Ab initio calculations on aluminosilicate Q³ species: Implications for atomic structures of mineral surfaces and dissolution mechanisms of feldspars

J.D. Kubicki, G.A. Blake, and S.E. Apatz

1Remediation Research Laboratory, Chemistry and Biochemistry Branch, NCCOSC RDT&E Div 361, 53475 Strothe Road, Room 258, San Diego, California 92152-6325, U.S.A.
2Division of Geological and Planetary Sciences, California Institute of Technology, 170-25, Pasadena, California 91125, U.S.A.

ABSTRACT

Molecular orbital calculations on various aluminosilicate Q³ T-OH and bridging O species were performed to model atomic structural changes on mineral surfaces that occur as a function of pH. Calculated vibrational frequencies are reported for the terminal T-O, T-OH, and O-H bonds of the central T cation as a test of our models, and the predicted frequencies compare well with experimental vibrational spectra of aluminosilicates. Optimized bond lengths and T-O-T angles to the central Q³ Si⁴⁺ and Al³⁺ cations in these molecules change significantly as the T-OH bond is protonated and deprotonated. Protonation of terminal bonds tends to shorten and strengthen the remaining three T-O bonds that would attach the central cation to the bulk mineral. This result is in contrast to the T-O weakening that has been suggested previously as a mechanism for proton-assisted dissolution (e.g., Furrer and Stumm 1986; Wieland et al. 1988). Proton affinities (PA) of the Q³ T-OH, T-OH₂, and T-OH-T species are predicted to help delineate the process of proton-assisted dissolution in quartz and feldspars. Theoretical results predict that the PAs of AI-OH₂ and AI-OH-Si species are comparable; thus, as AI-OH₂ surface species become stable, protons are also energetically favored to attach to bridging O atoms. In addition, we found that substitution of Al³⁺ for Si⁴⁺ in the second-nearest-neighbor site of a Q³ Si-OH can increase the calculated PA, although the effect is diminished by the presence of a charge-balancing Na⁺ cation. This result has implications for models that attempt to describe the behavior of aluminosilicate surfaces in terms of the component oxides. Addition of Na⁺ to charge balance molecules strongly affects calculated structures, proton affinities, and vibrational spectra. The role of charge-balancing cations was often omitted in previous theoretical studies of aluminosilicates, but the magnitude of the charge-balancing effect could alter the results and conclusions of earlier calculations in this area.

INTRODUCTION

Terminal cation-O bonds (X-O) on the surfaces of aluminosilicate and oxide minerals are believed to undergo hydrolysis reactions, such as

\[\text{XO}^- + \text{H}^+ = \text{XOH} \]
\[\text{XOH} + \text{H}^+ = \text{XO}^- + \text{H}_2\text{O} \]

as a function of the ambient solution pH [Westall (1987) and references therein]. Surface-speciation changes may affect the terminal X-O bond strengths and the bond strengths of the surface cation to the bulk mineral (e.g., Furrer and Stumm 1986; Wieland et al. 1988; Brady and Walther 1989; Lasaga 1992). In addition, reactions at bridging O sites may also occur, resulting in the formation of T-OH-T sites or hydrolysis of T-O-T linkages (Xiao and Lasaga 1995). These changes are important because the atomic surface structure of a mineral often controls the kinetics of water-rock reactions [see Hochella and White (1990) for a recent review]. However, because these changes occur on the surface of the mineral grain, direct experimental determination of their atomic structures is difficult.

This theoretical investigation of some possible mineral-surface atomic structures employed calculations on Q³ species (where Q³ indicates the number of bridging O atoms per tetrahedral cation; see Kirkpatrick 1988) as models for the local atomic structure of tetrahedral cations on mineral surfaces. Absolute values of structural parameters and reaction energetics may be somewhat different in model molecules and mineral surfaces because of the neglect of crystal-structure constraints and solvation effects; hence, we focused on relative changes in structure and energy associated with protonation and deprotonation of the molecules, which should be similar on mineral surfaces. Theoretical structure and PA changes were then used to rationalize observed dissolution rates of minerals as a function of pH.
Although octahedral cations play a significant role in sorption and dissolution phenomena in many minerals such as clays and aluminum hydroxides (Schulte and Huang 1991), in minerals such as quartz and feldspars various species of tetrahedral Si
+ and Al
+ are thought to dominate surface reactions (Blum and Lasaga 1988; Hellmann et al. 1990). Furthermore, end-member minerals (e.g., SiO
2 and γ-Al(OH)
3) are often used as analogs for the Si
+ and Al
+ components in aluminosilicate mineral-surface reactions (Parks 1967) but it has not been shown that Si
+ and Al
+ behave identically in the end-member and aluminosilicate minerals with respect to surface chemistry. Recent infrared spectra (Koretsky et al., in preparation) suggest that this assumption may be invalid. Hence, we tested the oxide component model by comparing theoretical predictions on the structures and vibrational spectra of Q
3 Si with three second-nearest-neighbor Si
+ ions (i.e., a silica model) vs. Q
3 Si with two second-nearest-neighbor Si
+ ions and one Al
+ ion (i.e., an albite model).

Different types of surface OH groups (or the absence thereof) have varying effects on the reactivity of mineral surfaces (Schindler and Stumm 1987). For example, adsorption equilibria of metals (e.g., Balistrieri and Murray 1984) and organic molecules (e.g., Zachara et al. 1994) onto mineral surfaces vary as a function of pH. Infrared spectroscopy has been used to identify surface OH groups experimentally for many years (for reviews see Boehm 1966; Fripiat 1982). Hence, correct assignments of the OH vibrational bands in aluminosilicate minerals are important for understanding mineral-surface chemistry. We report theoretical vibrational frequencies, infrared activities, and Raman intensities of the T-O and O-H stretching modes in our model Q
3 Si and Al molecules as tests of previous assignments and predictions.

Calculation Details

The program Gaussian 92 with a standard 3-21G
** basis set (Frisch et al. 1992) was used to calculate the structures, potential energies, and vibrational frequencies of model terminal O sites: \([\text{O}H]_3\text{SiO}_2\text{SiO}_3\text{O}^\text{+}, [\text{O}H]_3\text{SiO}_2\text{SiO}_3\text{O}^\text{+}, [\text{O}H]_3\text{SiO}_2\text{SiO}_3\text{O}^\text{+}\). The 6-31I+G
** basis set, which employs a large triple-

Potential energies and vibrational frequencies were used to estimate PAs (Brand et al. 1993) from reactions of the type

\[Q^3 \text{T-OH} = Q^3 \text{T-O}^- + H^+ \]

and

\[Q^3 \text{T-OH}^- = Q^3 \text{T-OH}^- + H^+ \]
Structural changes with protonation

Calculated structures of (Si)Si-O and (Si)Si-OH are pictured in Figure 1, and selected structural parameters are listed in Table I. The main result is that the terminal Si-O bond length increases by 6% from 1.540 to 1.633 Å as a proton is added to form Si-OH. This increase may be lessened if a hydrating H2O molecule were included in the optimization because the Si-O bond in (H2SiO4)- increases from 1.537 to 1.551 Å (1%) with the addition of H2O to form the dimer (H2SiO4-H2O)- (Kubicki et al. 1993b). In addition, the Si-OH bond in H4SiO4 decreases from 1.629 to 1.615 Å (1%) in H4SiO4-H2O (optimized HF 6-31G* structure). Thus, for hydrated Si-O vs. Si-OH the bond-length difference may be closer to 1.615-1.551 = 0.064 or 4%. The calculations presented here more closely represent dehydrated surfaces after reaction with aqueous solutions.

Si-O (Obr : bridging O atom) bond lengths from the central Q3 cation are also affected by protonation (Table I and Fig. 1b). The average Si-Obr decreases by 3% because of the lengthening of the terminal Si-O bond. Thus, if the Si-Obr bonds represent the linkages of a surface Si* to the bulk mineral, protonation of the Si-O surface group strengthens the attachment to the mineral. An increase of 11° in the average Si-O-Si angle also occurs in the protonated species in comparison with the deprotonated species. These calculated results probably overestimate the actual structural changes that occur on mineral surfaces because the molecular structures are allowed to relax fully. Full relaxation may not occur in minerals owing to restrictions of the surrounding structure (Brand et al. 1993). On the other hand, minerals undergoing dissolution may form an amorphous surface layer (Schulthess and Huang 1991) where structural relaxation readily occurs, so our models are better representations of a surface undergoing dissolution than they are representations of a pristine mineral surface.

<table>
<thead>
<tr>
<th>Table 1. Calculated structural parameters of the molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecule</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>(Si)Si-O</td>
</tr>
<tr>
<td>(Si)Si-OH</td>
</tr>
<tr>
<td>(Si)Si-Si-O</td>
</tr>
<tr>
<td>(Si)Si-Si-OH</td>
</tr>
<tr>
<td>Na*[(HSi)Al-Si-O]</td>
</tr>
<tr>
<td>Na*[(HSi)Al-Si-OH]</td>
</tr>
<tr>
<td>(Si)Al-O</td>
</tr>
<tr>
<td>(Si)Al-OH</td>
</tr>
<tr>
<td>Na*[(HSi)Al-O]</td>
</tr>
<tr>
<td>Na*[(HSi)Al-OH]</td>
</tr>
</tbody>
</table>

Note: T-Obr = distance from central T cation to bridging O atom; T-Obr = distance from external T cations to bridging O atoms.
* Constrained structure.
** Si** second-nearest neighbors.
† Al** second-nearest neighbors.
Cluster size and charge-balancing cation effects on molecular structure

Two model-dependent factors that may influence the accuracy of the above calculations when used as analogs of mineral surfaces are the size of the molecular cluster employed and the effect of Na⁺ cations. Inclusion of Na⁺ in the optimizations of (Si₃)Al-O, (Si₃)Al-OH, (Si₃)Al-O, (Si₃)Al-OH, and (Si₃)Al-OH₂ molecules would require an impractical increase in the amount of computational time necessary to determine a stationary point (i.e., an equilibrium structure or potential energy minimum). For this reason, we estimated the possible magnitudes of system-size and charge-balancing effects by optimizing Q³ molecules with H⁻ anions substituted for (OH⁻) groups on the external tetrahedra both with and without Na⁺ present.

To test the system-size effect, comparison of the (HSi)₃Al-OH and (Si₃)Al-OH molecules in Table 1 reveals that the most significant change is in the T-O-T angle. The OH-terminated molecule is predicted to have minimum-energy T-O-T angles much closer to those observed in minerals (Geisinger et al. 1985; Sharma et al. 1988). Another significant change is a 2.5% decrease in the Al-OH bond length associated with the central T cation. Because the OH-terminated molecule differs from the mineral-surface structure in the fourth-nearest-neighbor sites (i.e., substitution of a T cation for the H atom in each OH group), the system-size effect on the terminal T-O, T-OH, and T-OH₂ bonds in the OH-terminated molecules should be <2.5% compared with mineral-surface structures.

The second model-dependent effect on molecular structure, that of charge-balancing Na⁺ cations, can be estimated by comparison of the (HSi)₃Al-OH and Na⁺[HSi₃Al-OH] molecules. Again, the largest change noted is in the T-O-T angle as it decreases from 172° to 147° with addition of Na⁺ (Table 1). The charge-balanced molecule gives the more accurate value for Si-O-Al angles in comparison with aluminosilicate minerals (Geisinger et al. 1985; Sharma et al. 1988) as the Na⁺ interacts with all three bridging O atoms in the Na⁺[HSi₃Al-OH] molecule. (Note that in Fig. 2b the Na⁺ interacts with only two bridging O atoms since the Na-O interaction is weakened by the change from negative to neutral charge ac-
Proton affinities of surface O sites in model quartz clusters

Table 2 lists the calculated energies and PAs for molecules examined in this study. If the inherent energetics of extracting protons from O sites in our model molecules can be related to protonation equilibria in minerals, then the sequence of elementary steps in the complex dissolution process should follow the order of decreasing PA (i.e., the sites with the highest PA protonate first as pH decreases). The PA of the \((\text{Si}_3)\text{Si-OH}\) group calculated from Equation 3 is 1429 kJ/mol. This PA is similar to the PA values of 1511 and 1474 kJ/mol for \(\text{H}_2\text{SiO}_4\) with 6-31+G**/3-21G** and G2 theory calculations, respectively (Kubicki et al. 1995b, 1996). Other calculated values for the gas-phase PA of orthosilicic acid are 1565 kJ/mol with an HF 6-31G* basis set (O'Keeffe et al. 1985) and 1480 kJ/mol from density functional theory (Stave and Nicholas 1993). The cluster-size effect between \(\text{H}_3\text{SiO}_4\) and (\(\text{Si}_3)\text{Si-OH}\) is approximately 80 kJ/mol, when 6-311+G**/3-21G** calculations on the two molecules are compared. Inclusion of MP2 electron correlation (Møller and Plesset 1934) has a comparable effect on calculated PAs. The difference between calculated PAs of \(\text{H}_3\text{SiO}_4\) with HF 6-31G* and MP2 6-31G* basis sets is 35 kJ/mol (Kubicki et al. 1995a). Thus, cluster-size and basis-set effects do not play a dominant role in the calculated PA, but both may affect calculated energy changes by a few percent.

Fleischer et al. (1993) determined that basis-set limitations and neglect of electron correlation produces a systematic error of \(-33 \pm 22\) kJ/mol in PAs of OH groups. Adding this correction to our theoretical PA results in a PA of 1396 kJ/mol for a surface Si-OH. This calculated Q⁺ Si-OH PA is in the experimental range of 1390 ± 25 kJ/mol for surface silanol groups (Paukshtis and Yurchenko 1983). Furthermore, the (\(\text{Si}_3)\text{Si-OH}\) PA is equal to that calculated by Sauer and Hill (1994) for double four-membered ring clusters; hence, molecular structure beyond second-nearest neighbors does not have a significant effect on calculated PAs.

Some authors have treated surface speciation at mineral-water interfaces as an analog of aqueous-phase reactions for the same types of coordination polyhedra (e.g.,

\[\text{[SiO}_4^{3-}] \approx \text{[AlO}_4^{3-}] \]. For example, Schindler and Stumm (1987) noted that the log \(K_s\) values of many cations in the aqueous phase and at surface sites are correlated within one log unit. An important exception to this correlation is that log \(K_s(\text{H}_4\text{SiO}_4)_{\text{surf}} \) = -10.07 and log \(K_s(\text{SiO}_4)_{\text{surf}} \) = -6.71. Hence, a discrepancy exists in a proposed trend for one of the most important and common components in soils and sediments.

We hypothesized that the difference between \(\text{H}_2\text{SiO}_4\) and surface Si-OH deprotonation may be caused by lattice restrictions on the relaxation of local structure surrounding terminal Si-OH bonds. \(\text{Si}^{3+}\) is different from most other elements used in the above correlation (Schindler and Stumm 1987) because it occurs nearly exclusively in tetrahedral coordination under low-pressure conditions. Furthermore, \(\text{SiO}_4\) tetrahedra are an integral part of the framework structure in many silicates; hence, \(\text{SiO}_4\) tetrahedral relaxation may be more restricted than relaxation in octahedral species owing to this polymerization.

To test this hypothesis, calculations were performed on the (\(\text{Si}_3)\text{Si-OH}\) molecule in the (\(\text{Si}_3)\text{O-}\) molecular structure with only the O-H bond length, Si-O-H angle, and O-Si-OH dihedral angle allowed to relax upon protonation (designated (\(\text{Si}_3)\text{Si-OH}^*\) in Tables 1 and 2). The calculated PA of the (\(\text{Si}_3)\text{Si-OH}^*\) group is 121 kJ/mol less than when full structural relaxation was allowed (i.e., 1308

Table 2. Calculated energies and proton affinities of various O sites on aluminosilicate surfaces

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Energy (Hartrees)</th>
<th>Proton affinity (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Si}_3\text{Si-OH}^-)</td>
<td>-2135.83117</td>
<td>1429(1390)</td>
</tr>
<tr>
<td>(\text{Si}_3\text{Si-OH}^*)</td>
<td>-2135.78501</td>
<td>1308</td>
</tr>
<tr>
<td>(\text{Si}_3\text{Al}^3\text{Si-OH}^-)</td>
<td>-2088.22438</td>
<td>1807</td>
</tr>
<tr>
<td>(\text{Si}_3\text{Al}^3\text{Si-OH}^*)</td>
<td>-2088.91269</td>
<td>1468</td>
</tr>
<tr>
<td>(\text{Na}^+[[\text{HSi}^3\text{Al}^3\text{Si-OH}^-]^-)</td>
<td>-1576.24079</td>
<td>1576</td>
</tr>
<tr>
<td>(\text{Si}_3\text{Al}^3\text{Si-OH}^-)</td>
<td>-2088.14364</td>
<td>2004</td>
</tr>
<tr>
<td>(\text{Si}_3\text{Al-OH}^-)</td>
<td>-2089.40836</td>
<td>1317</td>
</tr>
<tr>
<td>(\text{HSi}_3\text{Al-O}^-)</td>
<td>-1413.85358</td>
<td>2028</td>
</tr>
<tr>
<td>(\text{HSi}_3\text{Al-OH}^-)</td>
<td>-1414.42583</td>
<td>1837</td>
</tr>
<tr>
<td>(\text{HSi}_3\text{Al-OH}^-)</td>
<td>-1575.65013</td>
<td>963</td>
</tr>
<tr>
<td>(\text{Na}^+[[\text{HSi}^3\text{Al}^3\text{Si-OH}^-])</td>
<td>-1576.27376</td>
<td>963</td>
</tr>
<tr>
<td>(\text{Na}^+[[\text{HSi}^3\text{Al-OH}^-])</td>
<td>-1576.64064</td>
<td>963</td>
</tr>
</tbody>
</table>

Note: Energies calculated using 6-311+G**/3-21G** with 3-21G** ZPE correction. Experimental values in parentheses.

* Constrained structure.
* Paukshtis and Yurchenko (1983).
* Datka et al. (1988).
* Lias et al. (1988).
Proton affinities in model albite clusters

Our results predict a PA = 777 kJ/mol for the reaction H₄Si₂O₆ → H₄Si₂O₃ + H⁺ with a 6-311+G**/3-21G** basis set (Table 2). Rustad and Hax (1994) predicted a value of 695 kJ/mol with analytical potentials in molecular mechanics calculations that is reasonably close to our calculated PA. Nicholas et al. (1992) predicted a PA of 690–880 kJ/mol with ab initio calculations for H₄Si₂O₃ → H₄Si₂O₃ + H⁺. The consistency of the above values suggests that PAs of terminal Si-O groups may be nearly twice that of Si-OH-Si, consistent with the higher acidities of protonated bridging O atoms in comparison with silanols (e.g., Engelhardt et al. 1987). We conclude that under conditions in which Si-O or Si-OH groups dominate a mineral surface, the bonds that attach the Si⁺⁺ to the bulk mineral are unlikely to be protonated.

Proton affinities in model albite clusters

The 6-311+G**/3-21G** calculations give PAs of 2004 and 1317 kJ/mol for (Si₉)Al-OH and (Si₉)Al-OH₂, respectively. We estimate the cluster-size and basis-set effects combined to be approximately 5% in these calculated PAs, because MP2 6-31G* calculations yield a PA of 2097 kJ/mol for the reaction (H₄AlO₄)⁻ → (H₄AlO₄)₂⁻ + H⁺ and 1363 kJ/mol for the reaction H₄AlO₄ → [Al-(OH)₃]⁻ + H⁺. The PAs of 93 kJ/mol for (Si₉)Al-OH and (Si₉)Al-OH₂ and 46 kJ/mol for [Al(OH)₄]⁻ and H₂AlO₄ are significant. However, the ratios of the PAs are similar in both calculations (1.52 vs. 1.53), suggesting that the relative reactivities are similar in both clusters.

Substitution of Al⁺⁺ for Si⁺⁺ in one of the second-nearest-neighbor positions of (Si₉)Si-OH to form (Si₂)AlSi-OH increases the calculated PA of the Q₁ Si-OH group by 378 to 1807 kJ/mol (Table 2). The excess electronic charge on the (Si₂)Al-OH molecule accounts for most of the increase in PA. This result is consistent with the experimental data, which show decreasing acidity of OH groups in zeolites as the number of Al⁺⁺ second-nearest neighbors increases (Gil et al. 1994). However, we note that the (Si₂)Al-OH molecule is not charge balanced with Na⁺, as would be the case in albrite, for instance. The effect of Na⁺ would be to lower the PA of the molecule, because the calculated PA of Na⁺[HSi₃]Al-OH is 1468 kJ/mol. Only a 40 kJ/mol increase in the PA of albite Si-OH groups over quartz Si-OH groups is predicted in this case. The Na⁺ effect in our model molecules may overestimate the effect charge balancing Na⁺ would have in a crystal structure because the Na⁺ is in a lower coordination state and more tightly bound to one tetrahedron in the model molecule than in minerals such as albite. Because our model molecule overestimates the Na⁺ effect, the maximum reduction in PA for (Si₂)Al-OH would be 340 kJ/mol. This estimate is close to the charge-compensation effect on PA calculated by Kramer and van Santen (1993). Such a reduction would give a value of PA for Si-OH on an albite surface similar to that for Si-OH on a quartz surface (i.e., 1807–340 = 1467 kJ/mol) compared to 1429 kJ/mol for (Si₉)Si-OH; Table 2). We conclude that PAs of Si-OH groups on albite surfaces could range 400 kJ/mol from near the value calculated for (Si₉)Si-OH to the value calculated for (Si₂)Al-OH. If this is the case, it becomes difficult to model aluminosilicate surface protonation in terms of mixtures of the component oxides because second-nearest-neighbor effects are significant.

The charge-balancing cation effect on PAs can be estimated by comparing the reactions (HSi₃)Al-OH → (HSi₃)Al-OH + H⁺ and Na⁺(HSi₃)Al-OH → Na⁺(HSi₃)Al-OH + H⁺ (Table 2). The PAs of 2028 and 1637 kJ/mol indicate a significant effect on the calculated PA because of the presence of Na⁺. [Note that the difference in PAs between (Si₂)Al-OH and Na⁺(HSi₃)Al-OH is not the result of substitution of H⁺ for OH⁻ on the external Si tetrahedra because (Si₂)Al-OH and (HSi₃)Al-OH have nearly equivalent PAs (i.e., 2004 and 2028 kJ/mol; Table 2).] Because Na⁺ in the model molecules overestimates the effect of charge balancing Na⁺ in crystals, as mentioned above, we consider the PAs listed for (Si₂)Al-OH and Na⁺(HSi₃)Al-OH in Table 2 to be estimates of the maximum and minimum values for Al-OH proton affinities on the surface of albite.

As mentioned in the Methods section, the (Si₉)Al-O molecule has a lower potential energy if one H⁺ jumps from an Si-OH group to the Al-O group to form Al-OH.
and Si-O. This is reflected in the ΔE value of -212 kJ/mol for \((\text{Si}_3)\text{Al-O} \rightarrow (\text{Si}_3)\text{Al-Si-O}\) (Table 2). Switching the position of the Al^3+ from a Q^2 to a Q^1 site is not responsible for the large energy decrease because ΔE between \((\text{Si}_3)\text{Al-O} \rightarrow (\text{Si}_3)\text{Al-Si-O}\) is only -16 kJ/mol (Table 2). (Note, however, that Al^3+ does slightly favor the less polymerized site in this case.) The lower potential energy for \((\text{Si}_3)\text{Al-O} \rightarrow (\text{Si}_3)\text{Al-Si-O}\) is consistent with the observed higher acidities of surface Si-OH in comparison with Al-OH (Schindler and Stumm 1987).

For the reaction \(\text{H}_3\text{SiAlO}_3 \rightarrow (\text{H}_3\text{SiAlO}_3)^- + \text{H}^+\), $PA = 1301$ kJ/mol (Table 2), which falls within the experimental range of 1188-1330 kJ/mol in zeolites (Datka et al. 1988). Our calculated value is also close to the best theoretical estimate of 1234 kJ/mol by Brand et al. (1993) for Si-O-Al linkages in zeolites. Hence, formation of an Al-OH bond is predicted to be more stable by ~ 700 kJ/mol than an Si-OH-Al linkage; and the formation of an Al-OH group is energetically favorable as an Si-OH-Al linkage, within the accuracy of these calculations (Table 2). Again, addition of Na$^+$ to these molecules lowers the calculated PAs (Table 2). However, the PA of Na$^+$[(HSi$_3$)Al-OH] is still more stable by ~ 700 kJ/mol than an Na$^+$[Al-OH-Si] (1637 vs. 954 kJ/mol), and the PA of Na$^+$[(HSi$_3$)Al-OH] remains close to that of Na$^+$(Al-OH-Si) (963 vs. 954 kJ/mol). On a mineral surface, such as an albite crystal, these results translate into protonation of any Al-O sites before Al-OH or Si-O-Al sites become protonated. Once Al-O sites are no longer available, however, Al-OH and Si-O-Al sites should protonate in roughly equal proportions.

Vibrational frequencies of surface sites

Table 3 contains T-O, T-OH, T-OH$_2$, and O-H vibrational frequencies and intensities calculated for the molecules in this study. The calculated Si-OH stretching frequency of 940 cm$^{-1}$ is fairly close to the 970 cm$^{-1}$ value determined for a Q^1 Si-OH stretching by curve-fitting Raman spectra of hydrous SiO$_2$ glasses (Mysen and Virgo 1986). The Si-OH and Al-OH stretching frequencies (940 and 805 cm$^{-1}$, respectively) straddle the reported value of 880 cm$^{-1}$ for T-OH stretching in hydrous aluminosilicate glasses (Mysen et al. 1980). Addition of Na$^+$ to the (HSi)$_3$Al-OH molecule increases the value of the Q2 Al-OH stretch to 883 cm$^{-1}$, perhaps fortuitously close to the Al-OH stretching frequency of 880 cm$^{-1}$ in hydrous aluminosilicate glasses (Sykes and Kubicki 1993). According to the calculated results, Si-OH stretches are relatively more IR active and Al-OH stretches more Raman active. Al-OH$_2$ stretches are predicted to occur at the much lower frequencies of 582 and 553 cm$^{-1}$ with a moderate IR intensity and weak Raman activity (Table 3).

O-H stretching frequencies of 3806 and 3802 cm$^{-1}$ (Table 3) calculated for Q1 Si-OH molecules are somewhat higher than the 3740 cm$^{-1}$ value assigned to free (i.e., non–hydrogen bonded) surface silanol groups (Fripiat 1982). Hydrogen bonding to the Si-OH and Al-OH groups in these model molecules is insignificant because the H\cdotsO2 distance in each case is >3 Å, which is beyond the range in which hydrogen bonding has a large effect on O-H stretching frequencies in aluminosilicate molecules (Kubicki et al. 1993a). The O-H stretch associated with the Q1 Si$^{1+}$ cation does not change significantly with substitution of Al$^{3+}$ in a second-nearest-neighbor position or addition of Na$^+$. The OH in (Si$_3$)Al-OH is predicted to vibrate at 3768 cm$^{-1}$, which falls within the experimental z(OH) stretch range of 3768-3780 cm$^{-1}$ found on mineral surfaces with Al$^{3+}$ in tetrahedral coordination (Knözinger and Ratnasamy 1978). In the (HSi)$_3$Al-OH and Na$^+$[(HSi)$_3$Al-OH] molecules, ν(OH) = 3780 and 3900 cm$^{-1}$, respectively. O-H bonded to Al is predicted to be a relatively weak IR absorber and strong Raman absorber; whereas, the opposite is true of the O-H associated with Si. This prediction points out the need to measure both the IR and Raman spectra of minerals to characterize the surface species.

O-H stretches in (Si$_3$)Al-OH$_2$ are at 3256 and 3339 cm$^{-1}$ (Table 3), approximately 400-500 cm$^{-1}$ lower in frequency than those in the Al-OH group. This decrease is caused by the higher coordination number of O atoms in (Si$_3$)Al-OH$_2$ and the formation of hydrogen bonds of 1.71 and 1.73 Å, respectively. In comparison, O-H stretching frequencies are predicted to be 3620 and 3735 cm$^{-1}$ in Na$^+$[(HSi)$_3$Al-OH] (Fig. 2b), where no hydrogen

<table>
<thead>
<tr>
<th>Molecule</th>
<th>ν (cm$^{-1}$)</th>
<th>ρ (IR)</th>
<th>τ (Raman)</th>
<th>φ (cm$^{-1}$)</th>
<th>ρ (IR)</th>
<th>τ (Raman)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Si$_3$)Si-O</td>
<td>1155</td>
<td>695</td>
<td>7.9</td>
<td>3806</td>
<td>331</td>
<td>0.4</td>
</tr>
<tr>
<td>(Si$_3$)Si-OH</td>
<td>(970)</td>
<td>292</td>
<td>2.1</td>
<td>(3740-3750)</td>
<td>3802</td>
<td>73</td>
</tr>
<tr>
<td>Na$^+$[(HSi$_3$)Al-OH]</td>
<td>1170</td>
<td>272</td>
<td>4.6</td>
<td>(880)</td>
<td>3910</td>
<td>69</td>
</tr>
<tr>
<td>Na$^+$[(HSi$_3$)Si-O]</td>
<td>947</td>
<td>126</td>
<td>1.5</td>
<td>935</td>
<td>159</td>
<td>64</td>
</tr>
<tr>
<td>Na$^+$[(HSi$_3$)Al-OH]</td>
<td>805</td>
<td>14</td>
<td>8.4</td>
<td>805</td>
<td>3768</td>
<td>32</td>
</tr>
<tr>
<td>Na$^+$[(HSi$_3$)Si-OH]</td>
<td>793</td>
<td>258</td>
<td>4.9</td>
<td>3780</td>
<td>100</td>
<td>81</td>
</tr>
<tr>
<td>Na$^+$[(HSi$_3$)Al-OH]</td>
<td>883</td>
<td>125</td>
<td>1.6</td>
<td>(3760-3780)</td>
<td>3780</td>
<td>100</td>
</tr>
<tr>
<td>Si(OH)$_3$Si</td>
<td>582</td>
<td>132</td>
<td>3.8</td>
<td>3339</td>
<td>1215</td>
<td>38</td>
</tr>
<tr>
<td>Si(OH)$_3$Al</td>
<td>(880)</td>
<td>132</td>
<td>3.8</td>
<td>3339</td>
<td>1215</td>
<td>38</td>
</tr>
<tr>
<td>Na$^+$[Al(OH)Si]</td>
<td>533</td>
<td>47</td>
<td>0.6</td>
<td>3735</td>
<td>291</td>
<td>29</td>
</tr>
<tr>
<td>Na$^+$[Al(OH)Si]</td>
<td>3620</td>
<td>192</td>
<td>42</td>
<td>3620</td>
<td>192</td>
<td>42</td>
</tr>
<tr>
<td>Na$^+$[Al(OH)Si]</td>
<td>1502</td>
<td>189</td>
<td>3.2</td>
<td>(1662)</td>
<td>124</td>
<td>3.1</td>
</tr>
<tr>
<td>Si(OH)$_3$Al</td>
<td>3600</td>
<td>336</td>
<td>29.2</td>
<td>3600</td>
<td>336</td>
<td>29.2</td>
</tr>
<tr>
<td>Al(OH)$_3$Si</td>
<td>3640</td>
<td>251</td>
<td>31.2</td>
<td>3640</td>
<td>251</td>
<td>31.2</td>
</tr>
<tr>
<td>Na$^+$[Al(OH)Si]</td>
<td>3659</td>
<td>286</td>
<td>37.9</td>
<td>3659</td>
<td>286</td>
<td>37.9</td>
</tr>
<tr>
<td>Na$^+$[Al(OH)Si]</td>
<td>3926</td>
<td>259</td>
<td>56.7</td>
<td>3926</td>
<td>259</td>
<td>56.7</td>
</tr>
</tbody>
</table>

*Note: Experimental values in parentheses; a = Mysen and Virgo (1986), b = Fripiat (1982), c = Knözinger and Ratnasamy (1978), d = Sykes and Kubicki (1993), e = H\cdotsO2 bond of 1.71 Å, f = H\cdotsO2 bond of 1.73 Å, g = H-O-H bending mode, h = Morterra et al. (1976), i = Datka et al. (1988), j = Kubicki et al. (1995b), and k = [(H$_2$O)$_5$AlOH]$^+$.
bonding occurs with regard to the Al-OH₂ group. Hydrogen bonded O-H vibrations in Al-OH₂ groups could account for the broad bands observed between 3000-3800 cm⁻¹ in infrared spectra of hydrated feldspars (Koretsky et al., in preparation). O-H stretching modes in (Si₅)AlOH₂ and Na⁺(HSi₅)Al-OH₂ are calculated to be both IR and Raman active. The H-O-H bending mode calculated at 1632 cm⁻¹ is close to that observed for adsorbed molecular H₂O on alumina surfaces (1660 cm⁻¹; Morterra et al. 1976) and in aluminosilicate glasses at 1635 cm⁻¹ (Silver and Stolper 1989).

O-H stretching frequencies on bridging O atoms range from 3600 to 3660 cm⁻¹ according to our calculations (Table 3). This range overlaps the value of 3609 measured for the NaH-ZSM-5 zeolite (Datka et al. 1988). Such good agreement between the model-molecule values and that measured in a crystal structure lends support to our assumption that vibrational frequencies are generally controlled by short-range structure surrounding the vibrating group. Furthermore, because p(OH) in zeolites correlates with the PAS and acidity of the T-OH-T sites (Datka et al. 1988), the correspondence of the O-H vibrational frequency also suggests that relative acidity of mineral-surface sites is accurately modeled by our calculations. Lower vibrational frequencies of the T-OH-T and T-OH₂ OH groups are consistent with our earlier interpretations of relative acidity on the basis of energetics.

DISCUSSION

The consistent agreement between observed vibrational frequencies in condensed phases and those calculated for our model molecules indicates that the MO approach employed in this study is a valuable tool for interpreting vibrational spectra of minerals and glasses. Correspondence between the calculated silanol μ(O-H) stretching frequency in (Si₅)Si-OH and (Si₅)AlSi-OH and the observed frequencies on silica and albite surfaces (Koretsky et al., in preparation) confirms the idea that Q¹ Si-OH species are formed near neutral pH (Schindler and Stumm 1987). Comparison of the calculated O-H stretching frequencies in (Si₅)Al-OH and (Si₅)Al-OH₂ with the measured infrared spectra of feldspar (Frijiat 1982; Koretsky et al., in preparation) suggests that Q¹ Al-OH₂ could be the dominant terminal species of Al³⁺ formed near neutral pH, also consistent with measured pKᵢ values (Schindler and Stumm 1987). Theoretical vibrational spectra of the other species in this study can be used as a guide for interpreting vibrational spectra of silica and feldspar surfaces hydrated in a range of pH conditions.

Although PAS alone grossly overestimate equilibrium constants because of neglect of solvation and entropy effects, calculated PA values can correlate well with experimental pKᵢ values because the errors caused by neglect of solvation and entropy are systematic and tend to be constant along a protonation series (Rustad and Felmy 1995; Kubicki et al. 1995a). The consistency of the PAS calculated in this study with experimental protonation behavior also leads us to conclude that reaction energetics obtained from MO theory can be useful in interpreting surface reactions. For example, a comparison of experimental and theoretical results reveals similarities for silica protonation behavior. The reaction SiO²⁻ + H⁺ → SiO⁻⁻ + H₂O has an experimental pKᵢ of 6.7 (Schindler and Gamsjäger 1972). Our corresponding PA values are 1429 and 1665 kJ/mol for SiO²⁻ + H⁺ → SiO⁻⁻ + H₂O, respectively. The PA values of Si-OH and H₂O are relatively similar in comparison with the large range of values calculated (i.e., 700-2000 kJ/mol; Table 2), suggesting a value of pKᵢ(SiO₂)surf just below neutral pH for surface silanol groups, as is observed.

Another objective of this study was to determine if Si-OH groups on silica surfaces have PAS similar to those of Si-OH groups on feldspar surfaces because some researchers have used component oxides to model aluminosilicate protonation (e.g., Parks 1967). Although the PA of an Si-OH group on an albite surface could be equal to that on a quartz surface according to our calculations (Table 2), the range of PA values for Si-OH on an albite surface should be much greater, with a higher average value than that for a quartz surface. Thus, Si-OH may form at higher pH on feldspars than on quartz. Because the same argument holds true for bridging O sites, Si-O-Si and Si-O-Al, the rate of dissolution of Si in acid solution should be greater in feldspars than in quartz because T-OH-T linkages are more readily broken than T-O-T linkages (Xiao and Lasaga 1995).

Next, we turn our attention toward the interpretation of dissolution mechanisms on the basis of calculated structural changes with protonation and relative PAS between various O atoms in our model molecules. MO calculations predicted that both Si-O₆ and Al-O₆ bonds tend to strengthen as surface T-O bonds are protonated. However, dissolution rates of feldspars in aqueous solution do not monotonically decrease with decreasing pH; dissolution rates increase from a minimum at neutral pH as the solution becomes more acidic or basic (e.g., Blum and Lasaga 1988; Hellmann et al. 1990). Hence, we examined the likely sequence of elementary reactions that may occur at aluminosilicate mineral-water interfaces under basic, neutral, and acidic conditions.

Increasing dissolution rates with increasing pH under basic conditions are readily understandable in terms of the calculated results of weakened T-O₆ bonds as Si-OH and Al-OH₂ groups are deprotonated to form Si-O⁻⁻, Al-O⁻⁻, and Al-O⁻⁻ groups. Water molecules are able to form stronger hydrogen bonds to bridging O atoms in these weakened T-O⁻⁻ linkages because of the increase in local charge and the decrease in bond strength to the bridging O atom (Gibbs et al. 1981). Thus, hydrolysis should require less energy. This conclusion is consistent with the experimental interpretation by Brady and Walther (1989) of increasing dissolution rates in basic pH. Lengthened Al-O₆ bonds may also allow (OH)⁻ or H₂O to attack and bond to Al³⁺ more readily. On the basis of NMR spectra,
Bunker et al. (1988) suggested that fivefold- and sixfold-coordinated species do not form readily from Q⁰ species, so this type of nucleophilic attack may occur only at sites where Q²-T-OH species have already formed (i.e., corner sites on the mineral surface).

The calculated strengthening of T-Oₚ bonds in (Si₃)Al-OH₂ and (Si₃Al)Si-OH in comparison with (Si₃)Al-OH and (Si₃Al)Si-OH⁺ helps to explain the observed feldspar dissolution-rate minimum near neutral pH. According to our calculations, Si-OH and Al-OH should be the dominant OH species on feldspar surfaces near neutral pH. The shorter and stronger the Al-Oₚ bond, the more energy is required to hydrolyze the Al-O-Si linkage (a step in the dissolution process; Xiao and Lasaga 1995). In addition, the concentration of H⁺ in the neutral solution is so low that proton attacks on Si-O-Al linkages are not common.

Increasing dissolution rates with increasing acidity can be explained by protonation of bridging O atoms as a direct competition with terminal OH groups for protons from H₂O⁺ (Hellmann et al. 1990). Al-OH₂ groups cannot effectively compete for additional protons in comparison with Al-O-Si because the PA of Al-OH → Al-OH₂ is roughly equal to the PA of Al-O-Si → Al-OH-Si (1317 vs. 1301 kJ/mol without Na⁺ and 963 vs. 954 kJ/mol with Na⁺; Table 2). In fact, MO calculations on the molecule [OH₃Al-(OH₃)²⁺] predict that addition of a third proton to the terminal Al-OH₂ group would break the Al-OH₂ bond to form Al(OH)₃ + H₂O⁺ (Kubicki et al. 1996). This prediction is similar to the interpretation of Bunker et al. (1988) regarding formation of trigonal B in leached sodium borosilicate glasses. T-Oₚ bonds involved in Al-O-Si linkages are significantly lengthened (Brand et al. 1993; Sykes and Kubicki 1993; Xiao and Lasaga 1995); hence, the dissolution rate increases as a function of decreasing pH. A similar process should occur in quartz because the PA values of Si-O-Si and Si-(OH)₃⁺ are nearly equivalent to each other (777 vs. 776 kJ/mol; Table 2). However, on quartz the proton transfer would occur at lower pH because the Si⁴⁺ species have PAs that are lower than those of the corresponding Al⁴⁺ species (Table 2).

We note that our calculations predict gas-phase PA values of 1665 and 694 kJ/mol for H₂O and H₂O⁺, respectively (Table 2), which are close to the experimental values (Lias et al. 1988). Hence, H₂O⁺ would give up a proton to Si-O and Al-O, Al-O, and Al-O-Si groups; whereas, H₂O is likely to protonate only Si-O and Al-O groups on albite surfaces. The calculated PAs of [(OH₃)Si(OH)₂]⁺ and [(H₂SiO₄)⁺] are 776 and 777 kJ/mol, respectively (Table 2), suggesting that protons would be distributed fairly evenly between these two groups and H₂O⁺ under acidic conditions where the Al-OH₂ and Al-OH-Si groups are fully protonated (i.e., pH < 2).

Another possible mechanism involved in the dissolution reaction is the attack of an H₂O molecule against Al⁴⁺ opposite the Al-OH₂ bond to form a pentacoordinated Al species (Furrer and Stumm 1986). Figure 2 illustrates nearly coplanar arrangements of the bridging O atoms in (Si₃)Al-OH₂ and Na⁺-(HSi)Al-OH₂. In these structures, an Al²⁺ cation could directly form a fifth bond with an H₂O molecule. Pentacoordinated Si⁺ has been suggested as a possible reaction intermediate in the dissolution of quartz under basic conditions (Kubicki et al. 1993b), but pentacoordinated Al²⁺ is more likely to form because of the larger ionic radius of Al²⁺ in comparison with Si⁺. However, the pentacoordinated Al²⁺ reaction intermediate would form under neutral to acidic conditions where Al-OH₂ groups are prevalent.

Polarization and weakening of cation-bridging O bonds by the formation of X-OH₂ groups has been used to explain increasing dissolution rates with lower pH values (e.g., Furrer and Stumm 1986; Wiceland et al. 1988). According to our calculations, this does not occur on albite surfaces if Al²⁺ remains in tetrahedral coordination. Bond weakening does occur, however, if chemisorption of the H₂O leads to a pentacoordinated Al²⁺ (Kubicki and Sykes 1995). As mentioned earlier, coordination states higher than tetrahedral may not form from Q⁰ and Q¹ cations (Bunker et al. 1988), but Hellmann et al. (1990) noted that an increase in coordination state probably occurs during the dissolution reaction if the Al species in acidic pH solutions is octahedrally coordinated [e.g., Al³⁺, 6(H₂O)]. We conclude that direct nucleophilic attack by H₂O is probable after at least two Al-OH₂ groups have formed on a given cation, so a second Al-O-Si linkage in a species such as that depicted in Figure 2 may need to be hydrolyzed before the coordination change occurs. Once a pentacoordinated Al²⁺ reaction intermediate has formed on the surface, the remaining Al-Oₚ bonds are more readily hydrolyzed, and attack by another H₂O molecule leads to the formation of Al²⁺.

ACKNOWLEDGMENTS

J.D.K. acknowledges the National Research Council Research Associateship program. S.E.A. and J.D.K. acknowledge support from ONT and ONR. G.A.B. acknowledges NSF grant EAR-9316432. Computational resources were supplied by the Jet Propulsion Laboratory. The comments of D.A. Sverjensky on an early draft of the manuscript and the review of D.M. Sherman greatly aided the development of this paper.

REFERENCES CITED

groups in NAHZSM-5 zeolite studies by infrared spectroscopy. Journal of Catalysis, 114, 368-376.

Manuscript received February 13, 1995
Manuscript accepted March 27, 1996