4). The value of [trap] in this case would again be an integer directly analogous to n^+ in Equation 22.

Question 4. By assuming a fast trapping reaction we avoid the VB-CB equilibrium problem so that ET from the pyrite VB at the surface to neighboring Fe$^{3+}$ sites (oxide CB) is rate controlling. The proportionality between the oxidation probability of N$^+$ sites and i (Eq. 9) is preserved in Equations 23 and 24. Oxidants other than O$_2$, such as F$_{2+}$ or a bacterial biomolecule, can be understood within the same framework if ΔG° and λ can be quantified (Eq. 16).

Because S 3p states lie deeper in the pyrite VB than Fe 3d states, ET to O$_2$ from S$_2$ is much slower than from Fe$^{3+}$. S$_2$ oxidation may play a role in the trapping reaction by donating electrons to nearest-neighbor Fe$^{3+}$ as discussed above, but it might also be coupled to Fe$^{3+}$ oxidation by reacting with strong transient oxidizing agents that result from O$_2$ reduction, such as peroxy radicals (HO$_2$), hydrogen peroxide (H$_2$O$_2$), and hydroxyl radicals (OH$^-$). Pyrite oxidation is pseudo first order in H$_2$O$_2$ concentration (McKibben and Barnes 1986), for example. Some decoupling of Fe$^{2+}$ and S$_2$ oxidation rates allows for the differing amounts of oxide vs. sulfate and sulfite vs. polysulfide, oxidation products observed under different conditions (e.g., see Lowson 1982).

A generalized (but not stoichiometrically balanced in detail) reaction sequence consistent with our observations is given in Figure 26 (possible dissolution steps are not included). This model is generally consistent with other models for pyrite oxidation. The sluggishness of Fe$^{3+}$ oxidation by O$_2$ and Fe$^{3+}$-Fe$^{2+}$ redox cycling are prominent in the Singer and Stumm (1970) and Moses and Herman (1991) models. Branching of the sulfate pathway away from the polysulfide pathway, such that polysulfide is not an intermediate in sulfate formation, is consistent with the study of Biegler and Swift (1979). By assuming that all heterogeneous oxidation reactions are outer-sphere, our model is consistent with the work of Taylor et al. (1984a, 1984b) and Reddy et al. (1991), in which O in SO$_4^{2-}$ is derived mostly from H$_2$O rather than from O$_2$ (oxidation of pyrite in air involves H$_2$O, which adsorbs to the surface from air).

We considered only intrasurface electron transfer at reaction borders moving laterally across the surface and did not consider the reaction border parallel to the surface that underlies the oxidized patches. This is because, for the second layer, although electron exchange can be just as rapid as elsewhere, the O$_2$ or other molecular species that may be needed for the trapping reaction cannot as easily reach the Fe$^{3+}_{\text{edge}}$ sites. The overall oxidation reaction, even after only a monolayer of oxidation, becomes rate limited by atom transport through the product layer rather than by electron transport. Figure 19 shows, however, that the importance of particular crystallographic directions, and thus of particular surface sites, appears to be similar in both long-term and initial oxidation.

Implications

We used XPS, UPS, and STM to constrain a model of electron-transfer kinetics during initial oxidation of pyrite surfaces. XPS and UPS showed the loss of fresh surface states (e.g., Fe$^{2+}$) and gain of product states (e.g., Fe$^{3+}$) during oxidation in air. STM showed the surface distribution of Fe$^{3+}$ states; oxidized areas occur in patches having shapes that were reproduced using a Monte Carlo model in which the probability of Fe$^{2+}$ oxidation is proportional to the number of oxidized (Fe$^{3+}$) nearest neighbors. Surface Fe$^{3+}$-Fe$^{2+}$ redox cycling is clearly important in pyrite oxidation (e.g., Moses and Herman 1991); here, we showed in some detail how such cycling occurs at edges between oxidized and unoxidized areas and described the kinetics using Marcus theory. We used ΔG° values from the band edges of surface states, and reorganization energies from the activation energy of conduction in iron oxide semiconductors. Although this approach is new within geochemistry, similar models have been used to describe electron transfer at oxide surfaces in the photoelectrochemical field (e.g., see Graetz 1989; Kesselmann et al. 1994).

Although our specific goal has been a new description of interfacial electron transfer during pyrite oxidation, the approach has general applicability in geochemical studies of redox processes involving solid surfaces. First, redox potentials of species at mineral surfaces can be understood from the band structures of the bulk solid and of surface states. Second, the redox potential of a given chemical species (e.g., Fe$^{2+}$) may vary considerably depending on its specific surface-coordination environment, much as hydrolysis in aqueous solution changes redox potentials of metal ions. Third, Marcus theory can be applied to the kinetics of electron transfer across mineral-water and mineral-air interfaces by using the electronic structure (band structure and conductivity characteristics) of the solid and its surface states (or of carefully chosen analogs).

XPS-UPS and STM results provide complementary in-
formation and help to constrain proposed oxidation mechanisms in a way not previously possible. STM helps to extend the usefulness of previously available spectroscopic techniques and better defines the surfaces and surface sites that act as key reagents in natural systems.

ACKNOWLEDGMENTS

This research was made possible by funding from the Swiss National Science Foundation and the CNRS, France. C.M.E. thanks Barbara Sulzberger, Stephan Hug, and Kevin Klauss for their support and dedicates this work to Noye M. Johnson. The manuscript benefited greatly from thorough and thoughtful reviews by C.O. Moses, K. Rosso, and two anonymous reviewers.

REFERENCES CITED

MANUSCRIPT RECEIVED APRIL 28, 1995
MANUSCRIPT ACCEPTED MAY 1, 1996

APPENDIX

Marcus theory has been used for more than three decades to model elementary, outer-sphere electron-transfer (ET) rates. Marcus theory can be extended to electron transfer in bonded systems (e.g., between surface sites) if the donor and acceptor states are not involved in bonding. This criterion is reasonable for Fe 3d orbitals affected by ligand field effects but not involved in primary bonding. The Arrhenius equation gives the rate constant as a function of the activation energy . The frequency factor can be taken as the encounter or collision frequency times the ET transfer coefficient . The Delta G of activation is expressed in Marcus theory as

\[\Delta G^* = \left(\Delta G_e^2 + \lambda^2 \right) / 4x \]

where is the standard free energy of the reaction and is the energy of atomic reorganization about the donor and acceptor atoms. For example, because Fe"+-O bond lengths are different from Fe"+-O bond lengths, significant energy is involved in electron exchange, both in reorganizing the immediate coordination sphere and in reorganizing solvent structure around the aqueous complexes. Note that does not include the energy necessary to form an encounter complex, which can be significant especially if the reacting species are charged.

The reorganization energy can be estimated from a knowledge of self-exchange kinetics. Consider the ET reaction between acceptor (A) and donor (D) molecules: A + D → A"+ + D"-. For this ET couple, the rate constants and activation energies of self-exchange come from the reactions A + A"- = A"- + A and D + D"- = D"- + D. An example is self-exchange between Fe"+ and Fe"+ in aqueous solution. Because \(\Delta G^*_{ex} = 0 \) in the self-exchange reactions, \(\Delta G^* \) is entirely due to . With

\[k_{ex} = \nu_{ex} \exp[\lambda_{ex}/4kT] \]

(A-1)

for self-exchange rate constants, and \(\lambda_{ex} = (\lambda_{A} + \lambda_{D})/2 \)
2. Marcus theory expresses the rate constant for the desired ET reaction as

$$k_{AD} = (k_{AA}k_{DD}k_{AD,f})^{1/2} \tag{A-2}$$

$$\log f = -\frac{(\log k_{AD})^{2}}{4 \log(k_{AA}k_{DD}/\nu_{0})} \tag{A-3}$$

where ν_{0} is the root-square average of the frequency factors from the self-exchange reactions. The theory outlined above can be extended to heterogeneous ET reactions at electrode surfaces (Marcus 1965). For ET from an oxide CB to O$_2$, the Marcus (1965) expression has been simplified by assuming that λ for the electrons leaving the donor of the solid is negligible in comparison with that of the acceptor molecule, $\lambda_A \approx \lambda_{total} = \lambda$ (Kesselmann et al. 1994):

$$k_{ET,net} = \nu_a (r_e)^{3} \delta \exp \left[-\frac{(\lambda + \Delta G^{\omega'})^2}{4kT\lambda} \right] \tag{A-4}$$

in which ν_a is the attempt frequency, r_e is the effective radius of the electron in the semiconductor, δ is the effective electron-transfer distance, and $\Delta G^{\omega'}$ is the overall thermodynamic driving force ($\Delta G^{\omega'} = E_{eb} - E^{\omega'}$, where E_{eb} is the energy level of the electronic donor state at the surface and $E^{\omega'}$ is the reduction potential of the acceptor molecule). The $(r_e)^{3}\delta$ term and the exponential term correspond to the κ_e and κ_a terms in Equation 11. Prior uses of Equation A-4 to calculate electron-transfer rates from the conduction band of TiO$_2$ to aqueous O$_2$ (Gerischer 1991; Gerischer and Heller 1991, 1992; Kesselmann et al. 1994) have assumed $\nu_a = 10^{12}$ s$^{-1}$ to 10^{13} s$^{-1}$, $r_e = 10^{-9}$ m, $\delta = 3 \times 10^{-10}$ m, and $\lambda = 1.0$ eV.