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Ansrnlcr

Many crystalline solids have multiple nonequivalent sites among which different atoms
show substitutional long-range order-disorder phenomena. The order-disorder kinetics of
an atom among any n nonequivalent sites in a crystal can be described by the equation

xi : c^ * f, c,,(t)e^,'
J : 2

where -x, is the site occupancy of the atom at site ,r,, n is the number of nonequivalent sites,
tr, (tr, : 0) is constant at a given temperature, pressure, and total composition ofthe crystal,
and c,,(t) is constant or polynomial in t. Four theorems governing a multi-site order-disorder
process have been proved, requiring that \ must be either zero (only \, : 0), a negative
real number, or a complex-valued quantity with the real part being a nonpositive number.
The kinetic model becomes consffained and naturally complies with crystal-chemical con-
ditions when the mole number per formula unit is chosen as the unit of all site-occupancy
variables, or site multiplicities are explicitly incorporated into the model. When the mole
fraction is directly used as the unit, the model becomes unconstrained, but it is a valid
treatment that is as equally applicable to the multi-site order-disorder kinetics as the con-
strained model.

INrnonucrroN

Substitutional long-range ordering-disordering of dif-
ferent atoms or ions among two or more crystallograph-
ically nonequivalent sites (multi-site) is a common phe-
nomenon in many crystalline solids. Typical examples
include the ordering-disordering of Fe2*, Mg2*, Mn2*, and
Ca2* among the four octahedral sites Ml, M2, M3, and
M4 in amphibole, and Al.*, Br*, Ga3*, Si4*, and Ge4*
among the four tetrahedral sites Tl, T2, T3, and T4 in
natural and synthetic feldspar (Hafner and Ghose 1971;
Seifert and Virgo 1975;Dal Negro et al.1918; Ungaretti
et al. 1981; Ghose and Ganguly 1982; Hawthorne 1983a;
Skogby 1987; Makino and Tomita 1989; Phillips et al.
1989; Bums and Fleet 1990; Fleet 1991, 1992; Kroll et
al. l99l; Hirschmann et al. 1994). Some order-disorder
processes involve even more than ten nonequivalent sites
(Tak6uchi et al. 1984a,1984b; Yao and Franzen 1990,
1991; Yao et al. 1992). For instance, Nb and Ta atoms
can undergo ordering-disordering among twelve distinct
sites in the synthetic crystal TauroNbrruSn (Yao and Fran-
zen l99l), and Bi3*, Pb2*, and Sb.* show strong order-
disorder phenomena ilmong twenty-four nonequivalent
sites in izoklakeite (Makovicky and Mumme 1986; Arm-
bruster and Hummel 1987). Investigations into such or-
der-disorder phenomena are important to understand the
thermodynamic properties and intracrystalline mixing be-
havior of solid solutions as well as the thermal history of
geological processes (Saxena and Ghose 1970; Navrotsky
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1971; Seifert and Virgo 1975; Ganguly 1982; Cohen
1986; Anovitz et al. 1988; Sack and Ghiorso 1991; Gan-
guly et al. 1994; Ghiorso et al. 1995; Ganguly and Do-
meneghetti I 996). Furthennore, differing site occupancies
and their resulting entropy of mixing can significantly
affect the formation and stability of some crystalline sol-
ids, particularly differential site-occupancy stabilized ma-
terials (Franzen and K<ickerling 1995).

Several researchers made conffibutions to the kinetic
theories of order-disorder processes. Following the pio-
neering work of Dienes (1955), Mueller (1967) proposed
a model for order-disorder kinetics in quasibinary crystals
based on an exchange reaction of two different atoms or
ions between two nonequivalent sites. Ganguly (1982) re-
examined this model and made a rather comprehensive
review on the crystal chemistry, thermodynamics, and ki-
netics of order-disorder in ferromagnesian minerals. The
Mueller model has been widely used to fit experimental
data and estimate the kinetic coefficients (Besancon 1981;
Ganguly 1982; Saxena et al. 1987, 1989; Anovitz et al.
1988; Skogby 1992; Sykes-Nord and Molin 1993). De-
spite its success, Sha and Chappell (1996a) pointed out
that if a two-site order-disorder process involves three or
more atoms or ions, Mueller's method gives no explicit
solution to the kinetic differential equations. Furthermore,
if two atoms or ions undergo ordering-disordering among
three or more nonequivalent sites, there is no explicit so-
lution to his model (Mueller 1969). Therefore. the Muel-
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ler model is applicable only to pure or nearly pure binary
ordering-disordering between two nonequivalent sites.

To solve the above problems, Sha and Chappell
(1996a) proposed an alternative kinetic model for two-
site multi-cation ordering-disordering, which can be used
to calculate the forward and reverse kinetic coefficients
of each individual cation. Sha and Chappell (1996b) also
presented an explicit solution for three-site ordering-dis-
ordering. However, there is no kinetic model available for
the ordering-disordering of atoms or ions among any /t
nonequivalent sites. In this paper, we present such a gen-
eral model and prove some basic theorems that govern a
multi-site order-disorder process.

Fonnrur.arroN oF A MULTr'sITE oRDER-DISORDER
KINETIC MODEL

The formula of a crystalline phase can be written as

(s, ) . ,  (sr ) . ,  .  .  .  (s , ) . ,  . .  . (s") -^Z

anc

s ,  :  ( e , ,  € 2 ,  . . . ,  € t ,  . . . ,  e u , W , )

where s,, J2,..., si, ..., s, are r? nonequivalent sites, and
€r, €2, . . ., €o . . ., eq are the constituent atoms (cations,
anions, or neutral atoms) showing order-disorder; W, (i :
1,2, ..., n) refers to all other atoms that only occur at
site s,; r,l, is the multiplicity of the s, site; Z represents the
rest of the chemical formula. Because an order-disorder
process can occur not only in ionic crystals but also in
metallic, covalent, and molecular crystals, in this paper,
whenever necessary we simply use the term atom instead
of cation or anion.

The kinetic reactions involved in an n-site order-dis-
order process can be written as

K,,

e , ( s , ) l  e , ( s , )  ( i ,  j  :  1 , 2 , 3 , . ' . , n ;  i  l  j ;
K..

l  :  1 , 2 , 3 ,  .  .  . ,  q )  ( l )

where /c,, and k,, ate the kinetic coefficients for the forward
and backward reactions respectively. The kinetic equation
governing the order-disorder process is

q! : i  (k rx , -k rx )  (z )d t  r ; i , ,

where x, and x, are the site occupancies of an atom e, (l
: l, 2, 3, . . ., q) at sites s, and sr, respectively.

Expanding Equation 2 gives a group of equations
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nrY, * k.,,.tr, +

*: -110',;"'

*: r*'- (A
*  k ,x ,  *  f t . , - t r .  + .  . .  +  k ,J ,  (3.1)

. . . + k , , x ,  ( 3 . 2 )

dJ.

;t 
: Kr.irr + Kr x2

:

dx" /'=] , \
_  :  k t , x t  +  k2 , x2  I  k , , x ,  +  . . .  -  

I L  k , ,V " .  ( 3 .n t
d t \ ; )

Writing A : {a,,1 where a,, : kjt(i + j),

/!- \-  
{ )  k , ' l x ,  *  " '  *  k , .x ,  (3 .3 )
\ , : '  I

a r r :  - 2  k r i ,

a,,: -f k,, ( i : 2 , 3 , . - . , n - l )

"", 
: -20", and X : lx,\ : lx, )c,x, -.. x,l'

where T represents a transpose operation of the vector, it
follows that

with the initial site-occupancy vector being X(t : t) :
x" : [4 . t r  ' e . . .4 ] ' , .

Summing the above equations from 3.1 to 3.n gives

dx d-r, d-r, dx. O 
I "'

T . . . T  : - : v  , . 5 , f
dr dr dr dr dr

which is equivalent to the condition

2 *,: ) "? 
: "vo (6)

where -{ ,, ,n" *irru, ,rr" o":.unun"y of an atom at the ,ri
site and 1u is a constant equal to the sum of the site
occupancies of the atom at all n nonequivalent sites.

Integrating Equation 4 from Xo to X for the site-occu-
pancy vector and from t0 to t for the time gives

X : {*,} : ea'e A'oX(t : /o) : eA(t-tdxo Q)

where the function eA' : E + At + A2flzt + --. + Akfl
kl + . .. is an n x n fundamental matrix whose compo-
nents are functions of time, eigenvalues and their corre-
sponding eigenvectors; ,E is an n x n identity maffix.

The eigenvalues of the matrix A are the roots of the
following nth-degree algebraic equation

(4)Y: o*
dt



G ( I ) : D e ( A - \ . 8 )

:  b " ) r '  +  b , , l r " '  +  " '  +  b ) \  +  bo

:  ( \ - \ , ) r , ( \ - L , ) r ,  . . .  ( I - I , X ,  .  . .  ( t r - t r , ; r ,

: 0  ( 8 )

where \ r ,  t r r ,  .  . . ,  \ . ,  . . . ,  t ro  ( l  =  h -  n)are the /zd is t inct
eigenvalues with corresponding multiplicities f,, fr, . . .,

The explicit form of the matrix Solution 7 differs in
the following two cases:

(1) When all n eigenvalues \,, tr,, . . ., \., . . ., X, are
dist inct  [ i .e . ,  f ,  :  |  ( r  :  1 ,2,  . . . ,  n) ] ,  there ex is t  n
linearly independent constant eigenvectors ut, ttz, . . ., tr,,
. . ., u,, which are the nontrivial solutions of the equation

(A -  Lp)a, :  0 .  (9)

In this case, the matrix exponential function becomes

(10)

&fld e-t,o : 
fvre 

xto l lre \zto Il.€ xtto , . , l l ,e-\i l l ]. EqUatiOn

7 has the explicit form

J Z  I

J  t \ f  l )

u,  , . :  L  v ,^  ( f  - -  1 ,2 , .  '  .  ,0 ;  0  :  f , -  S) ,
i l t  "\.t - d)t

and r,, vz, ..., vd, . .., vo Ne a group of generalised ei-
genvectors corresponding to the eigenvector \, and are
defined by

vo :  (A -  \p ;e-zu (d :  l ,2 ,  .  .  . ,  0)

where the vector v is called the generalised eigenvector
of rank 0 associated with the eigenvalue \, if

(A - }'.E)oy : 0 and (A - Xp;' 'v * 0.

From the above relations. we know that. in the second
subcase, Equation 7 will be of the form
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x :  l x , l :  {2 . , , , " ^ , , }
L i : '  )

where c,,(/) is the following polynomial in r

(r2)

(1  l )

where cu(1, j : l, 2, . . ., n) are constants that are deter-
mined by the eigenvalues, eigenvectors, and initial site
occupancles.

(2) When the kinetic coefficient matrix A has eigen-
values with their multiplicities greater than one, two sub-
cases may occur:

(a) There are still nlinearly independent eigenvectors in
spite of the presence of repeated eigenvalues, and the ex-
plicit solution remains in the same form as Equation 11.

(b) The matrix A has less than n linearly independent
eigenvectors. In this case, if an eigenvalue tr', with a mul-
tiplicity f,has g, linearly independent eigenvectors and g.
< 1., then these g, linearly independent solutions will be

l l , ,e^ ' .  l l ,_e\ ' ' .  .  .  . .  u, , . rn

The remaining f, - S,linearly independent solutions will
be of the form

where

cr(t) :9 uur' (o < 6, - n - r) (13)

in which 6u is an 
","r* 

for a given distinct eigenvalue
L, and their values depend on the multiplicity of the ei-
genvalue and the number of eigenvectors corresponding
to this eigenvalue. The coefficientspr. are constants. Sub-
stituting Equation 13 into Equation 12 gives

X : tx,) : {> (} o,.,.)"',}
L r - r  \ € -0  /  )

(14)

When all 6, : 0, then cu(/) : ,,, : pr' : constant,
which implies that Equations 11 and 14 have the same
form. Therefore, Equation 12 or 14 is the general kinetic
model of a multi-site order-disorder process. For order-
disorder processes involving multiple nonequivalent sites,
it is possible that some of the pre-exponential terms cu(r)
are polynomials in /.

SonrB gasrc THEOREMS GovERNING A MULTI-srrE
ORDER.DISORDER PROCESS

The kinetic coefficient matrix A completely conffols
the characteristics of an order-disorder process for a given
initial site-occupancy vector. Here, we will prove some
basic theorems concerning the kinetic coefficient matrix
A, which is given by (see below)

X: {.t,} : 
{i 

.,^,}

-) ,r,, k,,
,  + ,
R, ,  -  . > .  K . ,

] : I

k. kt,

Ktt K,t

a t z

azz

azz

o),.

a t t

azt

att

Ant

k,,

-2 k,,

- S tK2

( ls)
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Each of the nfu - 1) kinetic coefficients is a function of
temperature, and can be expressed by the Arrhenius
equation

k,, : Q e-E,/Rr

where Q,, and Etj are the pre-exponential factor and acti-
vation energy, respectively. The kinetic coefficient matrix
A has some very important characteristics, which are stat-
ed in the following lemma and theorems.

Lemma 1

For an n x nkinetic coefficient matrix A, represented
by Matrix 15 of an n-site order-disorder process, each off-
diagonal entry is positive; each diagonal entry is nega-
tive, and its absolute value is equal to the sum of all other
off-diagonal entries in the same column as the diagonal
entry.

This lemma implies that Det(A) : 0 and indicates that

there are only n - 1 independent variables in the site-
occupancy vector X : {r,} : lx, x, x. ... -r"]r; this is
consistent with Equation 6.

Theorem I

Let A,r, A,., 4,., . . ., 4,, (r : l , 2, 3, . .., n - 1) be
the principal submatrices of order r of the n x n kinetic
coefficient maffix A, where

" 
-- (n\ : n' '

" '  \rt rt(n _ rl l ,

all the determinants Det(4,,) (t : 1, 2,3, ..., z) or the
principal minors of order r of A have the same sign (- 1),
and are nonzero real numbers.

Proof: to illustrate the general characteristics of the
principal minors, let us first examine the case n : 4.
Consider the matrix (see below)

A =

a t z  a t t

azz azt

atz atz

atz a+z

+ k,. + kA)
K t z

^ t l

For r : 1, there are four principal submaffices of order one, and their determinants are

Det(A, , )  :  ar :  ( -1) , ( f t , ,  +  h3+ k,4) ,  Det(A,r )  :  azz:  ( - l ) ' ( f t r ,  + h3+ k2) ,

Det(A, . )  :  a t :  ( -1) ' (k ,  + h2 + h) ,  Det(A," )  :  aqt :  ( -1) ' (k ,  + k42 + kB),

For r : 2, there are six principal submatrices of order two, and their determinants are

,",,o,,,:l?,, ?,1:.u.1(; _r(; r,,)_ r,,r,,,f: (_,r,[*" *-",(; r<,,) + rc,{rcu. t,,l

w h e r e f  g :  { 1 , 2 , 3 , 4 1  -  { i ,  j } , a n d i ,  j :  l , 2 , 3 , 4 a n d p : 1 , 2 , 3 , 4 , 5 , 6 .  F o r e x a m p l e ,

Det1A,,1 :la" o' ' l  : (-trl (kt. + kt)(k2t + k23 + k24) + kt2(k23 + k')l
lo , ,  orr l

De t1A , ,1 : l a "  
o " l  : , - r , , t ( k , ,  +  k , ) ( k , ,  +  k32+  h )  +  k2 t ( k , t+  k ' ) 1 .

1", ,  " , .1

For r : 3, there are four principal submatrices, and their determinants are

r l
l o , ,  

a t t  o , r l

D e t ( A . ' ) :  l a ,  a z z  a r r l : ( - l ) ' [ k ' o ( k , k . , r  + k . k 3 t + k 2 n k 3 t + k 2 1 k 3 2 + k 2 4 k 3 2 + k 2 t k 3 1  + k . k 3 . + k 2 4 k 3 " )

I  o . ,  a t t  o , ,  I

+ k,2(k24k\ + k21k32 + k'k34 + k2ok3) + h3(k2&34 + k24k32 + kTk34 + krokr)]
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Det(A.r ) :

o "uo,, : lX'| "', i'j'; :',' "l

+ k,r(krrk^ + krrko, + kr.ko, + kr"ko) + k,o(kTko, + k,ko, + krrk^, + krok^r)]

= (-1)3[krr(ftr,ko, + krrko, + k3^ko, + k,k", + krrko, + k.oko, + k'k$ + krrko.)

+ k,r(.kr.k^, + krrko, + kroko, + k.rk*) + kro(k.rkr, + krrko, + kroko. + k.rko)]

: (-l)3fkrt(h,ko, + k3rko, + kroko, + k'ko, + krrko, + krrkr, + k3,k$ + h2k$)

+ kT(k31k4t + krok^, + krrko, + k3&$) + kro(k!k^, + k32k41 + k34kq + htk$)].

From the above example, it can be seen that (1) except
matrix A itself [De(A) : 0], all the determinants of the
principal submatrices of a given order r (r : 1,2,3, . . .,
n - l) have the same sign (-1)'and (2) apart from this
sign, each term within the expansion of each determinant
is a positive product of r kinetic coefficients that are pos-
itive real numbers in terms of their physical meaning.
These features are general to any principal submatrix, as
is proved below.

For any principal submatrix of order r of matrix A

where S(1), 0(2), 0(3), . . ., 0(r) is a permutation without
invers ion over  {1,  2,3, - . . ,  n} ,  that  is ,  g(1)  < 0(2)  <

0(3) < . . . <0(r). The determinant of this principal sub-
maffix is given by

Det(A,, ) : ) t (si gnp) d 6r t ) pLat, \ta 6rz\ prorz)r 4or:)prdr:rl

' ' '  a^nr r 'n t :PeA( r ) l  :  Q +  R

w ith Q : (signP)ar,,,,r<t ta 6rz,o,rzte 4,t1+r:i . . . dor,r,r,r,r, orrd

n = ) { (sign4 a 6r, vr6, nte 6rrt rr,f (zr14o(:)pro(:)l

' ' '  ar,.,o,r, ' ,,, :PeS(r)J (16)

where P is a permutation over O(r) : {+(1), +(2), +(3),
. , d(r)), S(r) is the rest of A(r) which excludes only
the permutation $(1) 0(2) 0(3) . . . 0(r), that is S(r) :
o(r) - 0(1) 0(2) 0(3) . . . 0(r); signP : (-l) ' is the sign
of a given permutation and ft is the number of inversions
in the permutation. Note that the sign function in the term
Q i s  s i gnP :  ( -1 ) ' :  ( - 1 ) ' :  * l  because  the re  i s  no
inversion in the permutation $(l) 0(2) +(3) . . . 0(r).

it follows that

Q: $ignP)ar(ryr,.1a6t t4,t ta6(.ror.i. 
. .dor,ror.i

-- A 44 1 y, I t |A,y1z t4,(2) 4o(3)d( r ) "' Q 60) 4'c )

: . [ ,- ' ,  > 0,,, , ' l . l r-r) > 0.,,J.1,-r) >' 1
L ,j,, ',, Jt ,!,^,,, Jt ,j;i.*' ' '"J

f,-rr i  t , . , ]
L ,j,1, )

:, -', (ri, t.,X,,l*, t,,) (4, t.,)
/ . \ ,  \

" ' l  4  * ' " ' l '
\  t - t , ' ,  /

As the diagonal entry a6t*o is the sum of all other off-
diagonal enffies in the column S(i) of A, the expansion
of Q will include all the product terms that the kinetic
coefficients could possibly have for a given principal sub-
matrix of order r. As a result, in the expansion of R, each
term that has an opposite sign to (-1)'will have a cor-
responding term in the expansion of Q, and these terms
with opposite signs will cancel out in the sum Det(A,') :

Q + R, leaving the deter:rninant Det(A.,) with terms of
the same sign (-1)'. Because the selection of the princi-
pal submatrix A,, is arbitrary and its sign depends only
on its order r, all submatrices with the same order have
the same sign. Hence, the determinant can be expressed
AS

De(A,,) : Q + n : (-lXDet(A,)l + 0
( i  :  r , 2 , 3 ,  '  '  ' ,  u ) .  ( 1 7 )

4 r 0 r o o r :  ( - l ) \
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Theorem 2
All coeff,cients b, (l : l, 2, 3, ..., n) except bo in the

characteristic Polynomial 8 of the kinetic coefficient ma-
trix A have the same sign; that is, they must be either all
positive when n is an even integer or all negative when
n is an odd integer; bo is always zero. Proof: for the char-
acteristic polynomial of any n X n matrix, A : {a,,),

G ( I ) : D e t ( A - \ . 8 )
:  b " | t  +  b "_ , ) r " '  +  . . .  +  b , \ "

+ . . . + b 2 l \ 2 + b J \ + b o

it can be proved that, for any coefficient b, (i : 0,
3, . . ., n) of G(\) (Schneider and Barker 1968),

bu:  Det(A)

b":  ( - r )"
and for 0 < s < n, the coefficient b, in \, is given by

," : (- l), ) Det1A,._,,,;

: (-1)" ) 1ail principal minors of A

of order ,? - r)

/  /  \ \
l s : 1 ,2 , . . . , n - l ; i : 1 ,  2 , . . . , u : u : l '  l l t Z t r
\  \ , - s l l

where A,, ",, is the principal submatrix of order (n - s),
and the sum includes all the determinants of principal
submatrices of order (zr - s) of A. According to Theorem
I and Equation 17, all principal minors of order r have
the same sign (-l), and it follows that

b" : (-1)") r-rl {De(A,._,,,)l

: (-l)" );o"t1a,,-,,,y; + o.
t : l

This indicates that all D.(s : 1, 2, ..., n) have the same
sign:  ( -1)" .

By Lemma I, De(A) : 0; therefore, from Equation
19, it follows that bu : 0. From Equations 20 and 22, we
know that, except bn : 0, all coefficients of Polynomial
8 or 18 of the kinetic matrix A have the same sign (- 1)",
and are nonzero real numbers. Therefore, Polynomial 8
or 18 can be expressed as

G(\): De(A - \E)

:  ( -1)" t \ "  + d,  ) \ ,  I  + .  .  .  +d" \ ,+.  .  .  +  d, ) \2 + d) \ f
(23)

where

d "  :  l b " l :  )  ; o " t1a , ,  u , ) l  >  0  ( s  :  1 ,  2 ,3 , . . . ,  n  -  r ) .

Theorem 3
For the characteristic Polynomial 8 of the n x nkinetic

coefficient matrix A, among the n eigenvalues, there is

one and only one zero eigenvalue, and all other n - 1
eigenvalues are either negative or complex; for complex-
valued roots, the real part of each conjugate pair 1 + pl
must be either negative or zero.

Proof: according to Theorems I and 2, all the coeffi-
cients of the characteristic Polynomial 23 (or its equiva-
lent Polynomial 8 or 18) have the same sign (-l)". Be-
cause there is no change in signs, according to the
Descarles' rule of signs, the number of positive roots is
zero. Therefore, all the /, roots must be either negative,
zero, or complex-valued. On the other hand, if tr is sub-
stituted with -\ in Polynomial 23, there are n - | vari-
ations in the signs of the coefficients of the polynomial
G(-\). According to the Descartes' rule of signs, the
number of negative real roots is either n - | or less than
n - | by an even integer. Such an even integer is just
the number of conjugate (complex-value) roots.

Existence and uniqueness of the zero root: according
to Polynomial 23,let G(\) : (-lIIh" 1 + d,-)\" 2 +

. . .  +  4 \ '  I  +  . . .  +  d 2 ) \  +  d , l  :  0 .

It follows that

\ ,  : 0

and

(24)

) \ "  |  +  d , , } ' " '  *  . . .  +  d . \ '  I  +  . . .  +  d ) \  +  O ,  : r f ; r ,

Equation 24 indicates that there is at least one zero root.
If there is another zero root \, : 0, it must be a root of
Equation 25. Substituting tr, into Equation 25, we get d,
: 0, which contradicts Theorems I and 2 and Equation
22 that d, : lb,l > 0 (t : 1, 2, 3, . . ., n). Therefore, \,
cannot be zero; in other words, there is one and only one
zero root.

According to the fundamental theorem of algebra, the
characteristic Polynomial 8 or 18 can be expressed as

G( \ )  :  b " ) \ "  +  b " ' \ " '  *  " '  *  b r \ z  +  b ) \  +  bo

:  b"( | '  -  r " ) (X -  t r "  , )  " ' ( I  -  \ ,X\  -  I , )

:  b, ,{>,"  + (- l ) ' \ "  '  )  t r ,  + (-1) ' r"  ' )  \ , t r ,

+  ( -1 ) :1"  3  >  \ i } , j t r r  +  . . .+  ( - l ; ' t r "  '

)  t r , t r , \ k . . .  t r ,  *  . . .  +  ( - l ) " r ,L ,L .  ) . , ] .
(26\

Expanding the right-hand side of Equation 26 ard eqtat-
ing the coefficient of the term \" r on both sides of the
equation give

b^  , :  ( -1 )b"  )  r ,  :  ( -1 ) , * ,  >  \ , .  (27)

On the other hand, considering

Det(A,,) : ai,: -f 0,,
t,:*',

and Equation 21, it follows that

(1 8)
l , 2 ,

(1e)

(20)

(22)
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b,  , :  ( - r1" !pet1a, . - , - ,u , ] l  :  ( - l ) ,  ) loet1a, , ; l

z  r r - \ r  \ r  r --  ( - l l  . / .  ) . K , , .

i : t  j : l

i+ i

From Equations 2'7 and 28, it follows that

\ r : - \ \ L
Z - t  " t  L J , a r  

' ' i i '

t : l  t : l  j : l

i+ i

This indicates that the sum Itr, should always be negative.
Because nonreal roots occur in conjugate pairs, each con-
jugate pair must therefore appear in the sum of all the n
roots. The sum of each conjugate pair is (1 + pl) + (r1
- pr) : 21. Therefore, the imaginary parts cancel in the
sum. As all the real roots are either negative or zero, if
the real part rl were positive, then sometimes a positive
sum Itr, would occur, contradicting Theorem 2 and Re-
lation 29. Hence, the real part of each pair of complex-
valued roots must be either negative or zero.

By Theorem 3, Equation 12 can be rewritten as:

x i : c , r + ) c , , ( t ) e \ " (30)

where \, : 0 (the zero root). This indicates that the ki-
netic equation of an n-site order-disorder process consists
of one constant term and n - I exponential terms. Such
a constant term is the equilibrium site occupancy at the
.s, site.

fNvBnsn cALCULATIoN oF KrNETrc coEFFrcrENTS

Once the initial site occupancies are known, the order-
disorder behaviour of atoms in a given crystal is com-
pletely determined by the n(n - l) kinetic coefficients.
Hence, estimating these kinetic coefficients from experi-
mental data is an essential step in theoretical studies of
multi-site ordering-disordering.

Nonlinear parameter estimation

Equations ll, 12, ard 14 contain some unknown pa-
rameters that can be determined only through experiment:
c, and \, in Equation 11, andpr., 6u and )rj (i, j : I,2,
. . ., n) in Equation 14. To calculate them, it is essential
to determine the kinetic site occupancies of an atom or
ion, that is, the site occupancies at different times in iso-
thermal or isobaric conditions, at each of the n nonequi-
valent sites.

Inversion of kinetic coefficients

Suppose that all the above parameters have been esti-
mated; the problem now is to calculate the n(n - l) ki-
netic coefficients in matrix A. Expanding Equation 30
glves

xr :  crr * crr(t)e\ ' '  - l  ct.( t)e\!  + '  '  '+ cr,(t)ex"'  (31.1)

xz : ctr + crr(t)e\ ' '  + crr(t)e\"+' ' '  + cr,(t)e\" (31.2)

(28) xt :  ctt* c.r(t)e\" * c. ( t)e\" +'  '  '+ cr,(t)ex" (31.3)

: : i

x,  :  c , , rc , r ( t )e\ , '+c, , ( t )e\ t+" '+ c , , ( t )e\"  (31.n)

(2e)

X. :

Note that X, is a constant vector because of the unique-
ness and existence of the zero root tr, : 0 by Theorem
3. It can be shown that X,, X., X., . ., X, are zr linearly
independent solutions of Equation 4, and it follows that

dY ff. _ o, _ ^u d,rK. _
? :  " l  

:  A X , .  
d r  

:  X ; :  A X T E :  X i

dx: AX^. ;f  
:  X:: AX,

which is equivalent to

lx i  x ix!  . . .  x: l  :  AlX, x,x, . . .  x" l .  (32)

Let A(/) : [X, X. X, X"], which is the fundamental
solution maffix of Equation 4; then Equation 32 becomes

a(t)' : Aa(t)

and the kinetic coefficient matrix is

(33)

(34)A :  o14' ,611; ' .
Because all the parameters in Equations 31. I to 3l.n have
been completely determined through nonlinear parameter
estimations from the experimental kinetic site-occupancy
data, Equation 34 can be calculated. By equating each
component of the right-hand side of the maffix Equation
34 to the corresponding component of the kinetic coef-
ficient Matrix 15, we obtain the n(n - l) kinetic coeffi-
cients. It should be noted that, although each component
of O(r), ctj(t)e\j', is a function of time, the final product
@(r)'<D(1;-t is a constant matrix.

UNrrs oF srrE-occupANcy vARIABLES

There are actually two options in choosing the units of
the site-occupancy variables: mole number per formula
unit (or atoms per formula unit) and mole fraction (or
atomic fraction). both of which are valid.
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Mole number per formula unit

Let m, be the mole number of an atom at site s, per
formula unit (pfu) of a crystal, y, the mole fraction of the
atom at site .ri, toi the multiplicity of site s, (pfu), and N
the sum of the multiplicities or the total number of all
nonequivalent sites (pfu). Then we have

N : ) , ,
i - l

f f i i :  a i l i .

I f  we let M : {m,} :  fm, m. m, . . .  m^l '  :  far!,  arJ,
o:},: . . . ro;r,,,]t and X = M,and replace xt, xz, . . ., xi, . . .,
.x,,  with the corresponding m,, f f i2, . . . ,  f f i i ,  . . . ,  m^, al l
results concerning X and rr, xz, .. ., x, arc valid for M
and m,, ffi, . . ., ffii, . . ., m^. After such a substifution, we
have

d m ,  / + . \- -  :  - {  ) ,  k , , lm,  +  k , ,m,  I  k ,m,  +  . . .  +  k , rm"(37 .1)dr  \ ;  " l

d m ,  / + . \
i :  

k , , ^ ,  - \ ! 0 , , ) * , +  k , , m , I  . . . *  k ^ , m ,  ( 3 7 . 2 )
i+2

d m ,  / + . \
*  

:  k , tm,  +  k2 ,m2 - lL  k , , l ^ ,  +  . . .  *  k , ,m,  (37 .3)
u'  \1; l  /

: :

dm"- - l j -  :  k , ,m,  +  k r ,m,  I  k , ,m. ,  *  . . .
dt

After summing Equations 37.1 to
pression similar to Equation 6:

) *, : 
Z 

*, : constant : (i ,,).t : Ntr? (38)

where ml is the initial site occupancy (in mole number
per formula unit) and uf is the bulk or total mole fraction
of  atom or  ion e,  ( l  :  1 ,2,3,  . . . ,  d  in  the crysta l .  In
the matrix form, Equations 37.1 to 37.n can be rewritten
AS

#: o* (3e)
The solution to Equation 39 is

M : l*,1 : ea,e "nM(t : t) : eAa a)Mo. (40)

According to Equations 1l and 12, in an explicit form,
Equation 40 becomes

t ,  ' r
M : {*,J = l) d,,1t1e^,1 GI)

L,: '  )
where du(r) is a constant or polynomial in t.

Mole fraction

Substituting Equation 36 into Equations 37.1 to 3'7.n
SIVES

4+P: -$ k,,)(.,y, ) -t k,,(a,y,)* k., (to.y.) * . . .
d r  \ E  " l '  ' ' '

+ k,,,(a"y") (42.1)

d (a , y , )  / +  .  \
+ :  k , , ( a , y , )  - l  )  k r , l  ( a , y r )  *  k , , 1 to . y , )  +  .  .  .

Ot \.. /

(35)

(36)

+ k,r(a,y,) (42.2)

sr
Z  P , f , , :  t \

is defined as the fractional site multiplicity of site i in the
crystal, and 1{ : yf is the initial site occupancy of atom
or ion e,(l -- 1,2,3, . . ., q). In the above notation, the
subscript / in the site-occupancy variable li: lr for atom
or ion e,is used here for clarity, but was previously omit-
ted (above) for simplicity.

Let us define the site-multiplicity matrix f,) as

Then in the matrix form, Equation 36 becomes

:

- l  )  t - ,  I  m,.  87.nl
t -

37.n, we get an ex-

d(o .v . )  |  ! -  \

T:k , , {o ,y ,  
y  +  k , , (a ,y , ) - ( )  0 , , , , ; , r , r , )  + .  .  .

+ k".(a"y") (42.3)

d(a"y" \

T :  
k , , (o r ,y , )  *  k r . ( to ry r )  +  k , " ( to ,y , )  + .  .  .

lT! \-l L k.'l(,.v"). (42.n)
\ f = l  /

Summing Equations 42.1 to 42.n gives

/ n  \'O ''r')
t ' ' r .  ' : o  

( 4 3 )

which is equivalent to

2r,r,,:2.,*,: 
constant : () ,,;rt : Nw?

( i  :  1 , 2 , 3 ,  .  .  . ,  n ;  I  - -  1 , 2 , 3 ,  .  -  . ,  q )  ( 4 4 )

or

(4s)

o)i 0)i

e, :  
i . :  

N



and Equation s 42.r to#.;:;" ,",- 

(47)

d(oI')
d; 

: A(,flr0. (48)

As the site-multiplicity matrix f,) is an n x n nonsin-
gular constant diagonal matrix, its inverse matrix O-r ex-
ists. By differentiating the matrices at the lefrhand side
of Equation 48 and rearranging it, we have

J J J

Le t I :  { d , , ( t ) e ' , ' )  and  V :  { l l , o ,d , , ( t ) e \ t l ben  x  n
matrices whose column vectors form fundamental-solu-
tion sets to Equations 39 and 49, respectively; then it
follows that

r(r) = ov(t). (s4)

The kinetic coefficient matrices B and A can be similarly
inverted to give

B: V(/) ' iP(/) '  : [O 'f(/)] ' [O 'f(/)]- '

: o-'f(/)'r(/) ro (55)

A: ABO' : I(r) ' , I(r) ' .  (56)

CoNsrnq.rrmD vERSUS UNCoNSTRATNED
TREATMENTS

There exist virtually two different approaches to the
treatment of order-disorder kinetic Equations 3.1 to 3.n:
constrained and unconstrained

Constrained treatment and crystal-chemical conditions

In the constrained approach, two external crystal-
chemical conditions are often exerted on site occupancies
during the experimental derivation of these variables
(Finger 1969a,1969b; Hawthorne 1983b; Skogby and
Annersten 1985; Hirschmann et al. 1994):

(1) For each site s,, we have

) v , : p ? < 1
I : l

( i  :  1 , 2 , 3 , -  .  . , n ;  I  :  1 , 2 , 3 , "  ' ,  S )

(s7)

where p! is a constant for site s,, and is equal to unity
when only atoms er, €2, . . ., er, eq occrrpy the s, site (I44
: 0). This condition can be always satisfied in both con-
sffained and unconstrained treatments.

(2) For each atom or ion e,, we get
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Y: U'
dr

where the matrix B is defined as

(4e)

(s0)

which indicates that matrix B is similar to maffix A. The
characteristic polynomial of B is

r(},) : Det(B - \E) : De(O 'AO - \E)
: DetlO-'AO - g1-'11E)OJ : Der(O ,(A - LE)O)
: Det(O-')Det(A - IJ)De(O)

: Det(A - }.,8) : G(I). (s l )
Equation 51 proves that both matrices A and B have

the same eigenvalues, which is important enough to be
stated as the following theorem.
Theorem 4.

For a multi-site order-disorder process, the eigenvalues
of matrices A ard B of the governing matrix Equations
39 and 49 are the same and independent of the multi-
plicities of all nonequivalent sites in a crystal, no matter
what units are chosen for the site-occupancy variables.

By Theorem 4, the matrix solution to Equation 49 is

Y : {y,} : A-teAte-AbOY(t : t) : dL teA(t tc)dLYo

: eB(t-'.)Yo (s2)
where the inverse form of the site-multiplicity matrix O I

and the initial conditions are

f,)-r :

0  0  0  . . .  1
(r),

) ^,: i ,,r', = () ',;'t : Nw?

( i  :  1 , 2 , 3 ,  .  .  ' ,  n ;  l  :  1 , 2 ,  3 ,  "  ' ,  q )  ( 5 8 )

where u.f is the bulk or total mole fraction of atom or ion
e, in the crystal.

From Equations 38 and 44, it is clear that the goveming
Equations 37 .l to 37 .n or Equations 42.1 to 42.n naturally
comply with the crystal-chemical Consffaint 58 when ei-
ther the mole number per formula unit or mole fraction
(associated with the site multiplicities) is used as the unit
of the site-occupancy variables.

Unconstrained treatment

In the unconsffained method, no additional extemal
conditions are consffained on the site-occupancy vari-
ables. This approach can be rationalized by the following
reasons:

(53) (1) In view of the theory of chemical kinetics, the va-
lidity of the governing Equations 3.1 to 3.n for a multi-

B :  O  ' A O

l oo
0)l

o lo
b)2

0 0 1
0)3

Equation 52 has the following explicit form

Y :  ly , l :  { f  > a, , {or^, , } .
Lo,  r : '  )
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site order-disorder process does not necessarily require
any other external constraints.

(2) The site occupancies of atoms at nonequivalent
sites can be experimentally determined, independently of
the crystal chemistry, such as Constraint 58 (e.g., Ungar-
etti et al. 1981; Rossi et al. 1983; Molin 1989; Molin et
al. 1991; Skogby et al. 1992). This is because the dif-
fraction data or the quantities derived from them, such as
unit cell parameters, atomic positions, bond lengths and
angles as well as mean atomic numbers, also contain in-
formation on the bulk chemistry of the crystal (Haw-
thorne 1983b; Domeneghetti et al. 1995). Therefore,
when deriving the experimental site occupancies there are
two schools of researchers: one uses crystal-chemical
Consffaint 58 (e.g., Finger 1969a, 1969b; Ghose and
Weidner 1972; Skogby and Annersten 1985; Ganguly et
al. 1994; Hirschmann et al. 1994), whereas the other ig-
nores it (e.g., Ungaretti et al. 1981; Rossi et al. 1983;
Molin 1989; Molin et al.1997; Skogby et al. 1992). How-
ever, these two different approaches give quite consistent
results within experimental enors (Gangdy et al. 1994;
Domeneghetti et al. 1995).

(3) When site multiplicities do not appear explicitly in
the governing Equations 3.1 to 3.n, a group of symmet-
rically equivalent sites are merged and treated as a single
site. In such a case, the kinetic coefficients implicitly con-
tain the contribution of site multiplicities to the order-
disorder kinetics.

(4) Constraint 58 is actually a mass conservation equa-
tion, whereas Equation 6 is an equivalent form of mass
conservation in which a group of equivalent sites are
treated as a single site.

In this treatment, we choose directly the mole fraction
as the unit of all site-occupancy variables and explicitly
exclude the site multiplicities from the governing Equa-
tions 3.1 to 3.n. Let the site-occupancy vector be

Z :  [ 2 , ]  :  f Z ,  Z , Z r . . . Z , l ,

with the initial condition being

Z(t : t) : Zo : t{, e zg . .. dl,.

I f  we let  X :  Z and replace xt ,  xz,  . . . ,  x i ,  . . . , . r ,  wi th
corresponding zt, Zz, . . ., Zo . . ., z,in all the relevant equa-
tions, all the conclusions regarding X and x,, xz, . . ., xi,
. . ., x" will be applicable to Z and zt, Zz, . . ., Zi, .. ., zu

It can be noted that the unconstrained kinetic model
can be easily switched to the consffained ones (Equations
4l and 52), only by changing the choice of the unit of
the site-occupancy variables from the mole number per
formula unit or mole fraction associated with the site mul-
tiplicities to the mole fraction dissociated with the site
multiplicities, or vice versa.

DrscussroN

Equations 11 and 12 or Equations 41 and 53 can be
used to predict the general form of the kinetic equations
of a multi-site order-disorder process in a crystal. For
instance, for two-site and three-site ordering-disordering,

n -- 2 and n : 3, then the kinetic equations should be of
the form

x i = c , t + c i 2 e ^ r ' (se)
and

xi : c,t + ci2e\r' + cile\.t. (60)

Equations 59 and 60 are consistent with the explicit so-
lutions for two-site and three-site ordering-disordering
discussed by Sha and Chappell (1996a,1996b). In the
case of two-site order-disorder kinetics, if the mole num-
ber per formula unit is chosen as the unit of the site-
occupancy variables, one only needs to substitute r,(i :
l,2) in Equations 7 and 8 of Sha and Chappell (1996a)
with m,to get the following expressions

k,,(ml + mi) (k,,ml - k,,ml)
i i t t :  

k D + h  
-  

k " + h

. e x p [ - ( f t , , + k , ) ( t - t ) ]

k , , (m l  +  m9) ,  & , ,m9  -  k , ,m l \
t t t : :  

k n + h  
-  

4 * ^

. exp[-(ft,, + k2)(t - t)]

(61)

(62)

where m, ard m2 are the site occupancies (in mole number
per formula unit) of sites s, and s, respectively, m! and
m! are the corresponding initial site occupancies, and ft,,
and k2t are the kinetic coefficients.

Furthermore, if we want the site multiplicities to appear
explicitly in Equations 61 and 62, simply substitute rn,(i
: 1,2) with toy,, then we have

kr,(r,1{ + t,lr1,{) (k^arfr - k'a,f)- - -
lt - 

a,(k,, + kr,) o,(k,, + krr)

. e x p [ - ( k , , + k z ) ( t - t ) ]

_ kr,rdl * fkrrw? - p,yl(k,, + krr)l
p , (k , ,  + kr , )  p , (k , ,  r  k , , )

.exp[-(ft,, + k,)(t - t)] (63)

and

k,r(r,f + o,1,{) [k,o,1{ - k,ro,]Y]
lt : 

or,(kJ kJ 
- 

,,tt, * o,

. e x p [ - ( f t , , + k , ) ( t - t ) l

: k,r 'dl . lk^w? 
- p,yl(k,, + kr,)l

p , (k , ,  + kr , ) '  pr (k , r+ krr )

.exp[-(k,, + k,)(t - t)] (64)

where y, and y, arc the site occupancies in mole fraction,
1{ and 1\ are the initial site occupancies, to, and o, are
the site multiplicities, p, : a,l(a, + to,) and p, = arl(a,
* tor) are the fractional site multiplicities, and w! is the
bulk concentration of an atom or ion e, and has the fol-
lowing relation:

vtt : @,f + a,1\)/(a, * .,) : (p,fr + p,fr).



Sha and Chappell (1996a,1996b) discussed the appli-
cability of two-site and three-site order-disorder kinetic
models. Using orthopyroxene and ffemolite as examples
of two-site and four-site order-disorder processes, they
demonstrated that theoretical predictions from the kinetic
models (Sha and Chappell 1996a, 1996b) are in good
agreement with available experimental results (Besancon
1981; Saxena et al. 1987, 1989; Skogby 1987, 1992;
Sykes-Nord and Molin 1993).

Finally, it is important to point out that the occurrence
of maxima or minima of the site-occupancy functions is
characteristic of multi-site ordering-disordering in con-
trast to two-site ordering-disordering in which the site
occupancies are monotonically increasing or decreasing
functions.

Acxtqowr,nlcMENTS

The authors are very grateful to Sue Keay and David B Tilley, whose
arduous support and inspiring discussions are greatly appreciated We
would like to thank Charlotte M. Allen, Phillip L. Blevin, David J. Ellis,
Trent C K. Liang, John G. Thompson, Ian S. Williams, and Doone Wyborn
for their helpful suggestions Frank C Hawthorne, Jibamitra Ganguly, and
Dexter Perkins III are gratefully acknowledged for their invaluable critical
comments and suggestions, which have ameliorated the manuscript This
is publication number 82 in the Key Centre for the Geochemistry and
Metallogeny of the Conrinents (GEMOC)

RnrBnnNcns crrED

Anovitz, LM, Essene, E.J, and Dunham, W.R (1988) Order-disorder
experiments on orthopyroxenes: Implications for the orthopyroxene
geospeedometer. American Mineralogist, 73, 1060- 1073

Armbrustet T, and Hummel, W. (1987) (Sb, Bi, Pb) ordering in sulfosalrs:
Crystal-structure refinement of a Bi-rich izoklakeite. American Miner-
alogist ,  72,  821-831.

Besancon, JR (1981) Rate of cation disordering in orthopyroxenes
American Mineralogist, 66, 965-973.

Burns, PC, and Fleet, ME. (1990) Unircell dimensions and tetrahedral-
site ordering in syntheric gallium albire (NaGaSi.O,). Physics and
Chemistry of Minerals, 17, 108,116

Cohen, R E (1986) Configurational themodynamics of aluminous pyrox-
enes: A generalized pair approximation Physics and Chemistry ofMin-
e r a l s . 1 3 . 1 8 3 - 1 9 7

Dal Negro, A, De Pieri, R., and Quareni, S (1978) The crystal srrucrures
of nine K feldspars from the Adamello Massif (Northern Italy) Acta
Crystallographica, 834, 2699-27 0'l.

Dienes, GL (1955) Kinetics of order-disorder transformation Acta Me-
tallurgica, 3,549-551

Domeneghetti, M C, Molin, G M, and Tazzoli, V (1995) A crysral-chem-
ical model for Pbca orthopyroxene. American Mineralogist, 80, 253-
267

Fingea L.W. (1969a) The crystal structure and cation distribution of a
grunerite. Mineralogical Society of America Special paper, 2, 95-100

-(1969b) Determination of cation distribution by leasGsquares re-
finement of single-crystal X-ray data. Carnegie Institute of Washington
Year Book. 61.216-217

Fleet, M.E (1991) Tetrahedral-site occupancies in sodium aluminium-gal-
lium feldspar solid solutions [Na(Al, ,G4)Si.O*] Journal ofSolid State
Chemistry, 92, 295-3OO.

-(1992) Tetrahedral-site occupancies in reedmergnerite and syn-
thetic boron albite (NaBSi,O,) American Mineralogist, 77, 7 6-84

Franzen, H.E, and Kcickerling, M. (1995) The stabilization ofternary early
transition-metal sulfides and phosphides at high temperatures by differ-
ential site occupancy. Progress in Solid State Chemistry,23,265-289

Ganguly, J (1982) Mg-Fe order-disorder in ferromagnesian silicates: IL
Thermodynarnics, kinetics, and geological applications In S K Saxena,

335

Ed, Advances in physical geochemistry, volume 2, pp 58-99 Spring-
er-Verlag, New York

Ganguly, J, Yang, H, and Ghose, S (1994) Thermal history of mesosi-
derites: Quantitative constraints from compositional zoning and Fe-Mg
ordering in orthopyroxenes Geochimica et Cosmochimica Acta, 58,
27 |-2723.

Ganguly, J, and Domenegheni, M C (1996) Cation ordering of ortho-
pyroxenes from the Skaergaard intrusion: Implications for the subsoli-
dus cooling rates and permeabilities Contributions to Mineralogy and
Petrology, 122, 359-361

Ghiorso, M.S., Evans, B W, Hirschmann, M M , and Yang, H (1995)
Thermodynamics of the amphiboles: Fe-Mg cummingtonite solid so-
lutions. American Mineralogist, 80, 502-519

Ghose, S., and WeidneE JR (1972) Mg'?+-Fe'z+ order-disorder in cum-
mingtonite, (Mg, Fe),Si,O,,(OH).: A new geothermometer. Earth and
Planetary Science Letters, 16, 346-354

Ghose, S , and Ganguly, J ( I 982) Mg-Fe order-disorder in ferromagnesian
silicates In S.K Saxena, Ed, Advances in physical geochemistry, vol-
ume 2, pp. 3-57 Springer-Verlag, New York

Hafner, S.S , and Ghose, S. (1971) Iron and magnesium distribution in
cummingtonites Zeitschrift ftir Kristallographie, I 33, 301-326

Hawthorne, FC (1983a) The crystal chemistry of the amphiboles. Cana-
dian Mineralogist, 21, 1'73-480.

-(1983b) Quantrtative characterization of site occupancies in min-
erals. American Mineralogist, 68, 281 -306.

Hirschmann, M , Evans, B.W., and Yang, H (1994) Composition and tem-
perature dependence of Fe-Mg ordering in cummingtonite-grunerite as
determined by X-ray diffraction American Mineralogist, 79,862-8ll

Kroll, H., Fl0gel, J., Breit, U., Lions, J , md Pentinghaus, H (1991) Order
and anti-order in Ge-substituted alkali feldspars. European Journal of
Minerafogy, 3,739-749

Makino, K., and Tomita, K. (1989) Cation distribution in the octahedral
sites of hornblendes. American Mineralogist, 7 4, 109'7 -1 105.

Makovicky, E., and Mumme, WG. (1986) The crystal structure of izok-
lakeite, Pb.,.SbrooBi,nrAg, rCu.nFeorS,,o: the kobellite homogeneous se-
ries and its derivatives. Neues Jahrbuch fiir Mineralogie Abhandlungen,
t53. 12r-145.

Molin, G.M. (1989) Crystal-chemical study of cation ordering in Al-rich
and Al-poor orthopyroxenes from spinel lherzolite xenoliths American
Mineralogist, 7 4, 593-598

Molin, G M, Saxena, S K., and Brizi, E (1991) Iron-magnesium order-
disorder in an orthopyroxene crystal from the Johnstown meteorite.
Eanh and Planetary Science Letters, 105,260-265

Mueller, RF (1967) Model for order-disorder kinetics in certain quasi-
binary crystals of continuously variable composition. Journal of Physics
and Chemistry of Solids, 28,2239-2243.

-(1969) Kinetics and thermodynamics of intracrystalline distribu-
tions Mineralogical Society of America Special Papers, 2,83-93

Navrotsky, A. (1971) The intracrystalline cation distribution and the ther-
modynamics of solid solution formation in the system FeSiO.-MgSiO..
American Mineralogist, 56, 201-2ll

Phillips, M W., and Ribbe, PH, and Pinkerton, A.A. (1989) Structure of
intermediate albite, NaAlSi.Or. Acta Crystallographica, C45, 542-545

Rossr, G., Smith, D.C., Ungaretti, L., and Domeneghetti, M.C. (1983)
Crystal-chemistry and cation ordering in the system diopside-jadeite: A
detailed study by crystal structure refinement Contributions to Miner-
alogy and Petrology, 83,247-258

Sack, R O, and Ghiorso, M S. (1991) An internally consistent model for
the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spi-
nels Contributions to Mineralogy and Petrology, 106,414-505

Saxena, S K, and Ghose, S (1970) Order-disorder and the activity-com-
position relation in a binary crystalline solution I Metamorphic ortho-
pyroxene American Mineralogist, 55, 1219-1225

Saxena, S K, Tazzoli, V, and Domeneghetti, M.C. (1987) Kinetics of
Fe,'-MB distributron in aluminous orthopyroxenes Physics and Chem-
istry of Minerals, 15, 140-141

Saxena, S.K., Domeneghetti, M C., Molin, G M., and Tazzoli, Y. (1989)

X-ray diffraction study of Fe,t-Mg order-disorder in orthopyroxene:
Some kinetic results. Physics and Chemistry of Minerals, 16,421-427

SHA AND CHAPPELL: MULTI-SITE ORDER-DISORDER KINETICS



336

Schneider, H, and Barker, G.P (1968) Matrices and linear algebra, 385 p
Holt Rinehan and Winston, New York

Seifert, F, and Virgo, D (1975) Kinetics of Fe,*-Mg order-disorder re-
action in anthophyllites: Quantitative cooling rates Science, 188, 1107-
1 109

Sha, Lian-Kun, and Chappell, B.W. (1996a) Two-site multi-cation order-
ing-disordering in minerals: An alternative lanetic model American
Mineralogist, 81, 881-890.

-(1996b) A kinetic model for three-site intracrystalline ordering-
disordering in minerals Geochimica et Cosmochimica Acta, 60, 2015
2086

Skogby, H., and Annersten, H. (1985) Temperature dependent Mg-Fe-
cation distribution in actinolite-tremolite. Neues Jahrbuch fiir Mineral-
ogie Monatshefte, H.5, 193-203.

Skogby, H. (1987) Kinetics of intracrystalline order-disorder reactions in
tremolite Physics and Chemistry of Minerals, 14, 521 526.

-(1992) Order-disorder kinetics in orthopyroxenes of ophiolite ori-
gin Contributions to Mineralogy and Petrology, 1O9,471 418

Skogby, H., Annersten, H , Domeneghetti, M C., Molin, G M , Tazzoli, V
(1992) Iron distribution in orthopyroxene: A comparison of Mdssbauer
spectroscopy and X-ray refinement results. European Journal of Min-
eralogy,4, 441 452

Sykes-Nord, J A , and Molin, G M ( 1993) Mg-Fe order-disorder reaction
in Fe-rich orthopyroxene: Structural variations and kinetics American
Mineralogist, 78, 921 93I

SHA AND CHAPPELL: MULTI-SITE ORDER-DISORDER KINETICS

Tak6uchi, Y, Kudoh, Y., and Ito, J (1984a) New series of superstructures
based on a clinopyroxene I The structure of the 'enstatite-IV' series,

[Mg,,,,,,.Sc*][Li.,.Si(- 
"),.]O,, 

with r : 100, I 12, 124 Acta Crystallogra-
phica, B40, ll.5-125.

Tak6uchi, Y, Mori, H, and Kudoh, Y (1984b) New series of superstruc-
tures based on a clinopyroxene II The strxcture of the Sc series of
enstatite-I[ [Mg,,,.,,,Sc.][Mg,.Si(,"),,]O,, with x : 100, 112, 124. Acta
Crystallographic a, 840, 126- 132

Ungaretti, L., Smith, DC, and Rossi, G (1981) Crystal chemistry by
X-ray strxcture refinement and electron microprobe analysis of a series
of sodic-calcic to alkali-amphiboles from the Nybtt eclogite pod, Nor-
way Bulletin de Min6ralogie, 104, 400-412.

Yao, X., md Franzen, H E (1990) The crystal structure of a new ternary
metal-rich sulfide TauorNb,rrSo Journal of Solid State Chemistry, 86,
88-93

-(1991) Preparation and crystal structure of NburoTa.ruSo-a new
compound in the ternary system Ta-Nb-S Zeitschrift fiir Anorganische
und Allgemeine Chemie, 598/599, 353-362

Yao, X , Marking, G A , and Franzen, HF. (1992) Metal-rich sulfides of
mixed tantalum and niobium: a new chemical concept Berichte der
Bunsen-Gesellschaft ftir Physikatsche Chemie, 96, 1552-1557

Maluscnrr"r RECETvED Mrncs 30, 1996
MeNuscnrn AccErrED DpceMgpn 18, 1996


