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AssrRAcr

The state of ordering ilmong network-modifier cations in molten silicates has a poten-
tially large effect on their overall conflgurational entropy, on free energies of mixing, and
on viscosity and diffusivity. Most models of thermodynamic and transport properties as-
sume random mixing, but there is relatively little direct microsffuctural information to
consffain the real extent of this disorder. Two-dimensional '?O NMR can produce spectra
that are free of quadrupolar broadening and thus in which peak widths for non-bridging
oxygen sites directly reflect the extent of disorder in the local structural environment. In
this report, we describe new data from triple-quantum magic-angle-spinning (3QMAS)
NMR for a series of barium and calcium silicate glasses. Results are best explained by
completely random mixing of Ba and Ca, confirming conventional modeling assumptions.
Other recent data show, however, that significant ordering may be present (at least at the
temperature of the glass transition) for modifier cations with greater differences in size or
charge, and among network-forming cations.

INrnonucrroN

The extent of disorder among metal cations has been
a first-order question in the thermodynamics of molten
silicates since the earliest attempts at modeling phase di-
agrams and activities (e.9., Bowen 1913; Flood and
Knapp 1968). It is generally thought that large differences
in cation size and charge cause major structural ordering
in melts as in crystals. In particular, small, high-charge
"network formers" (Si"*, AF", B,*, P.*), which at low
pressure are primarily threefold or fourfold coordinated
by oxygen, are not mixed with lower-charged, larger
"network modifiers" (e.g., Na*, Car* ) in models of con-
figurational entropy. This separation of role is either
maintained implicitly by the choice of components or ex-
plicitly by division of the system into two or more "sub-
lattices" (Weill et al. 1980). The distinction between net-
work modifier and former cations is reasonably well sup-
ported by direct, microscopic information: X-ray and neu-
tron scattering, and spectroscopic data in general confirm
that ranges of coordination number and bond distances
for these two categories are non-overlapping (Brown et
al. 1995). This division has recently become blurred,
howeveq with the finding that Fe3* and even Fe2* and
Mg'z* may sometimes be fourfold coordinated in melts
and glasses (Mysen 1988; Brown et al. 1995), and that
even at ambient pressure significant proportions of five-
fold-coordinated Si and Al may occur (Risbud et al. 1987;
Sato et al. l99l; Stebbins 1991; McMillan and Kirkpa-
trick 1992). The consequences of these findings for
entropy models have not been quantified.

Within the two divisions of network formers and mod-

ifiers, random mixing among different cations is almost
universally assumed in models of thermodynamics, in
which at least the mixing entropy (if not the enthalpy) is
taken as the ideal value (e.g., Ghiorso et al. 1983; Ghiorso
and Sack 1994). The importance of disorder among net-
work modifiers in transport properties has recently been
highlighted by calculations relating configurational entro-
py to viscosity by means of the Adam-Gibbs formulation
(Richet 1984; Richet and Neuville 1992). For the binary
systems CaSiO.-MgSiO. and Ca.AlrSi.O,r-Mg.AlrSi.O,r,
random mixing of Mg and Ca gives remarkably accurate
predictions of the changes in viscosity with composition,
over a wide range of temperatures (Neuville and Richet
1991). Disorder among modifier cations also has major
consequences in models of their diffusivity and cationic
conductivity (Greaves and Ngai 1994; Sen et al. 1995).
However, despite the major consequences of cation order-
disorder in such a wide range of models, there is surpris-
ingly little direct microscopic information to evaluate in-
dependently the true extent of this randomness.

Some insight into ordering among modifier cations in
melts may perhaps be gained from crystalline silicates.
For example, the extensive substitution of Fe2* and Mg2*
in octahedral sites in many silicates, the fairly wide range
of substitution of Ca2* and Mg2* in pyroxenes and garnets
at high temperature, and extensive solid solution of Na*,
K*, and Ca'z* in feldspars at high temperature suggest that
these geologically common groups of cations might in-
deed mix randomly in melts. In ternary systems of alkali
and alkaline earth oxides with silica, extensive solid so-
lution is often noted for neighboring pairs in the periodic
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table with the same charge, for example Li-Na, Na-K,
Mg-Ca, Ca-Sr, and Sr-Ba. However, systems with cation
pairs with larger size differences, or size plus charge dif-
ferences, usually have intermediate, ordered ternary
phases, especially at silica contents of 50 mol%o and high-
er (Levin et al. 1964,1969; Roth et al. 1987). An example
is the leucite analog K,MgSi.O,r, in which Mgr* forms
part of the tetrahedral network (Kohn et al. 1991).

One view of modifier cation ordering in melts can be
obtained from the range of local environments around
non-bridging oxygens (NBO). In crystalline alkali and al-
kaline earth silicates, NBO are generally coordinated by
Si and three or four +l or +2 cations. If the same is true
in glasses (which are generally presumed to represent the
structure of the liquid at the glass ffansition temperature),
then extensive disordering of the modifier cations should
be reflected in a wide range of NBO coordination envi-
ronments; the converse is expected if the sffucture is more
ordered. The technique of '7O NMR is especially sensitive
to the extent of ordering because chemical shifts for NBO
peaks vary over a wide range depending on the identity
of the neighboring cations (Timken et al. 1986; Stebbins
1995). For example, an early study (Kirkpatrick et al.
1986) reported '?O MAS specffa of glasses on the Ca-
SiO.-MgSiO. join that seemed to indicate substantial mix-
ing of Ca and Mg. To obtain much higher resolution,
reduce overlap of NBO and BO peaks, and eliminate
quadrupolar broadening, later work used two-dimensional
(2-D) dynamic angle spinning (DAS) NMR to obtain ''O

spectra for K,SioOn and KMgn.SioO, glasses (Farnan et
al. 1992). NBO and bridging oxygen peaks were well-
resolved and free of the quadrupolar broadening that
complicates standard l-D MAS spectra. In the mixed-
cation glass, the NBO peak was similar in width to that
in the K end-member, with very little intensity at the po-
sition of the peak with all K neighbors. It was therefore
concluded that K* and Mg2* had a highly ordered distri-
bution, probably with most NBO coordinated by two K*
and one Mg2*.

A second study of this type examined what was ex-
pected to be a disordered system, the KrSirO.-NarSirO.
binary (Florian et al. 1996). Here, spectra of the end-
member glasses and three intermediate compositions
showed clearly that the NBO peak shapes, broadened by
disorder, were very well fitted by a model with random
mixing of K and Na on four adjacent sites. This is con-
sistent with expectations from extensive (if incomplete)
solid solution in the crystalline phases (Ikacek 1932).

In the study described here we extend this work to a
mixed alkaline-earth system, the barium-calcium silicate
tefirary. In this system, extensive solid solution appears
to be present only for crystalline (Ba,Ca)rSiO' whereas
ordered ternary compounds (e.g., CarBaSiO.) appear at
higher silica contents (Brisi and Appendino 1967;Levin
and McMurdie 1975). Some degree of ordering thus ap-
pears to be caused by the large size difference of the
cations [0.1] vs.0.14 nm in eightfold coordination (Shan-
non and Prewitt 1969)1. We have again examined the
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NBO to determine if this ordering is reflected in the glass-
es and to seek more general constraints on the correctness
of the common assumption of full disorder in thermo-
dynamic and transport models.

Tnrnr-n-qu.turuir.r MAS NMR

For this study, we used the recently developed tech-
nique of triple-quantum magic-angle spinning (3QMAS)
NMR, which, like DAS, produces spectra free of sec-
ond-order quadrupolar broadening for nuclides with spin
t/,,5/r, etc. (Frydman and Harwood 1995; Samoson 1995;
Amoureux et aI. 1996; Massiot et al. 1996). Because of
the relative simplicity of this method, which can be done
with any high radiofrequency power, high-speed MAS
probe (instead of a mechanically complex DAS probe),
3QMAS has received widespread attention since its an-
nouncement in 1995. A useful comparison of 3QMAS,
DAS, and other techniques has been presented by
Youngman et al. (1996). Tests of 3QMAS have included
studies of "Al in zeolites, in glasses, and in crystalline
aluminosilicates and phosphates (Fernandez and Amou-
reux 1995; Frydman and Harwood 1995; Baltisberger et
al. 1996; Fernandez et al. 1996; Sarv et al. 1996), and
of 23Na in a variety of oxysalts (Medek et al. 1995). The
technique of 3QMAS has also recently been applied to
r7O in zeolites and NaAlSi.O* glass (Xu and Stebbins
1996, 1997; Dirken et al. 1997). The relatively esoteric
theory upon which this approach is based has been dis-
cussed in the references cited above. In brief, the aniso-
tropic effects on peak position that are not averaged
away by conventional MAS (the second-order quadru-
polar broadening) are refocused and eliminated by ex-
citation and manipulation of the triple-quantum transi-
tion, i.e., the +y, to -7, instead of the usual +/z to -1/z

transition. The resulting 2-D spectrum displays the nor-
mal MAS spectrum along one direction and an isotropic
spectrum along the other. As in DAS NMR, the peak
positions in the isotropic dimension are not those of the
isotropic chemical shift but are the sum of this term and
a term including the isotropic average of the second-
order quadrupolar coupling. A disadvantage of either
technique is that the NMR signal is spread out in two
dimensions, reducing the signal-to-noise ratio and often
making data collection rather time consuming (some-
times several days per spectrum). This is particularly a
problem for 3QMAS because of the inherent inefficien-
cy of triple-quantun excitation. The latter is also com-
plicated by the dependence of this excitation on the
quadrupolar coupling constant (Cr) of the site under ob-
servation, resulting in systematically reduced spectral
intensities when Co is large (Baltisberger et al. 1996).
This is not expected to be a problem in the current study,
however, because Co values for NBO sites in silicates
are relatively small and vary over a relatively narrow
range, usually between about 2 and 3 MHz (Timken et
al. 1986; Mueller et al. 1990, 1992; Stebbins 1995).

The widths of the peaks in 3QMAS (and DAS) spectra
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therefore reflect in a somewhat complex fashion the real
distribution of local structural environments. This is par-
ticularly important for '7O in glasses: In standard l-D
MAS spectra peak widths are strongly affected by quad-
rupolar broadening. Ranges of local coordination envi-
ronments that are the source of the entropy differences
between glasses and crystals are thus difficult to quantify
from l-D data. For this reason, '?O DAS on glasses was
a major step forward in characterizing the disorder
around both BO and NBO (Farnan et al. 1992'. Florian et
al. 1996). Here we use both l-D MAS and 2-D 3QMAS
to search for relative changes in NBO peak widths as a
function of composition (Oglesby et al. 1996).

S.lupr,B pREpARATToN AND NMR METHoDS

The compositional join with 55 mol% SiO, was chosen
to minimize liquidus temperatures and improve glass-
forming ability. Two end-member glass compositions
[(BaO)o or(SiOr)u,, and (CaO)u.r(SiOr)... ] were prepared
by melting mixtures of reagent-grade BaO, CaO, and '7O-
enriched SiO, at 1540-1615 'C in Pt tubes in pure Ar.
The enriched silica was made as previously described by
reacting HrO with about 45 atomvor?O (Cambridge Iso-
tope Laboratories, Inc.) with SiClo (Geissberger and Bray
1983). BaO and CaO (natural isotopic abundance) were
used instead of carbonates to minimize the loss of r7O
due to exchange with volatilizing COr; HrO contents were
carefully assessed by weight-loss studies during trial syn-
theses with isotopically normal SiO.; 0.1 wt% CoO was
added to speed spin-lattice relaxation. A 50:50 molar
mixture of the two end-members was re-melted at 1400
oc.

The l-D MAS and 3QMAS spectra were collected with
a modified Varian VXR-400S spectrometer (9.4 Tesla
field), using a high-speed MAS probe from Doty Scien-
tific, 5 mm sample rotors, and spinning rates of 10-12
kHz. All spectra are referenced to ,tO in tap water. Re-
laxation times (7,) were determined and experimental de-
lay times were adjusted accordingly to ensure that there
was no differential relaxation (3.5 s for the Ca glass, 130
ms for the Ba glass, 415 ms for the BaCa glass). DAS
spectra were acquired as previously reported, using a
probe constructed by PJ. Grandinetti (Florian et al. 1996).
The single-hop DAS method was used, with rapid flip-
ping of the sample spinning angle back and forth from
37.4 to 79.2 with respect to the external field and spectra
acquired at the latter angle. The hypercomplex shifted-
echo NMR pulse sequence was used as described previ-
ously (Grandinetti et al. 1993; Grandinetti 1995). The re-
sulting 2-D data display an isotropic spectrum along one
dimension (free of quadrupolar broadening) and the 79.2
("VAS") spectrum along the other. In the Ba glass sam-
ple, the 7, value was too short for DAS spectra to be
collected. The 3QMAS spectra were collected as previ-
ously described (Baltisberger et al. 1996; Massiot et al.
1996). The spectral widths in the r, and /, dimensions
were 20 kHz and 30 kHz, and about 600 transients were
averaged per each of about 20 t, points, with delay times
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Frcunn 1. The '7O MAS NMR spectra for (Ba,Ca, ,-
O)00.(SiO,)0.. glasses. Bridging oxygen (BO) and non-bridging
oxygen (NBO) peaks are labeled.

of about three times 7,. The first and second rf pulses
were l8 ps long, the third "soft" pulse was 27 ps. An
echo time of only two rotor periods (169 ps) was required
by the short T, values (broad peaks) of the samples, al-
lowing only the echo portion of the data to be used (not
the "anti-echo").

Rnsur-rs
The l-D '7O MAS specffa for the three glasses are

shown in Figure l. As reported previously for CaSiO.
glass, the spectra contain two roughly Gaussian peaks.
Their area ratios are close to that expected from stoichi-
omeffy (NBO/BO : 1.38). The lower frequency (-35
ppm) peak can be unambiguously attributed to BO by
comparison with data on crystalline silicates (Timken et
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Ftcunr 2. Contour plot of ''O dynamic angle spinning
(DAS) NMR spectrum for (CaO).".(SiOr)'.. glass. To match pre-
vious publications (Farnan et al. 1992; Florian et al. 1996), the
anisotropic (79" spinning angle) dimension is plotted horizontal-
ly, the isotropic dimension vertically. Contours are evenly
spaced.

al. 1987; Mueller et al. 7992; Stebbins 1995). The posi-
tion of the higher frequency peak (NBO) varies strongly
with change in the network modifier, from 150 ppm in
the Ba glass to 100 ppm in the Ca glass; that of the BO
varies over a much narrower range, from 40 to 30 ppm.
This is expected from previous studies of silicate and ox-
ide crystals (Timken et al. 1987) and glasses (Kirkpatrick
et al. 1986): Shorter M-O bonds or greater electronega-
tivity of flrst cation neighbors leads to more covalent
bonding and to more electronic shielding. This effect is
analogous to well-known effects of bonding on chemical
shifts for cations (e.g., for,esi, ,Al, rrB, 23Na, ,sMg, and
6Li), but is necessarily in the opposite direction for the
oxide anion. The Gaussian or even triangular shapes of
the BO peaks indicate that the quadrupolar asymmetry
parameter !o is relatively large (probably >0.3), as ex-
pected from the relatively sffong interactions between di-
valent modifier cations and bridging oxygens, which
leads to relatively narrow Si-O-Si angles (Farnan et al.
1992; Grandinetti et al. 1995).

The NBO peak in the BaCa glass MAS spectrum is
particularly broad and contains significant intensity at the
positions seen in the end-member glasses, which are due
to NBO with all Ca or all Ba neighbors. Substantial cation
disorder in the BaCa glass is thus suggested, but this con-
clusion is not definitive because of the possibility of an
unexpected increase in Cn and thus in quadrupolar broad-
ening in the mixed composition.

The 2-D DAS spectrum for the Ca glass (Fig. 2) re-
sembles those previously published for potassium silicate
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Frcunr 3, Total isotropic projection of spectrum in Figure 2.

glasses, with excellent separation of the BO and NBO
peaks (Farnan et al. 1992;Floian et al. 1996). The iso-
tropic projection is shown in Figure 3 for comparison.
The width (in the isotropic dimension) of the NBO peak
for the Ca glass is about twice that for KrSirO. or KrSi4O,
glasses, indicating a greater disorder in the local sffuctural
environment, perhaps related to the similar trends report-
ed for silicate anionic species from Raman (McMillan
1984) and "Si NMR studies (Murdoch et al. 1985; Steb-
bins 1988). For the BO peak, the lack of a long "tail" in
the anisotropic dimension (as seen previously for the po-
tassium silicates) is expected if, as suspected from the
l-D MAS data, 1o has a value of about 0.3 or higher.
Because of difficulties in acquiring a DAS spectrum for
the Ba end-member, however, we will not analyze the
DAS data in detail.

Contour plots of the 3QMAS specffa for the three
glasses are shown in Figure 4. They each contain two
well-separated peaks, which again can be unambiguously
attributed to NBO and BO sites. As in the l-D spectra,
the BO peak is spread over a relatively narrow range in
6.oro, (the position in the isotropic dimension). As in a
previous 3QMAS study (Baltisberger et al. 1996), we
have analyzed the positions of the peak maxima in the
two dimensions to estimate means in the isotropic chem-
ical shift (E.r) and C.. These values for the Ca glass are
59 'ts 2 ppm and 4.7 + 0.4 MHz, for the CaBa glass 68
ppm and 4.1 MHz, and for the Ba glass 78 ppm and 4.0
MHz. Estimates of Co were made assuming r1o : 0.3;
ranges in this parameter over values reasonable for BO
(0 to 0.5) contribute onlv about -t- 0.2 MHz to the
uncertainty.
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In conffast to the BO peaks, the NBO peaks are spread
over a wide range in 6.o,or, indicating a corresponding
dispersion of either 6..or of Cr. The narrow, almost linear
shape of the NBO peaks in the 2-D plot indicates, how-
ever, that Co has only a narrow range for each glass. This
is also the simplest explanation for the near constancy in
width of slices in the MAS dimension taken at various
positions. Again using the positions in the two dimen-
sions of the high points along the NBO "ridges" (as for
the BO peaks), we estimate Cn values to be between about
1.8 and 2.0 MHz The widths of the NBO peaks in the
isotropic dimension are therefore conffolled primarily by
distributions in 6., and are probably thus related in a fair-
ly simple fashion to real distributions of local structural
parameters, such as number and identity of cation neigh-
bors, bond distances, and so forth. The near constancy in
Cn also means that relative peak areas should not be sig-
nificantly distorted by variation in triple-quantum exci-
tation and thus are close to quantitative.

As in the l-D MAS spectrum, the NBO peak in the
3QMAS specffum for the BaCa glass covers the full
range from one end-member to the other, but with no
ambiguity in the nature of this broadening: It clearly is
the result of disorder. The widths and shapes of the peaks
are shown in projections in the isotropic dimension in
Figure 5. For the Ca and BaCa glasses, there is a slight
overlap of the BO and NBO peaks that introduces a small
extra intensity in the high frequency ends of the projec-
tions (toward 0 ppm). Given the relatively low total in-
tensities of the BO peaks, this is only a minor influence
on the NBO peak shapes and does not affect the conclu-
sions drawn below.

To explore the extent of disorder more quantitatively,
we have made forward simulations (not fits) of the iso-
tropic projection of the NBO peak for the BaCa glass. To
do this, we first fitted the NBO peaks for the end-mem-
bers with Gaussians to measure their widths better. We
assumed that each NBO has three modifier cation neigh-
bors. The NBO can then be divided into four populations,
with either 3Ca, 2Ca and lBa, lCa and 2Ba, or 3Ba
neighbors. We generated peaks for each by taking the
appropriately weighted average of the positions and
widths for the end-member peaks, and areas appropriate
to various ordering schemes. The only simple pattern that
closely approximated the observed peak was that expect-
ed from a random (binomial) distribution, with area ratios
of l:3:3:1 (Fig.5). The slight extra width on both sides
of the experimental peak for the BaCa glass is most likely
the result of the peaks not being perfectly Gaussian in
character; this can also be seen in the fits to the peaks for
the end-members. Models with four modifier neishbors
give similar results.

DrscussroN

Along the Ba-Ca and Na-K (Florian et al. 1996) joins
that were explored with 2-D ''O NMR, random mixing
of modifier cations on sites adjacent to NBO seems to be
the best approximation, supporting the assumption gen-

50

E
o-
o 1 0 0

-105

200

-s5 -80 -105
sotropic (ppm)

Frcurn 4. Contour plots of '7O triple-quantum (3e) MAS
NMR spectra for (Ba.Ca, ,O)04.(Sior)o-. glasses. To match ear-
lier work (Baltisberger et al. 1996), the anisotropic (MAS) di-
mension is plotted vertically, the isotropic dimension horizontal-
ly. Contours are evenly spaced.
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erally made in thermodynamic models of melts. Greater
differences in cation radius, or the combination of differ-
ences in charge and radius, may still lead to significant
ordering, as suggested by the previous study of K-Mg
mixing (Farnan et al. 1992). Particularly in compositions
in which Mg'?* may be partly or entirely in fourfold co-
ordination (e.g., high-alkali liquids at low temperature)
(Fiske and Stebbins 1994; Brown et al. 1995), mixing of
this cation with larger or lower charged modifiers may be
limited.

These results have important implications for under-
standing the origins of the configurational heat capacity
of melts. If modifier cations are fully disordered at tem-
peratures as low as the glass transition, then additional
classical site mixing at higher temperature cannot con-
tribute to the increased configurational enffopy, unless
mixing begins with energetically unfavorable sites that
are unoccupied at low temperature (Fiske and Stebbins
1994; George and Stebbins 1996). This conclusion is con-
sistent with the linearity in composition commonly seen
in models of heat capacity (Richet 1984; Stebbins et al.
1984; Richet and Neuville 1992): At least as detected by
multiple regressions of complex data sets, no exffa heat
capacity is generated by mixing of unlike cations. On the
other hand, if partial ordering were present at low tem-
perature, disordering with increasing temperature will add
to the configurational heat capacity. The high configura-
tional heat capacities of Mg-rich melts (Stebbins et al.
1984) may conceivably be related to such an effect.

In the BaCa glass, the lack of extra (non-random) in-
tensity in the 3QMAS NBO peaks for 3Ca and 3Ba
neighbors indicates that there is not an obvious tendency
for modifier cations to segregate into clusters of one type.
Other recently developed multinuclear NMR techniques
have the potential for examining this question more di-
rectly. For example, spin echo double resonance (SE-
DOR) has recently been applied to constrain the distri-
bution of distances among Na* and Li* cations in silicate
glasses and thus search for segregation (Gee and Eckert
1996; van Wiillen et al. 1996a). Models of the results
were not unique, but implied random Na-Li mixing if the
cations were uniformly dispersed. However, some like-
cation segregation was suggested if alkali-rich regions
were present. The 'z3Na and tli NMR peak widths and
positions change uniformly as Na/Li varies in disilicate
glasses, also suggesting random cation mixing (Ali et al.
1995). In some cases, X-ray absorption specffoscopy can
also characterize first cation neighbors for cations, pro-
viding real potential for detecting like-like clustering or
avoidance (Farges et al. 1991; Houde-Walter et al. 1993;
Farges et al. 1994; Brown et al. 1995).

Another important aspect of intermediate range order-
ing is the extent of dispersion of modifiers within the
silicate network. Our and other '7O NMR data do not
quantitatively constrain the extent of segregation into
modifier-rich and modifier-poor regions, but they do re-
quire that extensive interactions exist between modifier
cations and bridging O atoms. If this were not the case,
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FrcunB 5. Isotropic projections of the NBO peaks of the
3QMAS spectra. In the pure Ba and Ca glasses, Gaussian fits are
shown, which were used to specify peak positions and widths in
simulations of the spectrum for the BaCa glass. For the latter,
results of a forward simulation (not a fit) are shown, which as-
sumes a random mixing of Ba and Ca on three sites adjacent to
each NBO. The corresponding peaks for the various site occu-
pancies are shown with solid lines; their sum is shown by the
dashed line.
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the differences in BO isotropic chemical shifts between
Ba and Ca glasses would not be observed; nor would the
differences in BO MAS peak shapes between the Ba and
Ca glasses and Na and K glasses (suggestive of differ-
ences in In) be present. These findings in turn imply that
most bridging O atoms are not in "silica-like" regions
with low local concentrations of modifier cations. This
may place limits on the scale of Ca-rich segregation in a
glass near CaSiO. in composition that was detected by
neuffon scattering experiments (Gaskell et al. 1991; Gas-
kell 7992).

Other NMR data suggest the presence of some inter-
mediate-range ordering among network-forming cations
in melts. For sodium and calcium aluminosilicate glasses,
"Si NMR spectra have reduced peak widths as the AVSi
ratio approaches l, suggesting that Al avoidance causes
some degree of Si-Al ordering (Murdoch et al. 1985). In
contrast, thermodynamic modeling has generally assumed
random mixing of Si and Al on tetrahedral sites (Weill et
al. 1980; Ghiorso and Sack 1994). Double-resonance
techniques for the I'B-27A1 pair have been applied to bo-
roaluminate glasses and indicate that most or all Al have
B neighbors (van Wiillen et al. 1996b). In both types of
glasses, there may thus be some possibility of increased
disorder among network formers with increasing
temperature.

The complement to cation ordering is ordering in the
anionic network itself. Here, it has been known from the
first high-resolution ,rSi studies of glasses that the distri-
bution of anionic species Q" (where n counts the number
of bridging O atoms on a Si tetrahedron) is more ordered
than predicted by a random distribution of BO and NBO
(Dupree et al. 1984, 1986; Srebbins 1987; Stebbins er al.
1992). Recently developed 2-D NMR techniques have
made Q" species quantitation much more precise even for
systems (such as CaSiO.) where peaks are unresolved in
l-D specffa (Grandinetti 1996 Zhang et al. 1996,1997).
These confirm non-random Q-species distributions, dem-
onstrate the greater disorder in alkaline earth silicate
glasses when compared to alkali silicates, and support the
likelihood that increase in anionic disorder with increas-
ing temperature makes some contribution to the config-
urational heat capacity as previously suggested (Brandriss
and Stebbins 1988; Stebbins 1988).
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