Displacive phase transition in anorthoclase: The “plateau effect” and the effect of T1-T2 ordering on the transition temperature

STUART A. HAYWARD AND EKHHARD K.H. SALJE

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.

ABSTRACT

The effects of compositional changes and nonsymmetry-breaking Al-Si ordering on the displacive phase transition in anorthoclase have been studied using X-ray powder diffraction. The results were analyzed using a model based on Landau theory.

The observed transition temperature, \(T^* \), was found to be independent of orthoclase content in the range \(0 < X_{ns} < 0.02 \). For samples with \(X_{ns} > 0.02 \), \(T^* \) decreases linearly with increasing \(X_{ns} \). This plateau behavior is explained by the finite volume of the strain field around each K\(^+\) ion: Chemical mixing behavior is observed only for average K\(^+\)-K\(^+\) distances of <20 Å.

Increasing Al-Si order between the T1 and T2 sites causes \(T^* \) to increase; this is unlike T1o-T1m ordering, which prevents the transition to monoclinic symmetry altogether. The range of \(T^* \) values reported in the literature is shown to be consistent with different degrees of T1-T2 order.

INTRODUCTION

The feldspar structure consists of an aluminosilicate framework, with large cations (principally Na, K, and Ca) in the large structural cavities. In a monoclinic feldspar (e.g., monalbite, NaAlSi\(_2\)O\(_8\)), the tetrahedral sites on which Al and Si sit form two sets of equivalent positions (that is, sites that are related by symmetry). These are conventionally labeled T1 and T2 (Megaw 1974a). In a triclinic feldspar, the monoclinic symmetry is broken, so there are four independent types of sites; e.g., the T1 set splits into independent sets T1o and T1m.

Alkali feldspars have several structural responses to changes in pressure, temperature, and composition, as reviewed in Megaw (1974a, 1974b), Ribbe (1983), Carpenter (1988), and Brown and Parsons (1994), among others. Each structural change can be described quantitatively by an order parameter, and the energetics of each change can be modeled by a Landau potential. There are three such changes, besides exsolution (which is not considered here):

1. A displacive phase transition results from the collapse of the feldspar crankshafts around the large Na and K cations. This reduces the symmetry of the structure from \(C2/m \) to \(C1 \). This process has the order parameter \(Q_1 \), where

\[
Q_1 = \frac{t_1 - t_2}{t_1 + t_2}
\]

2. Another structural change is that of an order-disorder phase transition involving the tetrahedral cations Al and Si. This is driven by the high energy of Al-O-Al linkages (the “aluminum avoidance” principle). Al goes to the T1o sites, while Si goes to the other three sites. This is quantified using two order parameters. The first describes the partition of Al and Si between the T1o and T1m sites. This process reduces the symmetry of the structure from \(C2/m \) to \(C1 \), resulting in a phase transition that is nearly tricritical (Salje et al. 1985; Carpenter and Salje 1994). This process has the order parameter \(Q_{od} \), where

\[
Q_{od} = \frac{t_{1o} - t_{1m}}{t_{1o} + t_{1m}}
\]

where \(t_i \) is the Al occupancy in the T\(i\) site.

3. There is also nonconvergent ordering of Al and Si between the T1 and T2 sites. This ordering process does not break the monoclinic symmetry (Carpenter and Salje 1994) and is described using the order parameter \(Q_o \):

\[
Q_o = \frac{t_1 - t_2}{t_1 + t_2}
\]

The structural state of a homogeneous alkali feldspar is described using the three order parameters \(Q, Q_{od}, \) and \(Q_o \). Therefore, its excess Gibbs free energy can be derived from the individual contribution associated with each \(Q \), together with the coupling energies between them.

The way that a sample responds to changes in external variables, such as pressure and temperature, is constrained by the extreme sluggishness of Al and Si diffusion in feldspars. This means that neither \(Q_{od} \) nor \(Q \) changes noticeably without prolonged heating at high temperatures.

The other structural variable is chemical composition. The natural feldspar system has three end-members: NaAlSi\(_2\)O\(_8\) (Ab), KAlSi\(_2\)O\(_8\) (Or), and CaAl\(_2\)Si\(_2\)O\(_8\) (An). The choice of names commonly used for these minerals depends on their symmetry, that is, their values of \(Q, Q_{od}, \)
and Q. Thus, sodium feldspar may be referred to as mon-
albite ($Q = 0$, $Q_{oo} = 0$), analbite ($Q = 0$, $Q_{oo} = 0$), or
albite ($Q = 0$, $Q_{oo} = 0$). Anorthoclase is alkali feldspar
(that is, an Ab:Or solid solution), with $Q_{oo} = 0$.

THEORY

Because changes in Q_{oo} and Q are very slow at low
temperatures, the usual aim of a thermodynamic model is
to predict changes in the displacive order parameter Q,
which changes on a phonon timescale. Experimentally,
the displacive transition is thermodynamically second
order. Therefore, the Landau free energy is of the form

$$G = \frac{1}{2}A(T - T_c)Q^2 + \frac{1}{4}BQ^4 + \lambda QQ_{oo}$$

where the parameters A, B, and T_c can be found experi-
mentally for any anorthoclase sample. For example, Salje
et al. (1985) found $A = 5.5$ J/(mol·K), $B = 2.3$ kJ/mol,
$T_c = 416$ K for a disordered anorthoclase, Ab_0Or_{33}. In
Equation 4, A, B, and T_c are purely experimental param-
ters. To generalize the model, we need a theory relating
these parameters with each of the other parameters of
interest: Q_{oo}, Q, and X.

Relationship between Q_{oo} and Q

The principles involved in relating the behavior of Q
to these other parameters can be seen by considering the
coupling between Q_{oo} (the degree of Al-Si order) and Q,
using the model described in Salje (1985). Because both
transitions have the same symmetry, the lowest order
coupling between them is bilinear; the total energy of the
system is given by

$$G = \frac{1}{2}A(T - T_c)Q^2 + \frac{1}{4}BQ^4 + \lambda QQ_{oo}$$

Equation 5 implicitly includes lattice-strain energies. This
is described as renormalization in Salje (1985) and can
be done because the strains are themselves functions of
the order parameters. This process is the main mechanism
responsible for the observed coupling term. The coupling
between strains can be expressed as a function of the two
order parameters. In comparison with Equation 24 of Sal-
je (1985), Equation 5 does not have the terms in Q_{oo} and
Q_{oo} because these have been found experimentally to be
negligible (Salje et al. 1985; Carpenter and Salje 1994).

To predict how Q varies with T, we set $dG/dQ = 0$, but
not $dG/dQ_{oo} = 0$ (because Al-Si ordering is so slow
that Q_{oo} is unlikely to be in thermodynamic equilibrium).
We then have

$$\lambda Q_{oo} + A(T - T_c)Q + BQ^3 = 0.$$ (6)

One important consequence of Equation 6 is that on heat-
ing, Q can only equal zero for $Q_{oo} = 0$. This result pro-
vides a test of the monoclinity of the cation distribution.

If $Q_{oo} = 0$, which is the case for anorthoclase, all but
the first two terms in Equation 5 vanish, and we obtain
the simple second-order behavior of Equation 4:

$$Q^2 = \frac{T - T_c}{T_c}.$$ (7)

The effects of Q and X can be similarly determined.

Relationship between Q and Q_{oo}

The effect of Q, has been studied in potassium feldspar
(Carpenter and Salje 1994). Because the ordering given
by Q, is nonconvergent, odd-powered terms are allowed
in the Landau polynomial. The lowest allowed coupling
between Q and Q_{oo} is linear quadratic; bilinear coupling
would be possible only if the two order parameters had
the same symmetry. Carpenter and Salje (1994) postulat-
ed that this coupling is temperature dependent, with $\lambda =
\lambda_0 T$. The temperature dependence of the coupling is due
to the increase in phonon population with temperature.

Because Q_{oo} and Q have the same symmetry prop-
erties, it seems reasonable to assume that the coupling be-	ween Q and Q_{oo} has the same form as that between Q
and Q_{oo} (even if its magnitude is not the same). So when
$Q_{oo} = 0$ (and any terms involving Q_{oo} vanish) the re-
sulting expression is

$$G = \frac{1}{2}A(T - T_c)Q^2 + \frac{1}{4}BQ^4 + \lambda QQ_{oo}$$

$$- hQ_t + \frac{1}{2}A(T - T_c)Q_t^2 + \frac{1}{6}CQ_t^3.$$ (8)

The fact that the coupling is linear quadratic, rather
than bilinear, has an important effect on the behavior of
$Q(T)$. For an experiment on a short timescale, Q is a
constant. If Equation 8 is simplified to reflect this con-
straint, Q can be shown always to follow a second-order
model:

$$G = \frac{1}{2}A \left(T - T_c + \frac{2\lambda T Q}{A} \right) Q^2$$

$$+ \frac{1}{4}BQ^4 + G(Q, only).$$ (9)

The effect of Q, is to renormalize the observed T_c:

$$\frac{dG}{dQ} = \frac{A}{B} \left[T_c - T \left(1 + \frac{2\lambda T Q}{A} \right) \right].$$

$$Q^2(T_c) = \frac{A}{B} \left[T_c - T \left(1 + \frac{2\lambda T Q}{A} \right) \right]^{-1}.$$ (10)

Relationship between X and Q: The plateau effect

The effect of composition can be analyzed using a
method described in Salje (1995). The essence of this
technique is consideration of the behavior of an end-
member (in this case, analbite) coupled with the effect of
a solute (sanidine). Equation 4 therefore becomes
\[
G(Q, T, X) = \frac{1}{2}A_0(T - T_0)Q^2 + \frac{1}{4}B_0Q^4 + \frac{1}{2}A_1(X)Q^2 + G(X)
\]

where \(A_0, B_0, T_0\), and \(T_0\) are the Landau coefficients for the end-member, \(A_1(X)\) is the coupling between the solute and the displacive transition, and \(G(X)\) is the self energy of the solute. The equilibrium path of \(Q(T)\) is given by

\[
Q^2 = \frac{A_0(T^* - T)}{B_0} - T^* = T_0 - \frac{A_1}{A_0},
\]

Thus, the effect of composition, \(X\), on the transition temperature, \(T^*\), depends on the way that the coupling term \(A_1\) depends on composition. There are two main mechanisms to consider: (1) For high concentrations of solute, the distortion fields around the solute atoms overlap to produce a homogenous field. In this case, \(A_1(X)\) is proportional to \(X\). (2) At lower solute concentrations, the solute atoms are further apart, so their distortion fields do not overlap (Iiyama and Vollinger 1976; Newton and Wood 1980). In this case, their effect on most of the crystal is an indirect one, with coupling taking place through the framework of the host. Again, \(A_1(X)\) is proportional to \(X\), though with a different proportionality constant. It is likely that the effect at lower solute concentrations is weaker than that at higher concentrations.

These predictions can be summarized as follows. If \(Q_0 = 0\), no phase transition to monoclinic symmetry would be observed on heating, though in principle \(T_c\) could still be determined as one of the parameters in Equation 7. If \(Q_0 = 0\), (1) the observed \(T^*\) would generally be linear with \(X\), and at low values of \(X\), a plateau, where \(T^*\) is independent of \(X\), would be expected; (2) increasing values of \(Q\) would raise the observed value of \(T^*\).

EXPERIMENTAL METHODS

Anorthoclase powder samples were produced by the method described in Kroll et al. (1986). The starting material was an albite from Alp Rischuna, Valais (sample no. 5028 from the Harker collection, Cambridge University). This was disordered by hydrothermal annealing (\(P_{\text{so}} = 200\) bars) at 1250 K for 8 d. The Al-Si disorder was verified by X-ray diffraction, and the composition \((\text{Ab}_{92,3}\text{Or}_{0,7})\) was determined by electron microprobe analysis. The K end-member was produced by ion exchange of this material in molten KCl at 1120 K for 6 h. The resulting composition was \(\text{Ab}_{92,3}\text{Or}_{0,7}\). Samples in the range \(X_{\text{so}} \leq 0.08\) were then produced by heating and mixing the end-members. The mixed samples were then pressed into pellets, wrapped in platinum foil, and homogenized at 1270 K for 3 d. The homogeneity and Al-Si state of these samples was checked as part of the subsequent X-ray analysis.

The experiments were performed on the high-temperature diffractometer described in Salje et al. (1993). The sample was mounted on a platinum resistance-heating strip, and the sample temperature was measured using a Pt-Rh thermocouple attached to this strip. Temperature calibration of the heater was performed with respect to several known phase transitions. Uncertainties in the corrected temperatures are on the order of 2–3 K. X-rays were generated using an Inel XRG3000 generator, and a focused CuK\(\alpha\) beam was produced using a crystal monochromator. The diffracted beams were detected using an Inel 4K-PSD position-sensitive detector. Pure Si was used as an internal standard for calibration of the \(20\) angles. This calibration considered the changes in 20(Si) resulting from thermal expansion. Recording of the diffraction patterns started when the sample reached the target temperature, and each diffraction pattern was collected in <2 h. To check that no irreversible changes took place in the sample on heating, the data for 470, 670 K, etc., were collected during heating of the sample, and the data for 370, 570 K, etc., were collected during cooling.

Lattice parameter refinements were performed using an iterative least-squares procedure for reflections with \(20 \leq 65^\circ\). Typically, 45 reflections were used. The initial basis for indexing the patterns was that given by Kroll et al. (1986). The room-temperature pattern for \(\text{Or}_0\) was then used to index the room-temperature pattern for \(\text{Or}_1\) and subsequently the other samples in order of increasing Or content. Each of these room-temperature patterns was then used to index the patterns for 370 K, etc., until all the patterns were indexed. This procedure ensured that all the patterns were indexed consistently.

For each sample at each temperature, the Al site occupancies \(t_{\text{so}}, t_{\text{mo}},\) and \(t_i\) were calculated from the lattice parameters with use of the equations in Kroll and Ribbe (1987). The values of \(Q, Q_{\text{Or0}},\) and \(Q_0\) were then determined using Equations 1–3. No systematic variation in \(Q_{\text{Or0}}\) or \(Q_0\) was found, so an average was taken from all these data. This confirms the idea that short-term heating under dry conditions has no detectable effect on the distribution of Al and Si.

RESULTS

The parameter \(\cos^2\alpha\) was found to vary linearly for \(T < T^*\), and so \(T^*\) was taken to be the temperature at which this linear extrapolation reached zero. For \(T > T^*\), the diffraction data implied a monoclinic structure. The graphs for \(\text{Or}_0, \text{Or}_1,\) and \(\text{Or}_2\) are shown in Figure 1. Table 1 gives the values of \(T^*\) for all the samples studied, and Figure 2 shows a phase diagram of these data.

Because a transition to a monoclinic structure was observed, there must be complete macroscopic disorder between the T10 and T11m sites. This result is confirmed by the direct calculation of site occupancies using lattice parameters, which yields \(Q_{\text{Or0}} = 0\) \((t_{\text{so}} = t_{\text{mo}})\) to within the experimental error of this method.

However, this result does not rule out the possibility of Al-Si partition between the T1 and T2 sites. As Equations 9 and 10 show, different values of \(Q\) alter the observed
transition temperature, but the transition remains second order.

To test this prediction, the values of Q and T_c^* obtained above for sample O_r_0 were compared with those from other studies of analbite. The small amounts of K in some of these samples do not affect T_c^* because they are all well within the plateau regime. The results are shown in Table 2 and Figure 3.

DISCUSSION

The plateau effect and some consequences

The plateau at the Na end of the anorthoclase solid solution extends to a composition of about 2 mol% Or. This is somewhat larger than the estimate in Salje (1995), which predicted that a typical plateau would extend to −1% of solute.

Other feldspars have even larger plateaus. According to Wood and Redfern (1995), the transition temperature of plagioclase is independent of composition from albite to $Ab_{0.6}An_{0.4}$. In the system Cu_1-ZnWO_4, T_c is constant between $x = 0$ and 0.12 (Redfern et al., in preparation; Redfern and Schofield, in preparation).

Another feature of these results is that the plateau appears to be flat in all these cases; i.e., the transition temperature is independent of composition. This observation implies that the strain fields around each solute atom do not overlap. As a result, most of the crystal is not affected by the defects. This is consistent with the idea that the

TABLE 1. Compositions and T_c^* values of synthetic anorthoclase samples used in this study

<table>
<thead>
<tr>
<th>Sample</th>
<th>mol% Or</th>
<th>T_c^* (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_r_0</td>
<td>0.4</td>
<td>1327(12)</td>
</tr>
<tr>
<td>O_r_1</td>
<td>1.3</td>
<td>1327(7)</td>
</tr>
<tr>
<td>O_r_2</td>
<td>1.9</td>
<td>1329(25)</td>
</tr>
<tr>
<td>O_r_3</td>
<td>2.3</td>
<td>1328(27)</td>
</tr>
<tr>
<td>O_r</td>
<td>4.1</td>
<td>1324(10)</td>
</tr>
<tr>
<td>O_{r_0}</td>
<td>6.0</td>
<td>1186(20)</td>
</tr>
<tr>
<td>O_{r_0}</td>
<td>7.9</td>
<td>1134(9)</td>
</tr>
</tbody>
</table>

TABLE 2. T_c^* values for the displacive transition in analbite samples with varying Q_1

<table>
<thead>
<tr>
<th>Source</th>
<th>Q_1</th>
<th>T_c^* (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kroll et al. (1985)</td>
<td>0.12</td>
<td>1257</td>
</tr>
<tr>
<td>Okamura and Ghose (1975)</td>
<td>0.02</td>
<td>1203</td>
</tr>
<tr>
<td>Wood and Redfern (1995)</td>
<td>0.12</td>
<td>1239</td>
</tr>
<tr>
<td>This study</td>
<td>0.22</td>
<td>1327</td>
</tr>
</tbody>
</table>
Strength of $Q-Q_0$ interaction

Equation 11 showed how the observed transition temperature, T^*_c, should vary with Q_0. From this, the strength of the $Q-Q_0$ coupling constant λ_0/T can be determined. The best-fit parameters in Figure 3 are $T^*_c = 1184$ K, $\lambda_0/A = -0.562$. For analbite, $A = 8.230$ J/(mol·K) (Wood, personal communication), and therefore $\lambda_0 = -4.6$ J/(mol·K). This value of λ_0/A is comparable to that for $Q_{oo}-Q_{oo}$ coupling, -0.490 (Carpenter and Salje 1994). However, the energy of the $Q_{oo}-Q_0$ interaction is much greater because of the large value of A associated with Q_{oo}.

ACKNOWLEDGMENTS

S.A.H. acknowledges a research studentship from NERC (U.K.).

REFERENCES CITED