Mobility of uranium during weathering

TAKASHI Murakami,1 TOSHIIKO Ohnuki,2 HIROSHI ISOBE,2 AND TSUTOMU SATO2

1Mineralogical Institute, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
2Environmental Geochemistry Laboratory, Japanese Atomic Energy Research Institute, Tokai, Ibaraki 319-11, Japan

ABSTRACT

Mineralogical and geochemical mechanisms of U fixation under oxidizing conditions in the vicinity of the secondary U ore deposit at Koongarra, Australia, were examined using transmission and scanning electron microscopy and thermodynamic calculations. The formation of saléite, Mg(UO3)(PO4)10(H2O), is the predominant mechanism for U fixation upstream from the deposit, where saléite replaces sklodowskite and granular apatite. Within the deposit and further downstream, U is fixed in microcrystals (10–50 nm) of saléite and (meta)torbernite scattered within veins of fine-grained (2–50 nm) Fe3+ minerals (primarily goethite and hematite). Thermodynamic calculations indicate the groundwater is undersaturated with respect to saléite and metatorbernite and that these minerals should precipitate at higher U or P concentrations than observed. This suggests that the upstream saléite precipitated at the reaction interfaces of dissolving sklodowskite and apatite under local saturation conditions. Observed textural relationships of saléite and (meta)torbernite microcrystals with the Fe minerals, combined with thermodynamic calculations, suggest surface precipitation as the formation mechanism for saléite and (meta)torbernite microcrystals within, and downstream from, the secondary ore deposit. Phosphorous released during the aging of ferrihydrite and U adsorbed onto Fe minerals are probably the sources of the major components of the microcrystals. Downstream, the microcrystals exist where groundwater U concentrations are as low as 10–30 µg/L. Once released from the ore deposit, U is fixed in uranyl phosphates even where measured groundwater is undersaturated with respect to uranyl phosphates. The surface precipitation is an important example of long-term post-adsorption U fixation in a natural system. The fully crystalline and radiation-damaged microstructures of saléite indicate uranyl phosphates have formed continuously (or intermittently) for the last few million years.

INTRODUCTION

The two important oxidation states for U in natural waters are 4+ and 6+. The U4+ ion is essentially insoluble in mildly acidic to alkaline groundwaters, whereas U6+ solubility is commonly controlled by uraninite (see Table 1 for U mineral formulas and information) or coffinite. On the other hand, the U6+ ion is potentially much more mobile, due in part to the greater solubilities of most U6+ minerals (e.g., Osmond and Ivanovich 1992). Uranium dissolved in groundwater commonly forms complex ions, depending on geochemical conditions such as pH, Eh, and the presence of other dissolved ions (Langmuir 1978). The mobility of dissolved U in natural waters is affected by processes such as adsorption or desorption of U ions and precipitation or dissolution of U-bearing minerals. More complete information about the mechanisms of fixation and transport of U in groundwaters would enhance our understanding of the surficial U cycle (Gascoyne 1992).

Uranium sorption has been studied extensively, particularly U4+ sorption by Fe minerals at the Earth’s surface (e.g., Tripathi 1983; Hsi and Langmuir 1985). Despite these studies, the chemical forms of U on solid substrates in natural systems are poorly understood, particularly at low U concentrations. Identifying the chemical forms of U is necessary for understanding the change in relationship between U and solid substrates after adsorption over a geologic time-scale, that is, long-term post-adsorption phenomena directly related to U mobility in natural systems. Waite et al. (1994) examined the chemical forms of U sorbed on ferrihydrite at pH 5 and 5.5 under atmospheric conditions using extended X-ray absorption fine structure (EXAFS) spectroscopy. They showed that mononuclear uranyl complexes on ferrihydrite surfaces share edges with Fe octahedra in ferrihydrite and no polynuclear uranyl complexes are evident as sorbed species, even at relatively high U concentration (approximately 20 mg/L). EXAFS studies of U6+ sorbed onto smectites led to different conclusions for local structures of UO22+ complexes, similar to those in solution (Dent et al. 1992) and distorted and distinct (Chisholm-Brause et al. 1994). In contrast, a laboratory experiment by Bruno et al. (1995) demonstrated schoepite can precipitate on the surfaces of Fe3+ oxyhydroxides following U sorption in 0.2–200 mg/L U solu-
These studies addressed only short-term phenomena, and the long-term post-adsorption phenomena remain poorly understood in natural systems where U concentrations are commonly a few micrograms per liter.

Precipitation is another important mechanism by which U$^{4+}$ is fixed in minerals. Uraninite, the most common primary mineral at U ore deposits, is not stable in waters under oxidizing conditions. Secondary U$^{4+}$ minerals are frequently associated with U ore deposits (Rich et al. 1977) and have been observed at great distances from the primary source of U (Dall’aglio et al. 1974). Uraninite is altered not only to uranyl hydrates, but also to uranyl silicates, uranyl phosphates, or both, depending on water chemistries (e.g., Frondel 1958; Finch and Ewing 1992; Pearcy et al. 1995). Thus, U$^{4+}$ can be fixed as U$^{4+}$ minerals under certain conditions.

Vochten and his colleagues synthesized metatorbernite and metaautunite from concentrated U solutions and concluded that the formation of metatorbernite and metaautunite depends on the cations present in the solutions and on the physico-chemical conditions of U ore deposits (Vochten et al. 1979; Vochten and Deliens 1980). They demonstrated that this conclusion helps to explain the occurrence of torbernite, autunite, or both phases at oxidized U deposits such as Shinkolobwe (Zaire), Kobokobo (Zaire), and Margnac (France) (Vochten and Deliens 1980). On the other hand, inconsistent conclusions are drawn concerning the formation of kasolite at the Koongarra U ore deposit, Australia: Both direct precipitation from solution (Snelling 1980) and formation by replacement of sklodowskite (Isobe et al. 1992) have been proposed. Leo (1960) suggested that Ca and P from apatite are a source for autunite formation at Mt. Spokane, U.S.A.; however, autunite is not observed at Koongarra, despite the presence of apatite. Instead saléite is the common uranyl phosphate at Koongarra.

Recently, U transport in groundwaters has become of increasing concern for the long-term safety assessment of high-level nuclear-waste disposal sites (e.g., Airey and Ivanovich 1986). The long half-lives of the actinide elements present in nuclear waste necessitate that we understand the long-term migration behavior of these elements so that we may more accurately assess the long-term safety of a waste repository. Unfortunately, field observations and measurements of actinides such as Pu, Np, and Am, are exceedingly difficult because of their low concentrations in natural groundwaters. Uranium migration away from a U ore deposit can provide deeper insight into actinide migration from a repository. Several U ore deposits, such as Cigar Lake, Canada (Philippe et al. 1993), Koongarra, Australia (Airey 1986), Peña-Blanca, Mexico (Pearcy et al. 1994), and Poços de Caldas, Brazil (Bruno et al. 1992), are sites of “natural analogue” studies where U transport has been examined in large-scale natural systems. Among these natural analogue sites, the Koongarra U ore deposit provides us with a large body of data on the geology, mineralogy, geochemistry, hydrogeology, and geomorphology collected by the International Alligator Rivers Analogue Project from 1987 to 1992 (e.g., Snelling 1992). These data provide a great opportunity to study U transport in nature.

This study focuses on the long-term post-adsorption phenomena and on the processes and mechanisms of U fixation. We report how U has been fixed in solid phases during the last million years under oxidizing conditions in the vicinity of the Koongarra U ore deposit, where the concentration of U in the groundwater is on the order of micrograms per liter. Adsorption and precipitation are included under the term fixation in the present study.

MINERALOGY, GEOCHEMISTRY, AND GEOLOGY AT KOONGARRA

The mineralogy, geochemistry, and geology at Koongarra have been investigated extensively (Snelling 1990; Edis et al. 1992; Murakami et al. 1992; Snelling 1992; Payne et al. 1992; Komninou and Sverjensky 1995a, 1995b; Koppi et al. 1996; Murakami et al. 1996). These studies are summarized briefly here.

Koongarra is located in a tropical monsoon climate. The host rock, a quartz-chlorite schist, and the primary U mineral, uraninite, currently at and near the surface have probably been subjected to weathering for more than one million years. (Airey et al. 1986). Quartz is resistant to weathering and persists even at the surface, whereas chlorite has been altered to vermiculite and kaolinite in the weathered zone (hereafter, referred to as WZ), which extends to about 25 m below the surface. Chlorite remains essentially unaltered in the unweathered zone (UWZ) below the WZ (Fig. 1). The conversion of chlorite with increased weathering is expressed: chlorite → vermiculite → kaolinite. The alteration of chlorite also produces Fe$^{3+}$ minerals such as ferrihydrite, goethite, and hematite (Murakami et al. 1996); the conversion of chlorite occurs mainly in the transition zone (TZ) between the WZ and UWZ.

The Koongarra U ore deposit consists of primary and secondary ore deposits. The weathering that altered chlo-
Koongarra (Fig. 1). They are DDH65-92.5 (21.6 m depth of, and downstream from the secondary ore deposit at previously.

Forms of U-bearing materials have not been reported mechanisms of U fixation into solid phases and the chemical (Lowson et al. 1986). However, the processes and mechanisms of U fixation into solid phases and the chemical formations of U-bearing materials have not been reported previously.

Experimental Method

The rock samples used in this study were collected from diamond-drill cores drilled upstream from, in the middle of, and downstream from the secondary ore deposit at Koongarra (Fig. 1). They are DDH65-92.5 (21.6 m depth from the surface); DDH65-95 (22.2 m) and DDH65-96 (22.4 m); DDH58-65 (15.2 m) and DDH58-91 (21.3 m); and DDH4-99 (23.1 m), respectively. The samples were collected in the TZ and WZ, and they mainly contain chlorite, quartz, and clay and Fe minerals. DDH65-92.5, DDH65-95, and DDH65-96 also contain U minerals. Concentrations in rocks are approximately 1000 mg/kg U upstream, 1000 mg/kg or more U in the middle, and 100-300 mg/kg U downstream (Edis et al. 1992). Concentrations in groundwaters are approximately 100, 100-400, and 10-30 μg/L U upstream, in the middle, and downstream, respectively (Payne et al. 1992).

Polished thin sections of the samples were examined by light microscopy, followed by scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) to identify the mineral species and to examine the textures of the samples. Because polished thin sections were used, backscattered-electron imaging (BEI) also was applied. A JEOL JSM-5400 and Hitachi S-4500 were used; both SEMs are equipped with EDX analyzers. The standard operating voltage was 15 kV, although 10 or 20 kV was also used when more detailed surface textures or higher-energy X-rays were needed, respectively.

To identify U-bearing phases within the Fe-mineral veins that are in contact with groundwater with low U concentration, sample DDH4-99 was examined further by high-resolution transmission electron microscopy (HRTEM) and analytical electron microscopy (AEM). After confirming the presence of U in the Fe-mineral veins of sample DDH4-99, a small piece of the Fe-mineral veins was removed from the thin section and subjected to ultramicrometry after resin-impregnation, creating thin films less than 50 nm in thickness. The thin films were placed onto molybdenum or copper TEM grids. Saléite crystals were extracted from samples DDH65-98.5 and DDH65-95 and examined by HRTEM and AEM. TEM samples for saléite were prepared by grinding the saléite crystals in ethanol and dispersing them onto holey carbon films attached to copper grids. A JEOL JEM 200CX, a JEOL JEM 2010, and a Hitachi HF 2000 were used for HRTEM and AEM examination.

We calculated the thermodynamic stabilities of saléite, metatorbernite, and autunite in the current groundwater using the EQ3NR software package (Wolery 1992). Thermodynamic data were taken from Magalhaes et al. (1985) for saléite (log K = −22.3 at 25 °C) and metatorbernite (log K = −30.0 at 25 °C), Read (1990) for autunite (log K = −19.43 at 25 °C), Grentgh et al. (1992) for U5+ complexes in solution, and Wolery (1992) for the other dissolved and mineral species. The thermodynamic database for uranyl phosphate solids and soluble species may not be complete. For instance, we excluded data for UO4(PO4)2− (in Langmuir 1978), which was critically discussed by Grentgh et al. (1992) and recommended by Bennett and Read (1992).

Groundwater compositions reported for wells M1, W4, and M3 by Payne (1992) were used for the thermodynamic calculations (Table 2). The locations of the M1,
TABLE 2. Water chemistries at Koongarra*

<table>
<thead>
<tr>
<th>Location</th>
<th>M1</th>
<th>W4</th>
<th>M3</th>
<th>K. Cr.†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m)</td>
<td>24-26</td>
<td>13-15</td>
<td>26-28</td>
<td>—</td>
</tr>
<tr>
<td>pH</td>
<td>7.10</td>
<td>5.85</td>
<td>6.68</td>
<td>6.90</td>
</tr>
<tr>
<td>Eh (mV)</td>
<td>205</td>
<td>330</td>
<td>265</td>
<td>—</td>
</tr>
<tr>
<td>EC (μS/cm)</td>
<td>162</td>
<td>66</td>
<td>88</td>
<td>8</td>
</tr>
<tr>
<td>HCO₃ (mg/L)</td>
<td>5.53</td>
<td>5.8</td>
<td>4.61</td>
<td>2.94</td>
</tr>
<tr>
<td>Cl (mg/L)</td>
<td>0.39</td>
<td>0.09</td>
<td>0.19</td>
<td>0.09</td>
</tr>
<tr>
<td>F⁻ (mg/L)</td>
<td>0.34</td>
<td>0.8</td>
<td>0.59</td>
<td>0.14</td>
</tr>
<tr>
<td>SO₄ (mg/L)</td>
<td>40</td>
<td>30</td>
<td><5</td>
<td>25</td>
</tr>
<tr>
<td>PO₄ (mg/L)</td>
<td>21.9</td>
<td>12.3</td>
<td>13.2</td>
<td>0.46</td>
</tr>
<tr>
<td>Mg (mg/L)</td>
<td>4.3</td>
<td>9.8</td>
<td>11.5</td>
<td>3.9</td>
</tr>
<tr>
<td>Ca (mg/L)</td>
<td>1.1</td>
<td>1.7</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Si (mg/L)</td>
<td>1.52</td>
<td>0.54</td>
<td>0.57</td>
<td>0.10</td>
</tr>
<tr>
<td>Fe (μg/L)</td>
<td>2.53</td>
<td>2.08</td>
<td>0.72</td>
<td>0.18</td>
</tr>
<tr>
<td>Mn (μg/L)</td>
<td>4.3</td>
<td>9.8</td>
<td>11.5</td>
<td>3.9</td>
</tr>
<tr>
<td>U (μg/L)</td>
<td>120</td>
<td>421</td>
<td>28.8</td>
<td>0.21</td>
</tr>
</tbody>
</table>

* Data from Payne et al. (1992).
† K. Cr. = Koongarra Creek about 200 m from the ore deposit.

W4, and M3 wells (24–26, 13–15, and 26–28 m deep, respectively) are shown in Figure 1. The groundwater compositions for wells M1, W4, and M3 correspond to those upstream, in the middle, and downstream of the secondary ore deposit and thus relate to the water-rock interactions with DDH65-92.5, DDH65-95, and DDH65-96 upstream, DDH58-65 and DDH58-95 in the middle, and DDH4-99 downstream (Fig. 1). Well W4 has one of the highest U concentrations (414 μg/L) reported from Koongarra (Payne et al. 1992).

Activities of the solution species were calculated using the Davies equation. Calculated values of log (Q/K) for saléite, metatorbernite, and autunite are given in Table 3 (Q is the activity product of species in a reaction).

RESULTS

Uranium-bearing phases upstream of the secondary deposit

Sklodowskite is common in the primary ore deposit, and it also occurs, but rarely, upstream from the secondary ore deposit as veins within fissures and along grain boundaries (Fig. 2a). Examination of these “sklodowskite veins” indicates some of the sklodowskite is replaced by saléite, where the remnant sklodowskite still retains its

![Figure 2](image)

Figure 2. (a) Backscattered-electron image (BEI) of sklodowskite and saléite in DDH65-92.5, occurring in microfissures and grain boundaries (brightest areas). The gray areas correspond to quartz, chlorite, and the weathered products. (b) BEI of saléite in DDH65-95 growing in a sklodowskite vein. The difference in contrast between the two minerals is small but their textures are different; saléite occupying most of the vein has fine cleavages and sklodowskite exhibits a radial texture.

Table 3. Values of log (Q/K) for saléite, metatorbernite, and autunite at wells M1, W4, and M3

<table>
<thead>
<tr>
<th>Condition</th>
<th>Saléite</th>
<th>Metatorbernite</th>
<th>Autunite</th>
</tr>
</thead>
<tbody>
<tr>
<td>As measured</td>
<td>M1</td>
<td>W4</td>
<td>M3</td>
</tr>
<tr>
<td>10 (P)†</td>
<td>-3.4</td>
<td>-0.58</td>
<td>-4.9</td>
</tr>
<tr>
<td>50 (P)</td>
<td>-1.4</td>
<td>1.4</td>
<td>-2.9</td>
</tr>
<tr>
<td>100 (P)</td>
<td>-0.019</td>
<td>2.8</td>
<td>-1.5</td>
</tr>
<tr>
<td>10 (U)</td>
<td>0.58</td>
<td>3.4</td>
<td>-0.95</td>
</tr>
<tr>
<td>100 (U)</td>
<td>-1.4</td>
<td>1.4</td>
<td>-2.9</td>
</tr>
<tr>
<td>100 (U)</td>
<td>0.019</td>
<td>2.9</td>
<td>-1.5</td>
</tr>
<tr>
<td>100 (U)</td>
<td>0.66</td>
<td>3.5</td>
<td>-0.92</td>
</tr>
<tr>
<td>100 (U) + 10 (U)</td>
<td>0.61</td>
<td>5.4</td>
<td>0.80</td>
</tr>
<tr>
<td>10 (Cu)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>50 (Cu)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>100 (Cu)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>100 (P) + 100 (Cu)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>100 (P) + 100 (Cu)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

Note: NC means not calculated.

† Concentration of the element in parentheses is ten times higher than the measured value; the following symbols should be read in a similar way.

Cu concentrations at wells M1 and M3 are not given in Payne et al. (1992). Therefore, the value in the M4 well was used in the calculations for all three wells.
original radial texture (Fig. 2b). Saléeite is also observed in veins without sklodowskite, which we interpret as being due to the complete replacement of sklodowskite by saléeite, with some sklodowskite constituents being dissolved in the groundwater. The presence of sklodowskite upstream from the secondary ore deposit suggests the original uraninite-bearing ore deposit existed at the level of the present WZ before the onset of weathering at Koongarra.

Saléeite is also found to be associated with apatite, an accessory mineral in the host rock (brightest areas in Fig. 3a). Closer examination reveals that apatite grains are partly or completely replaced by saléeite (Figs. 3b and 3c). The cavities in the apatite grains in Figure 3c indicate that some of apatite dissolved, and the dissolved constituents were transported downstream. The size of the saléeite aggregates is 20–100 μm. The replacement of apatite by autunite was not observed.

Figures 2b, 3b, and 3c reveal that saléeite crystals grew at the surface of sklodowskite or apatite at the expense of sklodowskite or apatite, respectively. The morphology of the surface of the saléeite shows rounded cleavage surfaces (Fig. 4), suggesting the possibility of saléeite dissolution in some areas. No evidence for the formation of saléeite other than by the replacement of sklodowskite or apatite is observed upstream from the secondary ore deposit.

An unidentified uranyl vanadate with U:V = 1:1 containing Ti, K, and Ca, and another unidentified Ti-bearing phase with U:Ti = 2:1 containing V, K, and Ca were observed in the present study (sample DDH 65-92.5). They may be a mixture of a few phases. Uranium was also found in veins and along grain boundaries. These are associated with unidentified Pb-V, Fe, and Fe-Al phases with dimensions on the order of submicrometers to a few micrometers. We did not find additional uranyl phosphate such as metatorbernite or renardite as reported by Snelling (1980). Uranium-bearing phases other than saléeite are rare.

Two saléeite samples (DDH65-95 and DDH65-98.5) show distinct microstructures. The HRTEM image of saléeite in sample DDH65-95 shows no significant radiation damage and displays almost perfect two-dimensional lattice fringes in the (021) plane; there are no discontinuities apparent in the lattice fringes (Fig. 5a). Saléeite is monoclinic (a = 0.6951, b = 1.9947, c = 0.9896 nm, β = 135.17°); however, the Miller indices reported here refer to a pseudotetragonal unit cell (α = 0.70 nm and c = 2.0 nm) (Miller and Taylor 1986). On the other hand, saléeite crystals in sample DDH65-98.5 show mainly intermediate metamict microstructures; Slightly to heavily distorted lattice fringes are observed with 1.0 and 0.35 nm spacings that correspond to (002) and (200), respectively (Fig. 5b). Lattice fringes with other crystallographic orientations in one crystal suggest that annealing of the radiation damage has occurred. The selected-area electron-diffraction (SAED) pattern shows faint diffraction spots and a diffuse diffraction halo (Fig. 5c), indicating the saléeite crystal in sample DDH65-98.5 contains both periodic and aperiodic domains. The microstructures and SAED pattern correspond to those observed in Stage II metamictization of zircon (Murakami et al. 1991). Some

Figure 3. (a) BEI of saléeite (brightest areas) in DDH65-95 scattered among weathered quartz-chlorite schist. The gray areas accompanied by saléeite correspond to apatite. BEIs of saléeite (brightest area) in DDH65-95 (b) partly and (c) almost completely replacing apatite (gray, hexagonal shape).

Figure 4. SEM image of the surface of saléeite (DDH65-95) upstream from the secondary ore deposit.
grains of the saléite in sample DDH65-98.5 show fully metamict microstructures, i.e., irregular contrast in the HRTEM images and a diffuse diffraction halo in the SAED pattern. The lattice fringes in Figure 5 demonstrate that saléite retains its crystal structure under the high vacuum in the TEM.

Uranium-bearing phases downstream from the deposit

We identified U-bearing phases in the sample downstream from the deposit by HRTEM and AEM using the result of the reference saléite. Therefore, we describe the downstream sample first, followed by those in the middle of the ore deposit. We use "(meta)torbernite" to denote metatorbernite or torbernite or a mixture, as torbernite could not be distinguished from metatorbernite by TEM in the present study.

 Constituents of the Fe-mineral veins in sample DDH4-99, where we found U associated with P by SEM-EDX, were examined before identifying the U-bearing phases. One of the U-bearing areas was removed from the thin section and examined by TEM and AEM. The predominant crystalline phases in the Fe-mineral veins are goethite and hematite, since most of the diffraction spots and rings can be attributed to these two minerals (Fig. 6a), which agrees with the XRD result (Murakami et al. 1996). Ferrihydrite, which is difficult to identify using HRTEM or SAED, may coexist with goethite and hematite in this sample (Edis et al. 1992). An HRTEM micrograph indicates that the small domains of goethite and hematite (mostly in the range 2–50 nm) are randomly oriented (Fig. 6b). Those parts of the Fe-mineral domains lacking lattice fringes may correspond to amorphous material; however, some probably correspond to domains of goethite and hematite crystals that are not oriented with their primary zone axes parallel to the electron beam. Other domains with lattice fringes of 0.7 or 1.4 nm spacing, tentatively identified as chlorite, vermiculite, and kaolinite, are also found within the Fe-mineral veins, and their abundances are small. We did not find any direct association of U with chlorite, vermiculite, or kaolinite.

 As with SEM and EDX examination, AEM indicates that U coexists with P, Mg, and Cu (Fig. 7a). Phosphorous, Mg, and Cu, are probably derived from dissolution of apatite, chlorite, and chalcopyrite of the host rock, respectively. Adjacent minerals, such as goethite and kaolinite, give rise to X-ray peaks for Al, Si, Fe, and Mg in the EDX spectrum (Fig. 7a). The U content of individual areas varies. Because saléite and (meta)torbernite occur in the secondary ore deposit, the coexistence of U
with P, Mg, and Cu suggests that saléite and (meta)torbernite may occur as microcrystals. Figures 7b and 7c are EDX spectra for saléite and (meta)torbernite, respectively, compared to the EDX spectrum from sample DDH4-99 (Fig. 7a). The X-ray peak ratios of P/U of the U-bearing areas (e.g., Fig. 7a) are usually larger than those of saléite and (meta)torbernite (Figs. 7b and 7c), i.e., the Fe-mineral veins contain an additional amount of P compared to that needed for the probable formation of saléite or (meta)torbernite. Indeed, P is detected among Fe minerals, even where U is absent.

The d₀₀₂ value (1 nm) of saléite is retained under high vacuum (Fig. 5); however, we did not have any metatorbernite or torbernite samples from Koongarra for comparison. Torbernite alters to metatorbernite at 75 °C by losing structurally bound H₂O (John 1984), but it is not known whether torbernite loses H₂O under high vacuum during TEM observation. We assume that the damaged microstructure of (meta)torbernite is similar to that of saléite as in Figure 5b.

To confirm the presence of saléite and (meta)torbernite among the Fe minerals, the U-bearing areas of the AEM samples were examined further by HRTEM. Domains of microcrystals (10–20 nm) are scattered between the Fe minerals. The microcrystals have lattice fringes of 1.0 nm (“S” in Fig. 8). These domains often show discontinuous, distorted lattice fringes, typical of radiation-damaged microstructures that are similar to those observed from saléite in DDH65-98.5 (Fig. 5b). The domain labeled “S” at the center in Figure 8a displays two apparent sub-domains having the same crystallographic orientation, as indicated by the lattice fringes. The two sub-domains must have been continuous within a single microcrystal initially, being subsequently damaged by α-decay events. The d values and the radiation-damaged microstructures, along with the probable chemistry mentioned above, strongly indicate that the crystalline domains correspond to saléite.

Although one domain of lattice fringes with spacing 0.85 nm, corresponding to (002) in metatorbernite (Stergiou et al. 1993), was observed, we could not identify metatorbernite with certainty, because of the small size of the microcrystal (4 nm). However, the possibility that (meta)torbernite is present cannot be excluded; both metatorbernite and torbernite are known to occur at Koon-
Uranium-bearing phases in the middle of the deposit

Iron-mineral veins fill fractures and microfissures in weathered quartz-chlorite schists and also occur within the gaps between the grain boundaries of quartz and chlorite. These Fe veins contain up to 2 wt% U according to SEM-EDX analyses. Because of the small sizes of the Fe-mineral veins (usually < 5 μm), SEM-EDX measurements are affected by neighboring minerals such as quartz and weathered chlorite (Fig. 9). In addition to U, the Fe-mineral veins contain P, Mg, and Cu. Uranium is always found with P and with either Cu or Mg (Figs. 9a and 9b, respectively), sometimes both. These qualitative analyses are consistent with the presence of saléite and (meta)torbernite, as indicated by HRTEM and AEM examination of sample DDH4-99.

To verify whether saléite and (meta)torbernite occur within the Fe-mineral veins, the SEM accelerating voltage was reduced to 10 kV. This reduces the region generating backscattered electrons and X-rays and reduces secondary fluorescence, thereby increasing resolution. Sklodowskite and saléite show the higher contrast in BEI compared with the surrounding Fe minerals; this was confirmed in samples DDH65-92.5, DDH65-95, and DDH65-96.

Two types of bright areas of a typical Fe-mineral vein in Figure 10 display different compositions. One type of area is a few to several tens of nanometers in size and contains U (smaller arrows without white rims in Fig. 10 corresponding to the analysis in Fig. 11a). The second type contains approximately 0.1 and 1 μm regions that are rich in Pb (larger arrows with white rims in Fig. 10 corresponding to the analysis in Fig. 11b). The U-bearing particles contain Cu, Mg, and P in addition to U (Fig. 11a). Note that the EDX analyses (Figs. 11a and 11b) are affected by secondary fluorescence of surrounding materials. This combination of the BEI image and EDX analyses indicates nanometer-sized saléite and (meta)torbernite microcrystals (approximately 20–50 nm) are present within Fe mineral veins in the middle of the secondary ore deposit.

DISCUSSION

Implication of microstructures for the age of saléite formation

Damaged microstructures are caused by radiation doses accumulated by crystals that contain radioactive isotopes. An α-decay dose can be calculated as follows (Holland and Gottfried 1955):

\[
D = 8N_1[\exp(\lambda_1 t) - 1] + 7N_2[\exp(\lambda_2 t) - 1] + 6N_3[\exp(\lambda_3 t) - 1],
\]

where \(D\) is the dose, \(N_1, N_2, N_3\) are the number of atoms of radioactive isotopes, and \(\lambda_1, \lambda_2, \lambda_3\) are the decay constants. The dose \(D\) can be used to estimate the age of the formation of saléite in the deposit.

Figure 9. Spectra of Fe mineral veins of DDH58-65 (a) with low Mg, and (b) with low Cu. Both Mg and Cu are usually found with U in Fe mineral veins. The accelerating voltage was 20 kV.

Figure 10. BEI of Fe mineral vein of DDH58-91. Bright areas in the Fe mineral vein are Pb-rich particles (larger arrows with white rims) and U-rich particles (smaller arrows without white rims). The size of the U-rich particles is consistent with those observed by HRTEM. The accelerating voltage was 10 kV. Arrows with U and Pb indicate analytical points by EDX, corresponding to Figures 11a and 11b, respectively.
where D is the dose in α-decay events/mg; N_1, N_2, and N_r are the present nuclide concentrations (atoms/mg), and λ_1, λ_2, and λ_r are the decay constants (years$^{-1}$) for 238U, 235U, and 232Th, respectively; t is the age of a sample in years. Dose increases with nuclide concentration and time. The second and third terms of the above equation contribute less than $\sim 5\%$ to the total calculated dose and can be neglected when estimating the radiation dose for saléite since the time of its formation at Koongarra. The average Koongarra saléite contains 64.8 wt$\%$ UO$_2$, with standard deviation of 1.2 wt$\%$ (Isobe et al. 1994). The radiation doses to Koongarra saléites were calculated using UO$_2$ concentrations of 60, 65, and 70 wt$\%$ (Fig. 12). Figure 12 reveals that a wide range of doses in saléite results from a range of formation ages and not from the U concentration variation.

The transition from the crystalline to the fully metamict state occurs within a narrow range of dose, 10^{15}–10^{16} α-decay events/mg (Ewing et al. 1987), and the intermediate metamict microstructures observed for the saléites of samples DDH65-98.5 and DDH4-99 indicate that the saléite samples upstream and downstream from the secondary ore deposit both have doses in this range. Doses of 10^{15}–10^{16} α-decay events/mg correspond to 5×10^5 to 4×10^6 years (Fig. 12) since the formation of saléite. This is in good agreement with the age of the secondary mineralization estimated from radioactive decay-series disequilibria: 1–3 $\times 10^6$ years (Airey et al. 1986). The effect of radiation-damage annealing in saléite has been neglected, and the age calculated from the dose therefore represents a minimum age.

The presence of both fully crystalline and completely metamict saléite indicates that saléite in the secondary ore deposit began to form a few million years ago and has continued to form continuously or intermittently (Fig. 12). Radiation-damaged microstructures observed in saléite downstream from the ore deposit suggest that the formation history and ages of saléite downstream are similar to those of saléite upstream.

Formation mechanism of saléite upstream from the deposit

The calculated values of log (Q/K) of saléite for all three well waters are less than 0, i.e., groundwater at Koongarra is currently undersaturated with respect to saléite (Table 3). The calculations indicate that, even with the relatively high U concentration at the W4 well, saléite will not precipitate. This result agrees with our observation that saléite occurs only at particular sites, not along all water flow paths, such as fractures. It also agrees with our interpretation that saléite is currently dissolving, as inferred from its morphology examined by SEM (Fig. 4).

However, the observation that, upstream from the secondary ore deposit, saléite occurs only where sklodowskite and apatite have been replaced indicates that the local geochemical conditions in contact with sklodowskite and apatite crystals are sufficient to precipitate saléite. We
estimated possible geochemical scenarios sufficient for the precipitation of saléite, metatorbernite, and autunite.

Calculations were made based on the groundwater composition from the M1 well and changing pH from 5.85 to 7.3, an actual pH variation at Koongarra (Payne et al. 1992). The groundwater is still undersaturated with respect to saléite in the above pH range. Thus, the presence of saléite is not affected by the current pH variation, and therefore we exclude the pH variation from further discussion.

Calculations were then performed using the M1 water composition, but, for instance, with U concentration ten times higher [10 (U) in Table 3]. Table 3 indicates that saléite may be precipitated under conditions with higher U or P concentrations than those measured. Such conditions may be realized at the surfaces of sklodowskite and apatite, where U and P may be richer than in bulk groundwater because of the dissolution of the two minerals. The textural relationships between saléite and sklodowskite and apatite (Figs. 2 and 3, respectively) and the thermodynamic calculations strongly suggest that saléite is precipitated at the reaction interfaces of dissolving sklodowskite and apatite at the expense of U and P, respectively, by local saturation upstream of the secondary ore deposit.

Although uranophane, a Ca analogue of sklodowskite, is present in the primary ore deposit (Snelling 1980), autunite, the Ca analogue of saléite, is absent in the secondary ore deposit. Table 3 shows that autunite is thermodynamically unstable in the groundwater at Koongarra, even if higher concentrations of U, P, or Ca were present, which is in contrast to the saléite precipitation. This may explain why we observed saléite instead of autunite replacing apatite. The U concentration in the Koongarra groundwater is not high enough for autunite to precipitate even at the surface of dissolving apatite.

Formation mechanism of U-bearing phases in the middle and downstream of the deposit

The apparent formation of U minerals in the middle or downstream of the secondary ore deposit could not be confirmed by naked eye or light microscopy from the present study. This is consistent with the undersaturation of the groundwaters at the W4 and M3 wells with respect to saléite and metatorbernite (Table 3). Our thermodynamic calculations indicate that slightly higher concentrations of U, P, or Cu than that of the groundwater at the W4 well could facilitate saléite or metatorbernite precipitation (Table 3), suggesting the possibility of local saturation (Snelling 1980). However, there are no such minerals as sklodowskite and apatite supplying sufficient ions for the formation of uranyl phosphates in the middle of the secondary ore deposit, resulting in little apparent uranyl phosphate formation by local saturation.

Despite the absence of uranyl phosphates visible to the naked eye, we showed evidence for microcrystals (10–50 nm) of saléite and (meta)torbernite on Fe minerals in low-U concentration groundwater (as low as 10–30 μg/L). The uranyl phosphates were observed by HRTEM and high-resolution SEM although they were not evident using light microscopy or conventional SEM. The existence of saléite and (meta)torbernite microcrystals among the Fe minerals (Figs. 8 and 10) is inconsistent with the local structures of UO₂⁻ complexes sorbed to ferrihydrite (Waite et al. 1994) and smectite (Dent et al. 1992; Chisholm-Brause et al. 1994). Thus, adsorption alone cannot explain the formation. In addition the absence of sklodowskite and apatite in the middle and downstream of the secondary ore deposit and the thermodynamic calculations (Table 3) strongly suggest that simple solubility-controlled precipitation cannot explain the formation either.

Even if the bulk solution is undersaturated with respect to saléite and (meta)torbernite, the TEM observations suggest that a high density of U, P, and Mg or Cu, enough to form saléite and (meta)torbernite, must be attained at the surface of Fe mineral microcrystals. The Fe minerals are formed during chlorite weathering (Murakami et al. 1996), and ferrihydrite is the first to form among the Fe minerals. Phosphorous in groundwater is sorbed onto ferrihydrite by adsorption or coprecipitation. This is consistent with the fact that an additional amount of P compared to that needed for the formation of uranyl phosphates is contained in the Fe minerals (Fig. 7a). P incorporated in ferrihydrite may be released during the aging of ferrihydrite to goethite and hematite in the same way that As⁵⁺ is released during the crystal growth of ferrihydrite (Fuller et al. 1993). Such P is probably the source of saléite and (meta)torbernite rather than P in groundwater. Along with such P, adsorbed U onto Fe minerals could result in surface precipitation, a possible formation mechanism of saléite and (meta)torbernite microcrystals at the surface of Fe minerals [for instance, see the saturation of saléite with 100(P) and 10(U) at the M3 well in Table 3].

Thus, the formation occurs in a limited and particular area, i.e., at the surface of Fe mineral microcrystals. The U fixation mechanism is the same in the middle and downstream of the secondary ore deposit, i.e., the formation of uranyl phosphates. The formation mechanism proposed here may be slightly different from that reported by Bruno et al. (1995) who showed that surface precipitation of schoepite is possible on ferric oxyhydroxide following adsorption of U⁶⁺. Our proposed mechanism requires that at least P must be derived from the Fe minerals.

Sato et al. (1997) recently found Fe nodules in the middle of the secondary ore deposit. They report that the Fe nodules contain up to 8% U, and a high correlation between U, P, and Cu implies the existence of (meta)torbernite microcrystals. The (meta)torbernite formation within Fe nodules is consistent with our results. Thus, the formation of microcrystals of saléite and (meta)torbernite demonstrates that long-term post-adsorption phenomena actually occur in natural systems with
groundwater U concentrations on the order of micrograms per liter.

The fixation mechanism of U in the vicinity of the secondary ore deposit is by formation of the uranyl phosphates saléite and (meta)torbernite. However, the formation mechanisms of the uranyl phosphates are quite different, depending on location with respect to the secondary ore deposit. Koongarra groundwater contains Mg, U, and P released from chlorite, U minerals, and apatite, respectively, and flows through the secondary ore deposit (Fig. 13). Saléite replaces sklodowskite and apatite by local supersaturation upstream, and in the middle and downstream, microcrystals (1–50 nm) of saléite and (meta)torbernite are formed at the surface of Fe minerals by surface precipitation even where groundwater U concentrations are low (approximately 30 μg/L). This process has occurred over the last few million years.

ACKNOWLEDGMENTS

The authors are indebted to P. Duerden and A.A. Snelling for the collection of the samples, and to H. Momoi, H. Asada, and T. Minakawa at Ehime University for discussions. One of the authors (T.M) thanks K. Tsuzuki and J. Kiyoshige for their patient TEM and SEM work when they were students of T.M. R.J. Finch is gratefully acknowledged for his comments on an earlier version of the manuscript. The authors thank the reviewers J. Bruno, M.C. Duff, and K.L. Nagy for their helpful comments. Part of the present study was supported by a Scientific Grant of the Ministry of Education, Science and Culture (No. 6640620). The authors are indebted to P.D. Duerden and A.A. Snelling for the collection of the samples, and to H. Momoi, H. Asada, and T. Minakawa at Ehime University for discussions. One of the authors (T.M) thanks K. Tsuzuki and J. Kiyoshige for their patient TEM and SEM work when they were students of T.M. R.J. Finch is gratefully acknowledged for his comments on an earlier version of the manuscript. The authors thank the reviewers J. Bruno, M.C. Duff, and K.L. Nagy for their helpful comments. Part of the present study was supported by a Scientific Grant of the Ministry of Education, Science and Culture (No. 6640620).

REFERENCES CITED

Pearcy, E.C., Prikryl, J.D., Murphy, W.M., and Leslie, B.W. (1994) Alteration of uraninite from the Nopah-I deposit, Pena-Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed United-States high-level nuclear waste repository at Yucca Mountain, Nevada. Applied Geochemistry, 9, 713–732.

Manuscript received October 21, 1996
Manuscript accepted May 1, 1997