Formation of secondary minerals and its effect on anorthite dissolution

TAKASHI MURAKAMI,1,* TOSHIHIRO KOGURE,1 HIROYUKI KADOHARA,1 and TOSHIHIKO OHNUKI2

1Mineralogical Institute, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
2Environmental Geochemistry Laboratory, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-11, Japan

ABSTRACT

To examine the relationship between product secondary minerals and dissolution of anorthite (An3xAb, from Fugoppe, Hokkaido, Japan), anorthite batch dissolution experiments were carried out. The dissolution experiments were done at 90, 150, and 210 °C for 3 to 355 days at pH 4.56 measured at 25 °C, which corresponds to 4.69, 4.97, and 5.40 at the respective experimental temperatures. A sequence of secondary minerals including boehmite, “modified boehmite,” and kaolinite formed with increasing time. Modified boehmite, probably a metastable phase, is basically similar to boehmite in structure, but their stacking orders of the Al octahedral layers as well as morphologies and chemistries are different. Modified boehmite shows laminations normal to the b* axis and contains 3 to 30 mol% Si. Silicon may be present between the Al octahedral layers of modified boehmite. The anorthite dissolution is incongruent under the above conditions and approximated by a two-stage process. The first is characterized by the formation of boehmite, and the second by formation of modified boehmite. The dissolution rate in the second stage is slower than the first by approximately one order of magnitude because of the saturation state with respect to anorthite. To estimate the effect of the formation of secondary minerals on the anorthite dissolution, Gibbs free energies of anorthite dissolution (ΔG) were calculated, assuming conditions without the formation of secondary minerals. The calculations reveal that the formation of secondary minerals decreases the ΔG values significantly, and thus we can predict that the dissolution rates of anorthite increase due to the influence of the secondary minerals on ΔG. Modified boehmite functions as a sink for Si, and thus accelerates the dissolution rate of anorthite. The results indicate that the overall dissolution rate near equilibrium is affected by both the saturation with respect to a primary mineral and the formation of secondary minerals, but in the opposite sense.

INTRODUCTION

Feldspar dissolution has been studied extensively [see reviews by Blum (1994) and Blum and Stillings (1995)], mainly because feldspar is the most abundant mineral in the exposed crust (Blatt and Jones 1975) and it thus plays an important role in element transport and cycles at the Earth’s surface. For instance, dissolution of feldspars, especially anorthite, affects the concentration of atmospheric CO2 (Berner et al. 1983; Berner and Barron 1984; Brady 1991; Berner 1992; Brady and Caroll 1994; Lasaga et al. 1994; Berner 1995), and thus the temperature at the Earth’s surface.

The early stage of silicate dissolution has been documented by controlled laboratory experiments where the solution compositions are maintained “far from equilibrium” with the solid (flow-type experiments) to avoid precipitation of secondary minerals (e.g., White and Brantley 1995). The approach of using surface-coordination complexes has successfully explained the initial dissolution step: The dissolution rate of feldspar was shown to be a function of the concentrations of H+ and OH− and, thus, surface reactions involving H+ and OH− control the dissolution (Blum and Stillings 1995). However, the dissolution rates measured in the laboratory are larger than those in the field by a few orders of magnitude, which is probably caused by several factors including: (1) temperature differences; (2) differences in mineral-surface conditions; (3) the presence of higher Fe and Al concentrations in natural systems; (4) a saturation-state difference; and (5) a much lower surface area for minerals actually in contact with water in natural systems (Blum 1994). Of these causes, the last two are likely to be the most important.

Velbel (1993) compared the dissolution rate ratios of different minerals in laboratory experiments to those in nature and concluded that the difference in dissolution rates is caused by physical controls in nature such as heterogeneous water flow, which results in a decrease in effective surface area of minerals. Several other workers have reached a similar conclusion, arguing that the ob-
observed difference in dissolution rates is due to the over-
estimation of the reactive surface area of natural minerals
(Schnoor 1990; Velbel 1990; Rowe and Brantley 1993; Swoboda-Colberg and Drever 1993). On the other hand, it is
often observed in naturally weathered samples that
secondary minerals grow in intimate contact with the
primary, dissolving minerals when the weathering process
occurs at very low fluid/mineral ratios (e.g., Casey et al.
1993a). The fact that different primary minerals weather
to specific phases, for instance, biotite to vermiculite and
plagioclase to kaolinite in granite weathering (Velde and
Meunier 1987), suggests that the solutions in contact with
primary minerals are close to equilibrium with respect to
the secondary minerals and that local reactions occur.
Laboratory results indicate that a saturation state effect
could be another explanation for the discrepancy with
dissolution rates observed in nature (Amrhein and Suarez
1992; Burch et al. 1993). Consequently, dissolution near
equilibrium with the primary minerals may be important
to understand natural weathering.

Less attention has been paid to the comparison of nat-
ural weathering to laboratory dissolution in the presence
of secondary phases (Hochella and Banfield 1995; Nagy
1995). Recent experiments on sanidine and albite dissolu-
tion have shown that secondary minerals control the
dissolution of the primary mineral (Alekseyev et al.
1997). Although the precipitation of secondary minerals
and subsequent change in chemical affinity can make it
difficult to interpret dissolution data (Hellmann 1994), the
reaction processes in nature cannot be elucidated precisely
without understanding both the solution evolution and
the mineral paragenesis. In addition, laboratory experi-
ments must reproduce many textures observed in nature
(Casey et al. 1993a; Casey et al. 1993b). To address some
of these problems, we carried out dissolution experiments
on anorthite under conditions where secondary minerals
coeexist with anorthite to examine how dissolution is af-
fected by the presence of secondary minerals. Anorthite
was chosen because its dissolution rate is the fastest
among feldspars and because its high Ca content has an
important effect on the carbon cycle in nature.

EXPERIMENTAL METHODS

Starting material

Specimens used for the dissolution experiments were
single crystals of anorthite from Fugoppe, Hokkaido, Ja-
pan. The original crystals of anorthite in Fugoppe are as
big as 1.5–3 cm in size, and occur in tuffs in pyroxene
andesites (Harada and Hariya 1984). The original sur-
faces of the crystals already had etch pits. The original
crystals were broken, and smaller pieces with fresh sur-
faces were used for the dissolution experiments. The
composition of the anorthite specimen was determined by
electron microprobe analysis (EMPA, JEOL JXA-733) at
an operating voltage of 15 kV and a beam current of 5
nA. Data reduction followed the scheme of Benece and
Albee (1968). The following standards were used: Na =
albite; K = adularia; Ca = wollastonite; and Si, Al, Fe,
Mg, and Mn = oxides. The average value of 20 mea-
surements on the starting sample as well as the resultant
mineral formula are given in Table 1.

Dissolution experiments

The single crystals of anorthite, roughly 1 mm × 1
mm × 1 mm in size with six, approximately rectangular
faces were prepared by crushing. The surface areas of
the single crystals were measured geometrically under a light
microscope (Table 2). The single crystals were washed
ultrasonically in acetone to remove fine particles from the
surface. The surface of one of the single crystals was
examined by scanning electron microscopy (SEM), to
confirm that there were few fine particles on the surface.
Distilled and deionized water with a buffer of sodium
acetate (0.03 mol/L) and acetate was used as a reactant
solution and pH was adjusted to 4.56 by acetate at room
temperature. Acetate is often used as a pH buffer (e.g.,
Franklin et al. 1994), and has no significant effect on
feldspar dissolution (Welch and Ullman 1993). The ionic
strength of the reactant solution was 0.067. Four to five
single crystals of anorthite with a total surface area of
approximately 0.3 cm² were put in a Teflon vessel with a
reactant solution of approximately 9 mL; the ratio of sur-
face area to solution (cm²/mL) was adjusted to 1:30. The
Teflon vessel was then placed in an electric oven. The
run temperatures were 90, 150, and 210 °C (±2.5 °C),
and the run durations were 3 to 355 days. After the dis-
solution experiments, the vessel was cooled to room tem-
perature in 30 min, and the pH of the solution was mea-
sured at room temperature. The solution was then
separated from the solids by 0.22 μm filter, and a solution
with 10 wt% nitric acid was added so that the final solu-
tion contained 1 wt% nitric acid to lower the pH and
preserve the metals for analysis. The solids were washed
gently in acetone and dried.

Analytical techniques

The morphology of the solid samples was examined by
SEM (Hitachi S4500) at an operating voltage of 15 kV.

Table 1. The composition and chemical formula of starting anorthite

<table>
<thead>
<tr>
<th>Oxide</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>FeO*</th>
<th>CaO</th>
<th>MgO</th>
<th>MnO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt%</td>
<td>44.15(42)</td>
<td>34.98(29)</td>
<td>0.49(4)</td>
<td>18.96(15)</td>
<td>0.10(1)</td>
<td>0.01(1)</td>
<td>0.51(2)</td>
<td>0.02(1)</td>
<td>99.23</td>
</tr>
<tr>
<td>Cations per 8 oxygen atoms</td>
<td>2.06</td>
<td>1.92</td>
<td>0.02</td>
<td>0.95</td>
<td>0.01</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>5.01</td>
</tr>
</tbody>
</table>

*Note: Values in parentheses represent standard deviations, referring to the last decimal place.

* All Fe as FeO.
The secondary minerals formed by the anorthite dissolution were subjected to X-ray diffraction analysis (XRD) (Rigaku RINT 2000), and their compositions determined qualitatively by SEM equipped with an energy dispersive X-ray analyzer (EDX) (JEOL JSM-5400) at an operating voltage of 20 kV. The secondary minerals were examined further by high-resolution transmission electron microscopy (HRTEM) and analytical electron microscopy (AEM). TEM samples were prepared by one of two methods: Either the solid samples were gently crushed and ground, dispersed in ethanol, and placed on TEM grids or the solid samples were impregnated in epoxy resin and cut by ultramicrotomy. A JEOL JEM-2010 and a Hitachi HF 2000 were used for the HRTEM and AEM studies.

Silicon, Al, and Ca concentrations in a solution after dissolution were measured three times for each run by inductively coupled plasma (ICP) atomic emission spectroscopy (Seiko SPS7700). The solution analyses are summarized in Table 2.

To examine the effect of saturation state on the dissolution rate of anorthite, we calculated a value of log \((Q/K)\) for each run at the experimental temperature using the computer code EQ3NR (Wolery 1992), where \(Q\) is the activity product of species and \(K\) is the equilibrium constant of anorthite. The pH values at the experimental temperatures were also calculated based on the measured pH values at room temperature, considering the pH values of the acetate buffer at the experimental temperatures (Table 2). Input solution data are from Table 2. Activities of the solution species were calculated using the Davies equation. The thermodynamic database in EQ3NR was used in the calculations.

Results

Etch pits \(~5\ \mu m\) in diameter that were already present on the surface of the starting anorthite became larger (e.g., about \(15\ \mu m\) in diameter after 97 day dissolution at \(210 \degree C\)) with dissolution. At \(210 \degree C\) for 3 days, the anorthite surface was partly covered with boehmite (Fig. 1a), which was identified by selected area electron diffraction (SAED) and EDX. Two porous layers of boehmite grains were developed on the anorthite surface; one composed of \(~2\ \mu m\) diameter particles developed adjacent to the surface and the other consisting of \(~1\ \mu m\) diameter particles developed in contact with the solution. The two layer structure is illustrated in Figure 1b. The anorthite surfaces were not fully covered with the secondary minerals, and only part of each grain was in contact with the surfaces. Consequently, the two-layer structure did not affect the anorthite dissolution by inhibition of diffusion. After 10 to 165 days at \(210 \degree C\), the two-layer structure was maintained (Figs. 1b and 1d). The morphology of product grains after the 10 day run was similar to that of the 3 day run. However, the surfaces roughly parallel to [010] of the boehmite-like grains were not smooth (arrows in Fig. 1c), and with time, the product grains showed a laminated morphology (Fig. 1d). AEM showed that the laminated grains contain variable amounts of Si in addition to Al; the Si/Al molar ratio ranged from 1/30 to 10/30 (Fig. 2). The phase containing Si is hereafter referred to as modified boehmite and described in detail below. After the 97 day run, kaolinite, confirmed by TEM and AEM, was formed as well as modified boehmite. The sequence from boehmite to modified boehmite was also observed for the 90 and \(150 \degree C\) experiments, although the formation of kaolinite was not found even in the longest duration experiments in the present study. We did not find any structural inheritance (i.e., topotaxy) between anorthite and the secondary minerals such as found, for instance, in olivine (Banfield et al. 1990) and pyroxene (Banfield et al. 1991). This result is expected because of the absence of any structural similarity between anorthite and the secondary minerals (e.g., Banfield and Eggleton 1990). Figure 3 summarizes the paragenesis of secondary minerals, and indicates that boehmite does not coexist with modified boehmite.

Table 2. Solution data for anorthite dissolution

<table>
<thead>
<tr>
<th>Duration (°C)</th>
<th>S (mol/L)</th>
<th>Ca (mol/L)</th>
<th>Al (mol/L)</th>
<th>Si (mol/L)</th>
<th>Ca (mol/L)</th>
<th>SA* (m²)</th>
<th>pH Before</th>
<th>pH After</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>3</td>
<td>1.40 x 10^-3</td>
<td>6.57 x 10^-6</td>
<td>9.67 x 10^-4</td>
<td>4.20 x 10^-2</td>
<td>1.97 x 10^-3</td>
<td>3.23 x 10^-5</td>
<td>4.58(4.71)</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>6.36 x 10^-5</td>
<td>2.97 x 10^-6</td>
<td>1.19 x 10^-4</td>
<td>9.20 x 10^-6</td>
<td>5.68 x 10^-3</td>
<td>3.07 x 10^-5</td>
<td>4.58(4.46)</td>
</tr>
<tr>
<td>90</td>
<td>3</td>
<td>2.36 x 10^-4</td>
<td>1.04 x 10^-6</td>
<td>1.29 x 10^-5</td>
<td>7.12 x 10^-6</td>
<td>3.15 x 10^-3</td>
<td>3.08 x 10^-5</td>
<td>4.54(4.57)</td>
</tr>
<tr>
<td>90</td>
<td>3</td>
<td>5.57 x 10^-4</td>
<td>2.73 x 10^-6</td>
<td>4.21 x 10^-5</td>
<td>1.64 x 10^-6</td>
<td>8.02 x 10^-3</td>
<td>3.10 x 10^-5</td>
<td>4.58(4.65)</td>
</tr>
<tr>
<td>150</td>
<td>3</td>
<td>6.09 x 10^-4</td>
<td>3.12 x 10^-6</td>
<td>3.08 x 10^-5</td>
<td>1.75 x 10^-6</td>
<td>8.95 x 10^-3</td>
<td>2.95 x 10^-5</td>
<td>4.58(4.59)</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>8.14 x 10^-4</td>
<td>4.28 x 10^-6</td>
<td>1.64 x 10^-5</td>
<td>2.16 x 10^-6</td>
<td>1.14 x 10^-3</td>
<td>2.98 x 10^-5</td>
<td>4.58(4.57)</td>
</tr>
<tr>
<td>150</td>
<td>3</td>
<td>2.76 x 10^-4</td>
<td>1.24 x 10^-6</td>
<td>2.39 x 10^-5</td>
<td>8.11 x 10^-6</td>
<td>3.65 x 10^-3</td>
<td>3.20 x 10^-5</td>
<td>4.58(4.58)</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>7.22 x 10^-4</td>
<td>3.79 x 10^-6</td>
<td>1.04 x 10^-5</td>
<td>2.30 x 10^-6</td>
<td>1.13 x 10^-3</td>
<td>3.00 x 10^-5</td>
<td>4.58(4.54)</td>
</tr>
<tr>
<td>150</td>
<td>3</td>
<td>1.27 x 10^-4</td>
<td>6.25 x 10^-6</td>
<td>1.37 x 10^-5</td>
<td>3.51 x 10^-6</td>
<td>1.73 x 10^-3</td>
<td>3.07 x 10^-5</td>
<td>4.58(4.51)</td>
</tr>
<tr>
<td>150</td>
<td>3</td>
<td>1.98 x 10^-4</td>
<td>9.77 x 10^-6</td>
<td>1.10 x 10^-5</td>
<td>4.63 x 10^-6</td>
<td>2.41 x 10^-3</td>
<td>3.10 x 10^-5</td>
<td>4.58(4.50)</td>
</tr>
<tr>
<td>210</td>
<td>3</td>
<td>9.09 x 10^-4</td>
<td>4.83 x 10^-6</td>
<td>5.77 x 10^-5</td>
<td>2.67 x 10^-6</td>
<td>1.28 x 10^-3</td>
<td>3.20 x 10^-5</td>
<td>4.58(4.50)</td>
</tr>
<tr>
<td>210</td>
<td>3</td>
<td>1.64 x 10^-4</td>
<td>7.75 x 10^-6</td>
<td>2.52 x 10^-5</td>
<td>4.79 x 10^-6</td>
<td>2.66 x 10^-3</td>
<td>3.23 x 10^-5</td>
<td>4.58(4.50)</td>
</tr>
<tr>
<td>210</td>
<td>3</td>
<td>1.98 x 10^-4</td>
<td>9.75 x 10^-6</td>
<td>2.99 x 10^-5</td>
<td>5.40 x 10^-6</td>
<td>2.66 x 10^-3</td>
<td>3.17 x 10^-5</td>
<td>4.58(4.50)</td>
</tr>
<tr>
<td>210</td>
<td>3</td>
<td>2.68 x 10^-4</td>
<td>1.39 x 10^-6</td>
<td>2.20 x 10^-5</td>
<td>6.35 x 10^-6</td>
<td>3.32 x 10^-3</td>
<td>3.19 x 10^-5</td>
<td>4.58(4.50)</td>
</tr>
<tr>
<td>210</td>
<td>3</td>
<td>3.28 x 10^-4</td>
<td>1.82 x 10^-6</td>
<td>2.31 x 10^-5</td>
<td>6.41 x 10^-6</td>
<td>3.56 x 10^-3</td>
<td>3.26 x 10^-5</td>
<td>4.58(4.50)</td>
</tr>
</tbody>
</table>

* SA stands for surface area.
† Values of pH measured at 25 °C, and in parentheses, those at experimental temperatures calculated from respective measured pH values.
‡ Parentheses shows standard deviation of the measurement.
The powder XRD pattern of modified boehmite was almost the same as that of boehmite [Amam, $a = 0.36936$, $b = 1.2214$, and $c = 0.28679$ nm, e.g., Christoph et al. (1979); see Fig. 4]. The [010] SAED pattern of modified boehmite was also the same as that of boehmite (Figs. 5a and 5b, respectively). Both boehmite and modified boehmite transformed in the (010) plane to γ-Al$_2$O$_3$ [spinel structure (Fd3m), Rooksby (1961)] by electron irradiation (Fig. 5c). However, in addition to the difference in chemistry, a difference was observed between the structure of boehmite and modified boehmite along the b^* axis. Figure 6a shows part of a laminated structure, normal to the b^* axis, at the rim of modified boehmite grains, such as those shown in Figure 1d. The diffraction spots of modified boehmite are elongated normal and parallel to the b^* axis (Fig. 6b) because of the micromorphism (Fig. 6a) and irregular stacking (Figs. 7b and 7c), respectively. The modified boehmite is beam sensitive and the SAED pattern changes progressively to that shown in Figure 6c due to the beam damage. HRTEM imaging of finer-grained modified boehmite (a few micrometers in size) shows lattice fringes along the b^* axis very similar to those of boehmite, i.e., repeat of black and white contrast of a 0.61 nm periodicity (Fig. 7a). Thus, the Al octahedral layers of boehmite are retained in modified boehmite. Discontinuities and edge dislocations are present in the finer-grained modified boehmite (arrows in Fig. 7a). However, another finer-grained, modified boehmite crystal also retains a ~0.61 nm periodicity, but exhibits irregular contrast along the b^* axis (Fig. 7b). This crystal did not have a long-range periodicity compared to that in Figure 7a. Figure 7c shows (010) lattice fringes at the tip of coarser-grained modified boehmite (see Fig. 6a), in which a further decrease in the long-range periodicity is observed, and the crystal was divided into packets 3–7 nm thick.

AEM data show that, in general, the coarser grains of modified boehmite in the layer adjacent to the surface (Fig. 1b) contain more Si than the finer grains in the layer adjacent to the solution. More importantly, SEM-EDX analysis shows that 3 mol% Si is present at the center of a grain (e.g., see Fig. 1d) when the electron beam was roughly parallel to the b^* axis. On the other hand, the rim of a grain contains ~15 mol% Si with the electron beam normal to the b^* axis (e.g., see Fig. 6a).

Figures 8a, 8b, and 8c show the variation in dissolved cation concentration with time for the 90, 150, and 210 °C experiments, respectively. Silicon and Ca were dissolved in solution roughly, but not exactly, in accordance with the stoichiometry of anorthite (Table 1). On the other hand, most Al precipitated, after it was released, as boehmite or modified boehmite. The Si release variation with time indicates that anorthite dissolution is approximated by a two-stage process: The first stage has a higher dissolution rate than the second, and the Si concentration increases linearly in each stage as a function of time (Figs. 8a, 8b, and 8c). The comparison of the paragenesis of secondary minerals (Fig. 3) with the variation in Si concentration reveals the first stage corresponds to the presence of boehmite and the second one to that of modified boehmite.
Characterization of modified boehmite

Modified boehmite transforms in the (010) plane to γ-Al$_2$O$_3$, by electron irradiation (Fig. 5c) as does boehmite by heating (Brown 1980) or by electron irradiation. The similarity in the transformation and the [010] SAED patterns (Figs. 5a and 5b) indicates that the two-dimensional structure of the Al octahedra of boehmite still exists in modified boehmite. The morphology of boehmite (arrow in Fig. 1a) is similar to that of modified boehmite (arrows in Fig. 1c) except that modified boehmite has a laminated structure (Fig. 1d). The inheritance of the Al octahedral layers and the morphologies suggest that modified boehmite is not formed after boehmite is dissolved, but is formed in and on boehmite. A similar formation mechanism for modified boehmite was also observed in albite and orthoclase dissolution experiments.

Under electron beam irradiation boehmite and modified boehmite are affected differently along the b^* axis, which corresponds to [011] of γ-Al$_2$O$_3$. Before damage, boehmite has distinct 0k0 reflections (Fig. 9a) and modified boehmite less distinct reflections (Fig. 6b), but there are no obvious differences in the relative intensities and positions of the 0k0 reflections between the two minerals. After damage, modified boehmite exhibits a diffuse 020 reflection, and weak and very weak diffraction spots at the 040 and 080 positions, respectively, along the b^* axis (Fig. 6c). The γ-Al$_2$O$_3$, that formed from boehmite shows weak 022 and strong 044 reflections (Fig. 9b), which correspond to the 040 and 080 reflections of modified boehmite, respectively. These results suggest that modified boehmite cannot be completely transformed to γ-Al$_2$O$_3$, by dehydration as boehmite does. A comparison of the microstructure of damaged boehmite (Fig. 9b) strongly indicates that the lattice fringe images of modified boehmite (Figs. 7b and 7c) are not those of damaged boehmite. Modified boehmite contains Al octahedral layers of about 0.6 nm periodicity, normal to the layers, which are identical to those of boehmite. However, modified boehmite loses its periodicity along the b^* axis and shows irregular stacking.

The EQ3NR calculations show that all product solutions were undersaturated with respect to quartz or amorphous silica, and the possibility of the precipitation of nm-sized quartz or amorphous silica on the surface of modified boehmite is unlikely at the experimental temperatures. The absence of quartz or amorphous silica on the surface of grains during the experimental runs or quench was confirmed by our HRTEM and AEM observations of modified boehmite with the electron beam normal to the b^* axis, as shown in Figure 6a. We did not find any microstructures that might indicate the presence of quartz or amorphous silica, or any Si enrichment at the edge. Therefore, the Si contained in modified boehmite is present within its structure and is not due to the
precipitation of quartz or amorphous silica on the surface of modified boehmite. Although we have not identified the sites of Si cations in the modified boehmite structure, the preservation of the Al octahedral layers and the irregular stacking along the \(b^* \) axis suggest Si cations are present between the Al octahedral layers.

Although the XRD pattern of modified boehmite is identical to that of boehmite (Fig. 4), modified boehmite shows irregular stacking along the \(b^* \) axis (Figs. 7b and 7c). The SEM-EDX analysis reveals that a grain of modified boehmite contains about 3 mol\% Si at the center and about 15 mol\% Si at the rim. AEM data show up to 30 mol\% Si is contained in the area having the laminated structure such as that shown in Figure 6a. These observations suggest Si is poorer in the core of the grain and richer in the area with the laminated structure. The lattice fringes, as shown in Figure 7a, represent the structure of the core (almost the same as the boehmite structure), whereas the area with the laminated structure (e.g., Fig. 7c) has irregular stacking along the \(b^* \) axis. Figures 1d and 6a indicate that the area with the laminated structure extends about 0.7 \(\mu \)m from the core of the grain. However, because of the high porosity of the rims only about half the rim volume consists of crystalline material. Thus, the fraction of the total volume that has a laminated structure is small. This observation explains why the XRD pattern of modified boehmite is almost the same as that of boehmite. Modified boehmite is actually a mixture of an Si-poor part, having almost the same structure as that of boehmite, and an Si-rich part, having a slightly different structure from that of boehmite.

Dissolution affected by the formation of secondary minerals

The dissolution rates of anorthite (moles of anorthite/\(m^3/s \)) were calculated based on the Si concentration vari-
FIGURE 7. HRTEM images of modified boehmite. (a) Lattice fringes normal to b^* of a finer-grained modified boehmite. The one-dimensional contrast corresponds to the 0.61 nm periodicity of the Al octahedral layers of boehmite and, thus, the boehmite structure is mostly retained in this grain. Defects such as edge dislocations (e.g., arrows) commonly occur. (b) Lattice fringes normal to b^* of another finer-grained modified boehmite. The lattice fringes still show 0.61 nm d-spacings but the contrast becomes irregular. (c) Lattice fringes normal to b^* of a coarser-grained modified boehmite. The 0.61 nm periodicity is degraded further compared with Figure 7b.

FIGURE 8. Cation concentration variations with time (a) for the 90 °C dissolution, (b) 150 °C dissolution, and (c) 210 °C dissolution.

ation for the first stage, corrected for the Si mole fraction in anorthite (Table 1). For the second stage, the dissolution rates were calculated based on the Ca concentration variation and corrected for the Ca mole fraction in anorthite, because some of the Si released from anorthite is incorporated into modified boehmite and there are no secondary minerals containing Ca. A similar discussion of the nonstoichiometric release of Si and Ca for long-term dissolution has been made by Amrhein and Suarez (1992). The data for the runs at 210 °C for 97 and 165 days were not included in the calculations because kaolinite was formed in these two runs but not in the 90 and 150 °C experiments and, thus, the comparison of the
Treue 3. Dissolution rates (moles of anorthite/m²/s)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>First Stage</th>
<th>Second Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °C</td>
<td>1.41 × 10⁻⁶</td>
<td>1.52 × 10⁻⁶</td>
</tr>
<tr>
<td>150 °C</td>
<td>1.20 × 10⁻⁷</td>
<td>1.36 × 10⁻⁷</td>
</tr>
<tr>
<td>210 °C</td>
<td>1.70 × 10⁻⁷</td>
<td>2.03 × 10⁻⁷</td>
</tr>
</tbody>
</table>

Note: Based on Si and Ca released during the first and second stages, respectively.

The dissolution rate should depend on \(Q/K \) or the Gibbs free energy when the dissolution is congruent and the secondary phase is the same as the primary phase (Lasaga 1984). In the present study, anorthite dissolution is incongruent because of the formation of secondary minerals that are compositionally different from anorthite. However, a comparison of Gibbs free energy with dissolution rates is useful for examining which factors affect the dissolution. The dissolution rate for each run (Table 3) was plotted against the Gibbs free energy of anorthite dissolution, \(\Delta G \), where \(\Delta G = RT \ln (Q/K) \) (\(R \) is the gas constant and \(T \) is the temperature). Values of \(\ln (Q/K) \) at the experimental temperatures were calculated using EQ3NR. Figure 10 (solid symbols) shows the relationships between the dissolution rates of anorthite and \(\Delta G \), which indicates that the dissolution rates are affected by the saturation state of anorthite, as in the case of albite and potassium feldspar dissolution (Burch et al. 1993; Gautier et al. 1994; Oelkers et al. 1994).

In the next step, we assumed there was no precipitation of boehmite or modified boehmite, and the dissolution was congruent. The Si, Al, and Ca concentrations in solution in the two stages were calculated based on the measured Si and Ca concentrations (Table 2) in the first and second stages, respectively. \(\Delta G_{cor} \) values at the experimental temperatures were then calculated, corrected for congruent dissolution after the calculation of \(Q_{cor}/K \) by EQ3NR, where \(\Delta G_{cor} \) and \(Q_{cor} \) are the Gibbs free energy of anorthite dissolution and activity product after correction, respectively. The dissolution rates in Table 3 were plotted against \(\Delta G_{cor} \). The \(\Delta G_{cor} \) values are shifted to larger values (open symbols in Fig. 10), indicating that the formation of the secondary minerals decreases the \(\Delta G \) values of the dissolution (arrows in the inset of Fig. 10). By decreasing \(\Delta G \), the dissolution rate of anorthite increases (e.g., Lasaga 1984). We can predict that the dissolution rates of anorthite increase due to the influence of the secondary minerals on \(\Delta G \). Indeed, some of the solutions are supersaturated with respect to anorthite without the formation of the secondary minerals (open symbols in Fig. 10).

The relation of the dissolution rates to \(\Delta G \) and \(\Delta G_{cor} \) reveals that the saturation with respect to anorthite decreases the dissolution rate near equilibrium on the one hand, and the formation of secondary minerals increases the rate on the other hand. The overall dissolution rate is controlled by the saturation and secondary mineral for-

Figure 9. Changes in lattice fringe image and diffraction pattern of boehmite before and after electron irradiation damage. (a) Lattice fringes of boehmite along the b* axis that already exhibit a slightly damaged microstructure and (b) γ-Al₂O₃ formed from boehmite with respective SAED patterns inset. The lattice fringes in Figure 9b are those of damaged boehmite. An arrow in inset of Figure 9b indicates that the 020 reflection of boehmite still remains.

The dissolution data was difficult. The dissolution rates of anorthite are summarized in Table 3. The dissolution rate in the second stage is slower than the first by approximately one order of magnitude at the temperatures examined, and is even slower (for instance, by 30% based on the 210 °C experiment) when the dissolution rate is calculated based on the Si concentration variation. Modified boehmite is observed to form after the formation of boehmite and before that of kaolinite (Fig. 3). Based on EQ3NR calculations, boehmite forms before quartz or amorphous silica. Thus, with an increase in the activity of SiO₂ (aq), modified boehmite is the first secondary mineral that accommodates Si during anorthite dissolution. Modified boehmite functions as a sink for Si in the second stage, which affects the distribution of Si between solid and solution.

Solution data was difficult. The dissolution rates of anorthite are summarized in Table 3. The dissolution rate in the second stage is slower than the first by approximately one order of magnitude at the temperatures examined, and is even slower (for instance, by 30% based on the 210 °C experiment) when the dissolution rate is calculated based on the Si concentration variation. Modified boehmite is observed to form after the formation of boehmite and before that of kaolinite (Fig. 3). Based on EQ3NR calculations, boehmite forms before quartz or amorphous silica. Thus, with an increase in the activity of SiO₂ (aq), modified boehmite is the first secondary mineral that accommodates Si during anorthite dissolution. Modified boehmite functions as a sink for Si in the second stage,
The authors are indebted to T. Banba and Y. Tamura at the Japan Atomic Energy Research Institute (JAERI) for the analyses of solutions, to N. Yanagisawa of the Geological Survey of Japan for the SEM-EDX analysis, and to K. Shimizu at the Museum of the University of Tokyo for the SEM examination. The authors also thank H. Itobe and T. Sato at JAERI for valuable discussions, and T. Tachikawa for the technical assistance. J.F. Banfield is acknowledged for her comments on an earlier version of the manuscript. The authors thank the reviewers, A.J. Brearley, L.L. Stillings, and D.R. Veblen for their helpful comments. Part of the electron microscopy was performed in the Electron Microbeam Analysis Facility of the Mineralogical Institute, the University of Tokyo. Part of the present study was supported by a Scientific Grant of the Ministry of Education, Science and Culture (Nos. 6640620 and 9440184).

REFERENCES CITED

Casey, W.H., Westrich, H.R., Banfield, J.F., Ferruzzi, G., and Arnolds,