Structure of synthetic Li₂(Mg,Cu)Cu₂[Si₂O₆]₂: A unique chain silicate related to pyroxene

HIROYUKI HORIUCHI,¹ AKIHIRO SAITO,¹ TOSHINAGA TACHI,² AND HIROSHI NAGASAWA²

¹Mineralogical Institute, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan ²Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171, Japan

ABSTRACT

A unique Cu-bearing chain silicate, $\text{Li}_2(\text{Mg},\text{Cu})\text{Cu}_2[\text{Si}_2O_6]_2$, was synthesized, and the structure was determined by single-crystal X-ray diffraction techniques. The structure was found to be triclinic, space group $P\overline{1}$, with unit-cell parameters a = 5.7068(7), b = 7.4784(9), c = 5.2193(3) Å, $\alpha = 99.911(8)$, $\beta = 97.436(8)$, $\gamma = 84.52(1)^\circ$, and Z = 1. The arrangement of zweier single chains, $[\text{Si}_2O_6]$, differs significantly from chain arrangements in the pyroxene and pyroxenoid structures, and the "I-beam" description of the pyroxene structure is not applicable. The structure may be classified as a new derivative type of the pyroxene structure, with an "oblique I-beam". Cu atoms are coordinated by four O atoms in a square-planar arrangement with 1.94–2.00 Å for Cu-O and two O atoms with longer Cu-O distances of 2.41–2.92 Å, consistent with the crystal-field stabilization of the d° electronic structure of Cu²⁺. The square-planar CuO₄ units form a [Cu_nO_{2n+2}] ribbon with n = 3 in the structure, which is also found in Cu-bearing chain silicates such as shattuckite and planchéite with n > 3. Mg is octahedrally coordinated by O atoms, but the configuration is affected by the partial replacement by Cu.

INTRODUCTION

Co- and Ni-bearing silicates have been studied mainly for the purpose of simulating the structural behavior of ferromagnesian silicate minerals under the high-temperature and high-pressure conditions prevailing in the Earth's interior. However, the crystal-chemical behavior of Cu-bearing silicates is different, possibly because of the electronic configuration of Cu2+. Most of these naturally occurring minerals are hydrous or hydrated silicates and some are chain silicates. The following are examples of Cu-bearing silicate minerals that have chain structures: shattuckite, Cu₅[Si₂O₆]₂(OH)₂ (Mrose and Vlisidis 1966; Kawahara 1976; Evans and Mrose 1966, 1977); planchéite, Cu₈[Si₄O₁₁]₂(OH)₄·xH₂O (Evans and Mrose 1966, 1977); and liebauite, $Ca_6Cu_{10}[Si_{18}O_{52}]$ (Zöller et al. 1992). Liebauite is one of the few anhydrous Cu-bearing minerals. The layer silicate cuprorivaite, CaCu[Si₄O₁₀] (Mazzi and Pabst 1962), is another example of a natural anhydrous Cu-bearing phase. On the other hand, most synthetic Cu-bearing chain silicates are anhydrous. Typical examples include Na₂Cu₃[Si₄O₁₂] (Kawamura and Kawahara 1976), Na4Cu2[Si8O20] (Kawamura and Kawahara 1977), $CuMg[Si_2O_6]$ (Breuer et al. 1986), and CaBa₃Cu[Si₆O₁₇] (Angel et al. 1990). However, synthetic Cu-bearing chain silicates related to pyroxene are rare in comparison with silicates containing Co, Ni, or Zn (e.g., Morimoto et al. 1970, 1974, 1975). Nevertheless, knowledge of the phase stabilities and Cu configurations of Cu--bearing silicate structures is important for understanding the mineralogy and geochemistry of transition metals.

Examples of Cu-bearing silicates with single-chain structures are also quite rare. The mineral shattuckite and synthetic CuMg[Si₂O₆] and Na₂Cu₃[Si₄O₁₂] are the only known examples. CuMg[Si₂O₆] was reported to be analogous to the clinopyroxene structure with space group $P2_1/c$, with an ordered arrangement of Mg and Cu as determined by the semiquantitative comparison of observed and calculated X-ray powder diffraction intensities (Breuer et al. 1986). However, the detailed structure is unknown. The configuration of the [Si₂O₆] chain of shattuckite is similar to that of pyroxene with straight chains, but the cation arrangement is different from that of pyroxene. The structure of planchéite is a derivative structure of shattuckite but with amphibole-type double chains instead of single chains. The [Si₂O₆] unit of Na₂Cu₃[Si₄O₁₂] is a single chain; however, it is different from that of pyroxene but similar to that of haradaite (Takéuchi and Joswig 1967).

Thus, Cu-bearing pyroxene or pyroxene-derivative structures are very rare, even though the ionic radius of Cu^{2+} is similar to that of other transition metal ions. In the present paper, a new Cu-bearing silicate structure with straight single chains is described and the crystal-chemical behavior of Cu^{2+} in the structure is discussed.

EXPERIMENTAL METHOD

Sample preparation and chemical analysis

The crystalline phase of $Li_2(Mg,Cu)Cu_2[Si_2O_6]_2$ was synthesized in an oxide-flux mixture, which was primarily prepared for the synthesis of Cu-bearing pyroxene.

TABLE 1. Results of chemical and structure analyses

Compo-	Chemical	analysis	Result of structure analysis		
nents	wt% (expt.)	mole ratio	wt% (calc.)	mole ratio	
SiO,	50.6(4)	4	50.63	4	
MgÕ	8.4(3)	0.99	7.39(3)	0.871(3)	
CuO	33.7(4)	2.01	35.69	2.129	
Li₂O	7.3(7)	1.16	6.3(1)	0.98(2)	
Total	100		100		

Note: The weight percent values were normalized to a total of 100%, and the mole ratio values of SiO_2 were constrained to 4. The results of structure analysis were obtained by the refinement of site occupancies (see text) of Cu, M, and Li sites. Other sites were assumed to be fully occupied by each single atom.

The molar ratio of oxides was MgO:CuO:SiO₂ = 1:1:2, and that of the flux was Li₂O:MoO₃:V₂O₅ = 42.8:51.2: 6.0. The percentage of MgO-CuO-SiO₂ mixture was about 20% of the total weight of the sample. The mixture was heated to 850 °C for 3 h in a platinum crucible. The temperature was gradually decreased from 850 to 650 °C over 8 d, after which the mixture was slowly cooled to room temperature by turning off the electricity. All processes were performed in air. In the high-temperature reaction, Li₂O, MoO₃, and V₂O₅ serve as the flux, although Li is incorporated into the final product. Transparent greenish blue crystals (1–2 mm) were obtained by dissolving surrounding materials in warm dilute HCl.

The chemical composition of the products was analyzed by electron probe microanalysis for Mg, Cu, and Si, and by ICP for Li. The results are shown in Table 1 together with the chemical composition obtained from structure analysis, which is discussed later. On the basis of the chemical analysis, the idealized chemical formula is assumed to be $Li_2MgCu_2Si_4O_{12}$.

Structure determination and refinement

The crystal-structure determination was performed using single-crystal X-ray diffraction techniques. The crystals are often twinned, so the single-crystal specimen for the structure determination was obtained by careful separation from the twinned crystal. Experimental conditions for X-ray diffraction data collection and reliability factors for the final results of the refinement are given in Table 2. The structure analysis was performed using 3573 independent reflections with $F_{obs} \ge 5\sigma_{Fobs}$. An absorption correction was made by using a calibration curve obtained by the ψ scan method. Lattice parameters were determined by the least-squares method using 22 reflections in the range 50–60° 2 θ measured by a four-circle single-crystal diffractometer. The choice of the unit cell follows the rules of Donnay (1943). Refined values are a= 5.7068(7), b = 7.4784(9), c = 5.2193(3) Å, α = $99.911(8),\beta = 97.436(8), \gamma = 84.52(1)^{\circ}, \text{ and } V = 216.96$ Å³. Table 3 gives refined atomic coordinates and atomic displacement factors.

The positions of Mg, Cu, Si, and O were first determined using a combination of Patterson, Fourier, and difference-Fourier maps. As a result, four independent atom-

 TABLE 2.
 Crystallographic data and experimental conditions for structure analysis

Chemical formula	$\operatorname{Li}_{\underline{2}}(\operatorname{Mg},\operatorname{Cu})\operatorname{Cu}_{2}[\operatorname{Si}_{2}\operatorname{O}_{6}]_{2}, Z = 1$
Calculated density	3 580 a/cm ³
Size of specimen	$0.10 \times 0.20 \times 0.37 \text{ mm}^3$
X-ray source	MoKa 40kV, 25mA (fine focus)
Monochromator	Pyrolytic graphite
Apparatus	AFC5S/Rigaku
Scan mode, width, and speed	$2\theta \omega, \Delta 2\theta = 1.4^{\circ}(\tan \theta) + 0.65^{\circ}, 6.0^{\circ}/{\rm min}$
Obs. refl.	4526 ($F_{obs} \neq 0$), $0^{\circ} < 2\theta \le 100^{\circ}$ (hemisphere)
Indep. refl.	4221 ($F_{obs} \neq 0$), $R_w = 0.041$, $R = 0.057$
Refl. used	$3573 \ (F_{obs} \ge 5\sigma_{Fobs}), R_w = 0.041, R = 0.047$

ic positions were found for cations and six for O atoms. They were initially assigned as Mg, Cu, Si1, and Si2 for cations and as O1–O6 for the O atoms. The value of $1/\sigma^2_{Fobs}$ was used as a weight for each reflection. The weighted residual $R_w = 0.068$ was obtained after the least-squares refinement of the atomic positions and anisotropic displacement factors. The site occupancies were assumed to be 100% for the above atoms.

Further difference-Fourier syntheses using the above refined atomic coordinates revealed positive residual peaks at the position (M) in which Mg was assigned, and at another new position (P). No other significant residual peaks were observed. From the chemical composition, the M position was modeled as a statistical distribution of Mg and Cu with a total occupancy of unity. The value of 0.871(3) was obtained for the occupancy factor of Mg in the M site by least-squares refinement. As a result, the statistical distribution of M is 0.87Mg + 0.13Cu. The P site was assigned to Li on the basis of the chemical composition and the electron density on the Fourier and difference-Fourier maps. The occupancy value of the Li site refined to 0.98(2). Therefore, the Li site was assumed to be fully occupied within experimental error. Finally, difference-Fourier syntheses using all atoms, including the statistical distribution of Mg and Cu for M, were calculated and no residual peaks were observed. Although the space group was initially assumed to be P1, the structure model finally refined to the space group P1. This result is consistent with the crystal structure and morphology.

According to the classification by Liebau (1985), the actual structure formula was concluded to be $\text{Li}_2^{(3)}$ ($Mg_{0.87}$, $Cu_{0.13}$)¹⁶⁰ $Cu_2^{[41]}$ {uB, 1_{∞}^{1} }[²Si₂O₆]₂. From the structure formula, the chemical composition was calculated as shown in Table 1. These values are slightly different from the results of the chemical analysis obtained by EPMA and ICP, in particular for Cu, possibly because EPMA analyzed only Mg, Si, and Cu, and Li was analyzed separately by ICP. Table 4 contains F_{0} and F_{c} values for the final results.¹ Interatomic distances and angles are given

⁴ A copy of Table 4 may be ordered as Document AM-97-632 from the Business Office, Mineralogical Society of America, 1015 Eighteenth Street NW, Suite 601, Washington, DC 20036, Please remit \$5.00 in advance for the microfiche.

 TABLE 3.
 Refined atomic coordinates and atomic displacement factors

Atom	x	У	Z	B_{eq} (Å ²)	β11	β22	β33	β12	β ₁₃	β23
М	0	0	0	0.43	3.8(3)	1.8(2)	4.3(4)	-0.6(2)	2.3(3)	-0.5(2)
Cu	0.83770(6)	0.18327(5)	0,50890(8)	0.44	3.37(8)	1.88(4)	4.8(1)	-0.04(4)	1.81(7)	0.09(5)
Si1	0.4093(1)	0.1859(1)	0.7795(2)	0.33	1.7(2)	1.9(1)	3.5(2)	0.0(1)	0.9(2)	0.2(1)
Si2	0,2224(1)	0.3721(1)	0.3003(2)	0.30	1.7(2)	1.6(1)	3.1(2)	0.1(1)	0.4(2)	0.1(1)
Li	0.760(1)	0.409(1)	0.073(2)	1.94	5(2)	13(1)	25(3)	0(1)	-2(2)	10(2)
01	0.6745(3)	0.0955(3)	0,7625(4)	0.62	2.3(4)	4.1(3)	6.9(6)	0.9(3)	1.8(4)	1.5(4)
02	0.4109(3)	0.3111(3)	0.0762(4)	0.53	2.9(4)	3.4(3)	4.4(6)	-0.5(3)	1.9(4)	-0.8(3)
03	0,3602(3)	0.3430(3)	0.5862(4)	0.57	4.2(4)	3,2(3)	4.9(6)	-0.8(3)	-1.0(4)	1.9(3)
04	0,1953(3)	0.0543(3)	0.7306(4)	0.51	3.2(4)	2.4(3)	5.7(6)	-1.1(3)	1.2(4)	-0.3(3)
O5	0.1354(4)	0.5789(3)	0.2764(4)	0.63	5.8(5)	1.8(3)	6.9(6)	0.4(3)	0.7(5)	0.2(3)
O6	-0.0014(3)	0.2467(3)	0.2285(4)	0.45	2.8(4)	2.3(3)	4.8(6)	-0.5(3)	1.1(4)	0.1(3)

in Table 5. The program RFINE II (Finger 1969) was used for the structure-refinement calculations.

DESCRIPTION OF THE STRUCTURE

The crystal structure projected along the *c* axis is illustrated in Figure 1. Single $[Si_2O_6]$ chains are aligned along the *c* axis. The bands of tetrahedral groups that are constructed of $[Si_2O_6]$ chains and other cation polyhedral bands that are composed of Mg, Cu, and Li atoms are alternately layered parallel to (110). The SiO₄ tetrahedra that form $[Si_2O_6]$ chains are quite regular in configuration, as are those observed in most pyroxenes. Their Si-O distances are in the range 1.600–1.668 Å. The distances from Si to the bridging O atoms in $[Si_2O_6]$ chains, 1.633–1.668 Å, are larger than other Si-O distances, 1.600–1.623 Å, because of Si-Si repulsion.

The M site, which contains 0.87Mg + 0.13Cu, is octahedrally coordinated by six O atoms [4 + 2]. The M-O distances are in the range 2.017–2.225 Å. However, it seems that the partial replacement of Mg by Cu in the MO₆ octahedra affects its coordination and results in square-planar distortion. The M-O4 and M-O6 distances are in the range 2.017–2.018 Å, which is shorter than the two M-O1 distances of 2.225 Å.

 CuO_6 is greatly distorted from octahedral configuration and forms a square-planar coordination. The distances from Cu to two O atoms are 2.415 and 2.918 Å. These distances are much greater than the distances from Cu to the other four O atoms, which are in the range 1.940– 1.998 Å.

The Li site is displaced from the center of the coordination polyhedra. As a result, Li and three O atoms form a deformed trigonal pyramid, LiO_3 . The Li-O distances are in the range 1.928–2.193 Å. The distances from Li to O atoms that do not belong to the LiO₃ pyramid are longer than 2.431 Å.

DISCUSSION

The structural characteristics of the layered arrangement of tetrahedral and octahedral bands are similar to those of pyroxene. One of the most remarkable differences between the crystal structure of $Li_2(Mg,Cu)$ $Cu_2[Si_2O_6]_2$ and those of the pyroxene group is that the bands of tetrahedral groups are shifted with respect to each other along $[\overline{1}10]$. As a result, the "I-beam" description (Cameron and Papike 1981), which is commonly used to characterize pyroxene structures, is not applicable to this structure. However, the I-beam is deformed as an oblique I-beam, shown as shaded regions in Figure 1.

The structure of $Li_2(Mg,Cu)Cu_2[Si_2O_6]_2$ is compared with related structures in Figure 2, using the same systematics as those reported by Takéuchi and Koto (1977). From the oblique I-beam presentation, the projected structure of Figure 2b is apparently similar to those of pyroxenoids (Fig. 3c) such as bustamite, $Ca_3Mn_3[Si_3O_9]_2$; pectolite, $NaCa_2[Si_3O_8(OH)]$; wollastonite, $Ca_3[Si_3O_9]_2$; etc. (Peacor and Prewitt 1962; Prewitt and Buerger 1963; Takéuchi and Koto 1977). However, the form of the se-

FIGURE 1. Crystal structure of $\text{Li}_2(\text{Mg}, \text{Cu})\text{Cu}_2[\text{Si}_2\text{O}_6]_2$ projected along the *c* axis. Large solid circles = Si, large open circles = O, hatched circles = M (Mg,Cu), small open circles = Cu, small solid circles = Li. The oblique I-beam parts are shaded. Interatomic distances <2.4 Å are shown by solid lines.

	U D. ,						
M-O	distances	Cu-O distances					
M-O1ª M-O4 ⁵ M-O6 Mean[4]	$\begin{array}{l} 2,225(3)\times 2\\ 2.018(4)\times 2\\ 2.017(2)\times 2\\ 2.018\end{array}$	Cu-O1 Cu-O3 Cu-O4 ⁿ Cu-O4 ^e Cu-O5 ¹ Cu-O6 Mean[4]	1.945(3)* 2.917(3) 2.415(2) 1.998(2)* 1.940(2)* 1.970(3)* 1.963				
O-M	-O angles	O-Cu-	O-Cu-O angles				
01b-M-04b 01b-M-04c 01b-M-06d 01b-M-06d 01b-M-01e 04a-M-06d 04a-M-06d 04a-M-06d 06-M-06d	$\begin{array}{c} 89.1(1)\times 2\\ 90.9(1)\times 2\\ 89.3(1)\times 2\\ 90.8(1)\times 2\\ 180\\ 97.8(1)\times 2\\ 82.2(1)\times 2\\ 180\\ 180\end{array}$	01-Cu-O4 ^h 01-Cu-O4 ^e 01-Cu-O5 ^f 01-Cu-O6 ^h 04 ^c -Cu-O4 ^e 04 ^c -Cu-O5 ^f 04 ^c -Cu-O5 ^f 04 ^e -Cu-O5 ^h 04 ^e -Cu-O6 ^h 05 ^f -Cu-O6 ^h	85.6(1) 90.0(1)* 92.5(1)* 173.9(1)* 89.3(1) 93.2(1) 94.3(1) 176.6(1)* 83.9(1)*				
Si1-C) distances	Si2-O distances					
Si1-O1 Si1-O29 Si1-O3 Si1-O4 Mean	1.605(2) 1.665(3) 1.658(3) 1.609(2) 1.634	Si2-O2 Si2-O3 Si2-O5 Si2-O6 Mean	1.668(3) 1.633(3) 1.600(2) 1.623(2) 1.631				
O-Si	1-O angles	O-Si2-O angles					
01-Si1-O2 ⁹ 01-Si1-O3 01-Si1-O4 02 ⁹ -Si1-O3 02 ⁹ -Si1-O4 03-Si1-O4	105.9(1) 108.5(2) 118.5(1) 102.2(1) 109.4(2) 111.0(1)	03-Si2-O2 03-Si2-O5 03-Si2-O6 02-Si2-O5 02-Si2-O6 05-Si2-O6	108.7(1) 114.4(1) 109.7(2) 104.5(2) 109.6(1) 109.8(1)				
Li-O	distances	O-Li-O angles					
Li-O1 ^b Li-O2 Li-O2 ⁱ Li-O3 ⁱ Li-O5 ⁿ Li-O5 ⁱ Li-O6 ⁿ Mean[3]	2.66(1) 2.19(1)** 2.43(1) 2.45(1) 2.60(1) 2.01(2)** 1.93(1)** 2.04	02-Li-O2' 02-Li-O3' 02-Li-O5' 02-Li-O6' 02'-Li-O5' 02'-Li-O5' 02'-Li-O5' 03'-Li-O5' 03'-Li-O6' 03'-Li-O6' 05'-Li-O6'	92.5(4) 85.6(4) 117.6(6)** 64.0(3) 70.4(5) 157.5(5) 129.5(6) 109.2(7) 104.5(5)**				

TABLE 5. Interatomic distances (Å) and angles (°) of Li₂(mq,Cu)Cu₂[Si₂O₈]₂

Note: Cation-O distances <2.7 Å and angles associated with cation-O distances <2.6 Å are listed. Mean[4] is the mean distance for squareplanar coordination for M and Cu, and mean[3] is the value for three shorter Li-O bonds. M = 0.87Mg + 0.13Cu. Symmetry operation codes: none = x, y, z; a = -1 + x, y, 1 + z; b = x, y, -1 + z; c = x, -y, 1 - z; d = -x, -y, -z; e = 1 - x, -y, 1 - z; f = 1 - x, 1 - y, 1 - z; g = x, y, 1 + z; h = 1 - x, 1 - y, -z; i = 1 + x, y, z.

* Square-planar O atoms with Cu. ** O atoms pyramidally coordinated to Li.

quence of SiO₄ tetrahedra along the *c* axis of $Li_2(Mg,Cu)Cu_2[Si_2O_6]_2$ is different from the pyroxenoid structure but is very similar to the pyroxene structure (Fig. 2a). Furthermore, the arrangement of cations in the polyhedral bands is different from those of both pyroxene and pyroxenoid structures. In pyroxene, the arrangement of pairs of cations such as M1-M1-M2-M2-M1-M1-M2-M2 is observed in the polyhedral bands projected along the [Si₂O₆] chain, where, for example, M1 and M2 are occupied by atoms such as Ca and Mg, respectively. However, in $Li_2(Mg,Cu)Cu_2[Si_2O_6]_2$, an additional cation, M3, intrudes into the polyhedral bands, resulting in

FIGURE 2. Comparison of the structures of (a) pyroxene, M1M2[Si₂O₆]; (b) Li₂(Mg,Cu)Cu₂[Si₂O₆]₂, where M1 = Li, M2 = Cu, and M3 = (Mg,Cu); (c) wollastonite, Ca₃[Si₃O₉], where M1 = M2 = M3 = Ca; and (d) shattuckite, Cu₅[Si₂O₆]₂(OH)₂, where M1 = M2 = M3 = Cu. The configurations of each [Si₂O₆] chain of pyroxene, Li₂(Mg,Cu)Cu₂[Si₂O₆]₂, and shattuckite resemble each other, but the arrangement of the chains is different.

M1-M1-M2-M3-M2-M1-M1-M2-M3-M2 as an ideal arrangement, where M1 is Li, M2 is Cu, and M3 is the atom site with the statistical distribution of 0.87Mg and 0.13Cu, respectively. The Li atoms are greatly displaced from the center of the polyhedra. From the view point of the arrangement of $[Si_2O_6]$ chains, the structure of shattuckite (Fig. 2d) (Kawahara 1976; Evans and Mrose 1977) is also of the oblique I-beam type. As a result, two types of polyhedral bands, sandwiched by tetrahedral bands, are observed in the shattuckite structure. One has the arrangement M1-M1-M2-M2, whereas the other contains only M3, where M1, M2, and M3 all contain Cu.

The square-planar CuO₄ configuration observed in the structure of Li₂(Mg,Cu)Cu₂[Si₂O₆]₂ is commonly found in crystal structures that contain Cu²⁺, such as tenorite, CuO (Bragg et al. 1965), and other Cu-bearing chain silicates. If we assume that the M3 site is occupied by Cu in the Li₂(Mg,Cu)Cu₂[Si₂O₆]₂ structure, CuO₄ square-planar units form finite ladderlike ribbons of [Cu_nO_{2n+2}] with n = 3, as shown in Figure 3. The same ribbon is also observed in shattuckite (Kawahara 1976; Evans and Mrose 1977).

It is interesting that the ribbon with n = 6 is found in the structure of planchéite (Evans and Mrose 1977) and a ribbon with n = 2 is observed in the structure of synthetic Na₂Cu₃[Si₄O₁₂] (Kawamura and Kawahara 1976).

FIGURE 3. Schematic view along the direction nearly parallel to the Cu_3O_8 square-planar units in the structure of $Li_2(Mg,Cu)Cu_2[Si_2O_6]_2$. The shaded areas show a $[Cu_nO_{2n+2}]$ ribbon with n = 3.

An infinite ribbon of $[Cu_n O_{2n+2}]$ with $n = \infty$, which is observed in tenorite, is also found in shattuckite and planchéite. In synthetic Na₄Cu₂[Si₈O₂₀] (Kawamura and Kawahara 1977) and CaBa₃Cu[Si₆O₁₇] (Angel et al. 1990), only isolated square-planar CuO₄ units are found. The ribbons of $[Cu_n O_{2n+2}]$ in silicate structures are not flat but generally folded. These ribbons of $[Cu_nO_{2n+2}]$ are sometimes bridged by sharing a corner O atom of another $[Cu_n O_{2n+2}]$ ribbon, making an infinite $[Cu_n O_{2n+1}]_{\infty}$ chain. The infinite $[Cu_n O_{2n+1}]_{\infty}$ chain with n = 2 in the Na₂Cu₃[Si₄O₁₂] structure is an example, and in liebauite (Zöller et al. 1992) an infinite $[Cu_n O_{2n+1}]_{\infty}$ chain with n =1 is observed in addition to an isolated square-planar CuO₄ unit. Thus, Cu-O configurations are classified into isolated square-planar CuO₄ units, ladderlike ribbons of $[Cu_n O_{2n+2}]$ with finite or infinite values of *n*, and an infinite $[Cu_n O_{2n+1}]$ chain with $n = \infty$ in Cu-bearing silicate structures. Cu-O configurations in Cu-bearing chain silicates are schematically classified in Figure 4.

In conclusion, the structure of $Li_2(Mg,Cu)Cu_2[Si_2O_6]_2$ is characterized as follows: (1) The spd² hybrid electronic configuration of Cu^{2+} strongly affects the O-atom arrangements around Cu, resulting in square-planar coordination; (2) strong Li-Li electrostatic repulsive forces result in a deformed LiO₃ trigonal pyramidal configuration; (3) owing to both the charge balance and the coordination of O atoms to Cu and Li, one extra cation intrudes into the cation polyhedral bands in comparison with pyroxene structures. Thus, the structure can be classified as a new derivative, "tpx," of the pyroxene group and is situated between pyroxene and other Cu-bearing chain silicate structures such as shattuckite and planchéite.

In the structures of synthetic CaNi[Si2O6] and

[CunO2n+2] ribbons:

FIGURE 4. Classification of the Cu-O configuration in the structure of Cu-bearing chain silicates.

 $CaCo[Si_2O_6]$ (Ghose et al. 1987), the O configurations surrounding transition elements such as Ni and Co have characteristics similar to those of the regular octahedra of pyroxene, although NiO₆ and CoO₆ octahedra are slightly deformed and thus show square-planar coordination. However, the deformation toward square-planar coordination is much less in comparison with CuO₆ in the structures of Cu-bearing chain silicates. Recently, the synthetic Cu-bearing orthopyroxene structure of $(Mg_{0.44}, Cu_{0.56})$ Mg[Si₂O₆], was reported (Tachi et al. 1997, in preparation). The O-atom configuration surrounding (Mg,Cu) is not like the square-planar coordination of CuO4 in Li₂(Mg,Cu)Cu₂[Si₂O₆]₂ but a distorted square-pyramidal coordination. Thus, the crystal-chemical behavior of Cu²⁺ in the chain silicate structure is greatly different from those of Mg²⁺, Fe²⁺, Co²⁺, Ni²⁺, etc., although the ionic radius of Cu²⁺ (0.73 Å; Shannon and Prewitt 1969) is within the range, 0.7-0.8 Å, of these cations. In conclusion, Cu-bearing pyroxene becomes stable only when Cu

is not a major component. On the other hand, if Cu is one of the main constituent elements, a finite ladderlike ribbon of $[Cu_nO_{2n+2}]$ is formed in the structure, and this affects the arrangement of the $[Si_2O_6]$ chain and leads to various unique chain structures.

ACKNOWLEDGMENTS

The authors thank F. Liebau for his helpful discussion on the structures of Cu-bearing silicates and also for his careful review of our work, and R.C. Peterson and G. Giester for their critical readings of the manuscript. K. Sugiyama is thanked for his discussion on works related to Cu-bearing silicate minerals. H.H. was financially supported by Grant-in-Aid for Scientific Research B-07459008 of the Ministry of Education, the Japanese government, and by the Kazuchika Okura Memorial Foundation.

References cited

- Angel, B.J., Ross, N.L., Finger, L.W., and Hazen, R.M. (1990) Ba₃CaCuSi₆O₁₇: A new {IB, 1¹₂} [⁴Si₆O₁₇] chain silicate. Acta Crystallographica, C46, 2028–2030.
- Bragg, L., Claringbull, G.F., and Taylor, W.H. (1965) Crystal structures of minerals. In L. Bragg, Ed., The crystalline state, vol. IV, p. 94–95. Bell and Sons, London.
- Breuer, K.-H., Eysel, W., and Behruzi, M. (1986) Copper(II) silicates and germanates with chain structures: II. Crystal chemistry. Zeitschrift f
 ür Kristallographie, 176, 219–232.
- Cameron, M., and Papike, J.J. (1981) Structural and chemical variations in pyroxenes. American Mineralogist, 66, 1–50.
- Donnay, J.D.H. (1943) Resetting a triclinic unit cell in the conventional orientation. American Mineralogist, 28, 507–511.
- Evans, H.T., Jr., and Mrose, M.E. (1966) Shattuckite and planchéite: A crystal chemical study. Science, 154, 506–507.
- (1977) The crystal chemistry of the hydrous copper silicates, shattuckite and planchéite. American Mineralogist, 62, 491–502.
- Finger, L.W. (1969) Determination of cation distribution by least-squares refinement of single-crystal X-ray data. Carnegie Institution of Washington Yearbook, 67, 216–217.
- Ghose, S., Wan, C., and Okamura, F.P. (1987) Crystal structures of CaNiSi₂O₆ and CaCoSi₂O₆ and some crystal-chemical relations in C2/c clinopyroxenes. American Mineralogist, 72, 375–381.

- Kawahara, A. (1976) The crystal structure of shattuckite. Mineralogical Journal, 8, 193–199.
- Kawamura, K., and Kawahara, A. (1976) The crystal structure of synthetic copper sodium silicate Cu₃Na₂(Si₄O₁₂). Acta Crystallographica, B32, 2419–2422.
- ---- (1977) The crystal structure of synthetic copper sodium silicate CuNa₂(Si₄O₁₀). Acta Crystallographica, B33, 1071–1075.
- Liebau, F. (1985) Structural chemistry of silicates, 347 p. Springer-Verlag, Berlin.
- Mazzi, F., and Pabst, A. (1962) Reexamination of cuprorivaite. American Mineralogist, 47, 409–411.
- Morimoto, N., Akimoto, S., Koto, K., and Tokonami, M. (1970) Crystal structures of high pressure modifications of Mn₂GeO₄ and Co₂SiO₄. Physics of Earth and Planetary Interiors, 3, 161–165.
- Morimoto, N., Tokonami, M., Watanabe, M., and Koto, K. (1974) Crystal structures of three polymorphs of Co₂SiO₄. American Mineralogist, 59, 475–485.
- Morimoto, N., Nakajima, Y., Syono, Y., Akimoto, S., and Matsui, Y. (1975) Crystal structures of pyroxene-type ZnSiO₃ and ZnMgSi₂O₆. Acta Crystallographica, B31, 1041–1049.
- $\label{eq:Mrose, M.E., and Vlisidis, A.C. (1966) Proof of the formula of shattuckite, Cu_{5}(SiO_{3})_{4}(OH)_{2} \ (abs). American Mineralogist, 51, 266–267.$
- Peacor, D.R., and Prewitt, C.T. (1963) Comparison of the crystal structures of bustamite and wollastonite. American Mineralogist, 48, 588–596.
- Prewitt, C.T., and Buerger, M.J. (1963) Comparison of the crystal structures of wollastonite and pectolite. Mineralogical Society of America Special Paper, 1, 293–302.
- Shannon, R.D., and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallographica, B25, 925–946.
- Tachi, T., Horiuchi, H., and Nagasawa, H. (1997) Structure of Cu-bearing orthopyroxene and its implication to the partitioning behavior of Cu²⁺ and the transition metal ions in the igneous processes. Physics and Chemistry of Minerals, in press.
- Takéuchi, Y., and Joswig, W. (1967) The structure of haradaite and a note on the Si-O bond lengths in silicates. Mineralogical Journal, 5, 98–123.
- Takéuchi, Y., and Koto, K. (1977) A systematics of pyroxenoid structures. Mineralogical Journal, 8, 272–285.
- Zöller, M.H., Tillmanns, E., and Hentshel, G. (1992) Liebauite, $Ca_3Cu_5Si_9O_{26}$: A new silicate mineral with 14er single chain. Zeitschrift für Kristallographie, 200, 115–126.

MANUSCRIPT RECEIVED MAY 3, 1995

Manuscript accepted October 7, 1996