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Rigid unit modes in crystal structures with octahedrally coordinated atoms
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Ansrnacr

The rigid unit mode analysis was initially developed to understand the phase transitions
in aluminosilicate minerals containing corner-linked tetrahedra. Here the model is applied
to a range of minerals with crystal structures that can be described as frameworks of linked
octahedral and tetrahedral units, including garnet, sillimanite, titanite, and ellenbergerite.
Consistent with a constraint analysis, there are no rigid unit modes in these minerals.
Generalizing these results suggests that there will not be any easy ways to distort structures
that have frameworks containing octahedral units. This result explains why polyhedral-
tilting displacive phase transitions are not common in such minerals, whereas they occur
in most aluminosilicate minerals containing only tetrahedral units. It also explains that it
will be necessary for the tetrahedra and octahedra to distort when solid solutions are
formed.

INrnonucrron expectations. From a theory discussed by Maxwell (1864)

Many insights into the behavior of aluminosilicate min- in relation to the stability or flexibility of engineering

erals containing linked SiOo and AlOo tetrahedra follow structures, -which has more recently been applied to the

from the fact ihat the forces within the tetrahedra are problem of the stiffness of glasses by Phillips (1979,

much stronger than the forces that act between them. For 1981) andThorpe and co-workers (Thorpe 1983; He and

example, it is much harder to distort a tetrahedron than Thorpe 1985; CaiandThorpe(1989),thenumberof zero-

to allow two tetrahedra linked at a cornmon vertex to energy modes of deformation of a structure, N, , is given

rotate against each other. This theory has been developed by the difference between the total number of degrees of

within the context of the rigid unit mode model (Dove et freedom of the constituent parts, F, and the number of

al. 1995; Hammonds et aL. 1996; Dove 1997); the central constraints operating, C. For any rigid polyhedron, F :

point is that there may exist vibrational modes (or equiv- 6 per polyhedron. Where two polyhedra are linked at a

alently static deformations of the structure) in whicir all common vertex, there are three constraints that require

the tetrahedra can rotate without any having to distort. the position of the vertex of one polyhedron to be the
These vibrations, called rigid unit modes IRUMs), will same as the position of the vertex of the linked polyhe-

have very low energy and can act as soft modes for dis- dron. These three constraints are shared by the two poly-
placive phase transitions. This approach has been applied hedra. For a material containing polyhedra with n vertices
to several aluminosilicates (Hamrnonds et al. 1996) and that are all linked to neighboring polyhedra at each cor-
has been used to illuminate the behavior associated with ner, C : 3nl2 per polyhedron. If the polyhedra are all
phase transitions, and the ideas have been developed fi.y- tetrahedra (n : 4), Nt : F - C : 0' On the other hand,
ther to also explain phenomena such as negativeihermal if the polyhedra are octahedra (n : 6), N, : -3 per
expansion (Pryde et al. 1996), zeolitic catalysis (Ham- polyhedron. The first result implies that crystals made
monds et al. 1997), and the low-energy excitations in from cornerlinked tetrahedra are exactly on the border-
glasses (Dove et al. 1997). line between being over-constrained (no RUMs) and un-

It is tempting to think that RUMs could also be found der-constrained (i.e., floppy). But the second result sug-
in systems with linked octahedral structural units. Indeed, gests that that crystals made from corner-linked octahedra
the case of perovskite gives some credence to this hope, are well over-constrained. The observations and calcula-
because it is both intuitive and confirmed by theory that tions of some RUMs in the cubic perovskite structure are
the octahedral-tilting phase transitions in the perovskites clearly in contradiction of this simple theory and suggest
arise from the existence of RUMs (Giddy et al. 1993). some flaw in the reasoning. The flaw, as such, is the ne-
However, there is a simple analysis that can guide our glect of symmetry, which has the effect of making some

of the constraints degenerate (i.e., no longer independent).
* E-mail: martin@minp.esc.cam ac uk This point has been explained in detail elsewhere (Giddy
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et aL. 1993;, Dove et al. 1996 Dove 1997), and we will
return to it later. In all the silicates we have investigated,
there are always some RUMs with wave vectors along
special lines or on special planes in reciprocal space
(Hammonds et al. 1996). In some systems such as zeolites
(Hammonds et al. 1991), it has been shown that the stan-
dard Maxwell counting scheme can be severely violated.
For materials containing edge-sharing octahedra we need
to count the constraints slightly differently. For each edge
there are five constraints operating that need to be shared
between the two octahedra. Three of these come from the
constraints forcing a pair of common vertices to have the
same position, and the other two arise from the two
shared edges having the same orientation. For materials
containing face-sharing octahedra there are six constraints
for each face, which again need to be shared by the two
octahedra. How these constraints contribute to N, depends
on how many shared edges or faces there are.

As we have noted, the existence of RUMs in structures
composed of frameworks of linked tetrahedra or octahe-
dra implies a breakdown of the standard Maxwell con-
straint counting, and this arises from the symmetry mak-
ing some of the constraints degenerate and hence
redundant. To determine the number of RUMs in any ma-
terial allowed by the existence of these degeneracies, we
have cast the problem into the formalism of molecular
lattice dynamics using ow "split-atom method" (Giddy
et al. 1993; Hammonds et al. 1994).In this approach, the
only forces operating are those that mimic the forces re-
quired to distort the rigid units, and these are described
using only a single force constant. This model will give
a zero frequency for an RUM and a non-zero frequency
for any other mode, the size of which depends directly
on the distortions of the units caused by the vibrational
motions. The dynamical matrix approach automatically
takes account of the action of symmetry and has the ad-
vantage that it provides information about the wave vec-
tors of the RUMs. In practice these calculations can be
performed for special wave vectors only, following the
approach of Hamrnonds et al. (1996), or calculations can
be performed over a fine grid of wave vectors to yield a
phonon density of states (Pryde et al 1996).

RUM calculations are reported here for several min-
erals containing rigid octahedra, namely garnet, silliman-
ite, titanite, and ellenbergerite. The structures are drawn
in Figure 1. Both garnet and titanite have a framework
of corner-linked octahedra and tetrahedra. In these cases
the number of constraints is straightforward to calculate.
Sillimanite contains columns of edge-linked octahedra,
and these columns are bridged by pairs of corner-linked
tetrahedra. Each vertex of the octahedra, including those
on the shared edges, are linked to tetrahedra. Ellenber-
gerite (Comodi and Zanazzi 1993a, 1993b) has a more
complicated structure. The unit cell contains two types of
octahedra, 2 x Oc(l) and 6 x Oct(2), and two types of
tetrahedra, 2 x Te(l) and 6 x Tet(2). The Oct(l) octa-
hedra form face-sharing columns along [001], and each
vertex is also linked to a vertex of a Tet(2) tetrahedron.
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Ellenbergerite Sillimanite

Frounr 1. Crystal structures of garnet, titanite, sillimanite,
and ellenbergerite, showing framework of linked octahedra and
tetrahedra

Each Oct(2) octahedron is corner-linked to two other
Oct(2) octahedra, and one Tet(l) and three Tet(2) tetra-
hedra. Each Tet(l) tetrahedron is linked to three Oct(2)
octahedra and has one non-bridging bond. Each Te(2)
has one vertex linked to two Oct(l) octahedra (linked to
the point where these two octahedra share faces) and
three Oct(2) octahedra. Counting of constraints in this
case requires a little more care.

For comparison we also cite results tor ZrYrO, (Pryde
et al. 1996), perovskite (as discussed by Giddy et al.
1993), and quartz (as discussed by Hamrnonds et al.
1996). ZrYrOT contains corner-linked ZrOu octahedra and
VOo tetrahedra. Perovskite contains only corner-linked
octahedra, and quartz contains only corner-linked tetra-
hedra. For the latter two materials we only consider the
high-temperature phases.

For each of these systems we give the results from a
standard Maxwell counting of N, in Table 1. The quantity
NrlF gives a relative measure of the floppiness or stiffness
of a structure. Large positive values of this indicate a
greater degree of floppiness, and large negative values
indicate a greater degree of stiffness. As mentioned
above, for structures made from tetrahedra linked at each
vertex NrlF = 0. For structures made from tetrahedra
only, but with some non-bridging bonds NrlF > 0. On
the other hand, the Maxwell counting applied to systems
containing octahedra always gives NrlF < 0, as we have
outlined above.
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TleLe 1. Enumeration of the numbers of degrees of freedom
and constraints for our examole materials

Mineral Framework Polvhedra F C Nr/F

Perovskite
Garnet
Titanite
Sillimanite
Ellenbergerite

Silica

TiO3 [Oct]
Al,Si3O1, [Oct]s[Tet]1,
TiSiOu [Oct],[Tet],
Al,SiOu [Oct]4[Tet]s
TiAl3Si4Ols [Oct]slTet]s
Z|V2O. [Oct]o[Tet]"
SiO, [Tet]"
Z)l{,O" [OctllTet]g

n  3 0

6

E

o  1 0

3  3 0

a
ts 20

o  1 0

r  3 0

b  2 0

a l ,

p t o

6  2 0
b

I  r o

0 0

E  3 0

6

a
6  r o

40

ts 20

a  l 0

00

o v

120 144
24 30
72 104
96 120
72 84
6 6

72 72

- 0 5

o 2
-o 25
-o.444
-0.25
-0  167

0
0

0 0 2 o t r 0 6 0 8
Frequmq (ebitrary uits)

o 0 2 0 4 0 6 0 8 r
Frequency (dbifrary mits)

0 0 2 0 J 0 6 0 8 r
Frequency (ilbitq mits)

Nofe: The second column gives the part of the chemical formula that
comprises the crystal framework structure The third column shows the
types of polyhedra present and their relative amounts in the primitive unit
cell, where [Oct] indicates an octahedron and [Tet] indicates a tetrahedron
The fourth and lifth columns give the numbers of degrees of freedom and
constraints for lhe structure per unit cell. The sixth column gives a mea-
sure of the stiffness of the structure as given by the Maxwell counting
scheme: the more negative this quantity, the stitfer the structure is pre-
dicted to be.

Rnsur,rs
The computed densities of states are shown in Figure

2. For comparison, in perovskite there are RUMs for all
wave vectors along the edges of the Brillouin zone, and
in quartz there are lines of wave vectors containing
RUMs as optic modes and a plane of RUMs as acoustic
modes. The RUMs in the case of quartz are seen in the
low-frequency parts of the density of states plot, where
there is a significant enhancement of the density of states
over the usual Debye ar2 form at low frequencies. The
example of quartz contrasts with all the others, where in
the density of states plots follow the Debye form at low
frequencies. We find that such plots give a good indication
of the existence of RUMs in a system. The reader is referred
to a similar comparison between the two negative thermal
expansion materials ZrWrO" and Zr(V,P)rO, (Pryde et al.
1996), where the existence of RUMs in the tungstate is
seen in a large density of states at low frequencies, where-
as the absence of RUMs in the vanadate is seen by the
standard Debye form of the density of states. In the case
of perovskite, the density of states does not show the
presence of a significant number of RUMs, but there is
some excess over the Debye form at low frequencies.
Although the RUMs in perovskite are well known, they
actually are restricted to wave vectors along some special
lines in reciprocal space, and there are far fewer RUMs
than in the high-temperature phase of quartz. As a result,
the density of states plot for perovskite looks more like
the other materials containing octahedra than for quartz.

The results for each of the systems garnet, sillimanite,
titanite, ellenbergerite , and ZrY ,O, (Pryde et al. 1996) are
broadly the same, namely that there are no RUMs in any
of these systems. We have checked the conclusion from
the density of states plots by performing calculations for
a wide range of specific wave vectors. This result leads
to the generalization that except for special cases, such
as cubic perovskite, materials with framework crystal
structures containing linked octahedra will not have any
RUMs, unlike framework structures containine linked tet-

0  0 2  0 4  0 5  0 8  I
Frequency (ebitrry usts)

0 0 2 0 4 0 6 0 8 1
Frequ@cy (dbhary mits)

Frcunr 2, Computed phonon density of states for garnet,
titanite, sillimanite, ellenbergerite, cubic perovskite, and hexag-
onal quartz obtained using our split-atom method as described in
the text. The frequency scale is arbitrary since it is determined
by the value of a single force constant whose value has been
arbitrarily set to give a maximum frequency of 25 THz for
quartz, but which has not been calibrated for any of the other
sructures

rahedra only. We therefore need to ask what is so special
about perovskite that allows it to have some RUMs, par-
ticularly when it can be seen from Table 1 that, in terms
of the simple Maxwell counting scheme, it is actually the
most highly constrained of the systems we have investi-
gated. The answer in brief, as discussed in detail in Dove
et al. (1996) and Dove (1991), is that the high symmetry
of the cubic perovskite structure, in which the octahedra
are oriented exactly in line with the crystal axes, allow
many of the constraints to become degenerate. None of
the other examples studied here have the same symmetric
orientations of the octahedra, and so the prediction from
the Maxwell counting scheme that these structures are
over-constrained, and hence will have no RUMs, is con-
firmed by our direct calculations. The other special case
is illustrated by ZrWrOu, which contains 2106 octahedra
and WO. tetrahedra, where the Maxwell counting scheme
gives an exact balance between the numbers of con-
straints and degrees of freedom because one of the O
vertices on the WOo tetrahedra is not linked to another
unit (Pryde et al. 1996).

The general result that materials with frameworks con-
taining linked octahedra only have RUMs in special cases
actually provides several important implications into the
behavior of these minerals. One insight that follows from
our analysis is that we can now explain why polyhedra-
tilting displacive phase transitions are uncorrrmon in sys-

0  0 2  0 4  0 6  0 8  I
Frequency (dbitrary uits)

T



tems containing octahedra. Indeed the family of perov-
skites stands out as a special case in this respect, in con-
trast to the aluminosilicates with frameworks of linked
tetrahedra, where these phase transitions are common-
place. The displacive phase transition in titanite (Meyer
et al. 1996; Zhang et al. 1991) actually involves small
displacements of the Ti cations rather than tilting of the
polyhedra. Our results therefore mean that some caution
needs to be applied before claiming the possible existence
of displacive phase transitions in minerals with frame-
work structures containing linked octahedra-phase tran-
sitions are more likely to arise from cation-ordering pro-
cesses (Rauch et al. 1996). A second suggestion is that
the formation of solid solutions in these systems will nec-
essarily require distortions of the octahedra and tetrahe-
dra-the crystal structures cannot accommodate the in-
clusion of cations with different sizes by simply allowing
these polyhedra to rotate. Thus there will be a large en-
ergy cost associated with the formation of the solid so-
lutions, and this may explain the origin of the excess en-
thalpies measured in the garnet solid solutions (Newton
et al. 1977;, Geiger et al. 1987).

In summary, our rigid unit mode analysis has suggest-
ed the general result that minerals with crystal structures
built from frameworks containing octahedral units will
have no easy modes of deformations except in special
cases. This non-trivial result explains for the first time
why polyhedral-tilting phase transitions are much less
common in these materials than in aluminosilicates that
contain only tetrahedra.
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