P-V equation of State, thermal expansion, and P-T stability of synthetic zincochromite (ZnCr₂O₄ spinel)

DAVIDE LEVY,1 VALERIA DIELLA,2 ALESSANDRO PAVESE,2,3,* MONICA DAPIAGGI,2 AND ALESSANDRA SANI4

1Dipartimento Scienze Mineralogiche e Petrologiche, Università degli Studi di Torino, Via Valperga Caluso 35, 10025 Torino, Italy
2National Research Council, IDPA, Milan section, Via Botticelli 23-20133 Milano, Italy
3Dipartimento Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23-20133 Milano, Italy
4European Synchrotron Radiation Facility, ESRF-F 38043 Grenoble Cedex, France

ABSTRACT

The elastic properties and thermal behavior of synthetic zincochromite (ZnCr₂O₄) have been studied by combining room-temperature high-pressure (0.0001–21 GPa) synchrotron radiation powder diffraction data with high-temperature (298–1240 K) powder diffraction data. Elastic properties were obtained by fitting two Equations of State (EoS) to the P-V data. A third-order Birch-Murnaghan model, which provides results consistent with those from the Vinet EoS, yields: \(K₀ = 183.1(±3.5) \) GPa, \(K’ = 7.9(±0.6,) \), \(K’’ = -0.1278 \) GPa⁻¹ (implied value), at \(V₀ = 577.8221 \) Å³ (fixed). Zincochromite does not exhibit order-disorder reactions at high temperature in the thermal range explored, in agreement with previous studies. The volume thermal expansion was modeled with \(\alpha_v = \alpha_0 + \alpha_v T + \alpha_v T^2 \), where only the first coefficient was found to be significant [\(\alpha_v = 23.0(4) \times 10^{-6} \) K⁻¹]. Above 23 GPa diffraction patterns hint at the onset of a phase transition; the high pressure phase is observed at approximately 30 GPa and exhibits orthorhombic symmetry. The elastic and thermal properties of zincochromite were then used to model by thermodynamic calculations the P-T stability field of ZnCr₂O₄ with respect to its oxide constituents (Cr₂O₃ and rocksalt-like ZnO). Spinel is expected to decompose into oxides at about 18 GPa and room temperature, in absence of sluggish kinetics.

INTRODUCTION

Spinel [ideally AB₂O₄, S.G: Fd³m, Wells (1984); A and B usually divalent and trivalent cations, respectively] are ternary oxides widely studied for their high temperature (HT) A-B order-disorder reaction over tetrahedral and octahedral structural sites (see, for instance, Della Giusta et al. 1996 and Redfern et al. 1999; Sack 1982 for petrogenetic inferences). The behavior of spinels at high pressure (HP) has also recently attracted a great deal of interest (Levy et al. 2004, 2003, 2001; Funamori et al. 1998; Irifune et al. 1998; Yutani et al. 1997), as the spinel-like structure provides a model for phases stable under mantle conditions (ringwoodite). Spinel, moreover, exhibit pressure-induced phase transitions to CaM₂O₄-like structures, where M = Fe, Mn, and Ti (Dubrovinsky et al. 2003; Wang et al. 2002; Andrault and Bolfan-Casanova 2001; Levy et al. 2000; Fei et al. 1999; Irifune et al. 1991).

Zincochromite (ZnCr₂O₄) is a relatively poorly studied spinel in terms of HT and HP behavior (Catti et al. 1999; Wang et al. 2002), although it has been extensively investigated as a technological material by virtue of its magnetic (Kagomiya et al. 2002), electronic (Koga et al. 2004), and catalytic (El-Sharkawy 1998) properties. With this in mind, we undertook a study of synthetic ZnCr₂O₄ at high pressure (up to 44 GPa, by HP synchrotron radiation powder diffraction, with ID9A at ESRF) and high temperature (up to 1240 K, by HT laboratory X-ray powder diffraction) to determine the P-V and T-V Equations of State of zincochromite, and to investigate its stability as a function of P and T, by combining our results with those from earlier measurements and theoretical calculations. The present work also provides a contribution to the systematic study of the behavior of spinels at HP as a function of their composition. ZnCr₂O₄ lends itself well to comparison with franklinite (Levy et al. 2000) and garnite (Levy et al. 2001) to rationalize the change of elastic properties as a consequence of chromium-iron and chromium-aluminum replacements, respectively.

EXPERIMENTAL METHODS

The ZnCr₂O₄ sample was synthesized by mixing and pressing into a pellet analytical purity ZnO and Cr₂O₃ reagent grade powders (Carlo Erba Reagenti) with an excess (≈1 wt%) of ZnO (O’Neill and Dollase 1994). The blend was heated at 1300 °C for 1 day, then cooled down to ambient temperature at an estimated rate of ≈20–25 °C/h. The remaining excess of zinc oxide was removed by washing the powder in dilute nitric acid, and then the full heating cycle and treatment were repeated. X-ray powder diffraction (laboratory XPERT Philips diffractometer) showed no residual parent phases. Chemical analyses obtained from a polished epoxy mount of cemented powder using an Applied Research Laboratories SEMQ microprobe equipped with 6 wavelength-dispersive crystals and natural chromite and niccolite as standards for Cr and Zn, respectively, yielded the following composition: Zn₀.96Cr₂.05O₄. The uncertainties reported take into account the propagation of errors in averaging 15 analyses. Hereafter we use the ideal composition, i.e., ZnCr₂O₄, in place of the actual one, as such an approximation is fully consistent with the uncertainties observed and suffices for the purposes.

P-V equation of State, thermal expansion, and P-T stability of synthetic zincochromite (ZnCr₂O₄ spinel)
of the present investigation.

High-pressure powder-diffraction patterns were collected at beam-line ID9A of the European Synchrotron Radiation Facilities (ESRF, Grenoble, France), using a <5 μm grain size powder. Measurements were obtained from two experiments: (1) one up to 10 GPa, using a 600 μm culet Diamond Anvil Cell (DAC) and (2) the other up to 44 GPa, using a 300 μm culet DAC. In both cases we used N2 as a pressure transmitting medium, and a steel gasket with a 125 μm diameter sample hole. P was determined by the shift of the fluorescence line of a ruby excited by an Ar laser, adopting the non-linear hydrostatic pressure scale of Mao et al. (1986). The sample crystal was positioned in the HP cell so as to be in the centre of the incident X-ray beam. Equilibrium was assumed when the pressure measured every 10 minutes did not oscillate more than 0.01 GPa. The effects of a non-hydrostatic pressure distribution in the DAC were analyzed following the approach of Levy et al. (2004), based on Singh (1993) and Duffy et al. (1995). This method allows one to estimate the difference in terms of stress along the thrust axis (σt) and normal to it (σn). Calculated σt/σn values (using the elastic constants for MgAl2O4, from Askarpour et al. (1993), in the absence of data for zincochromite) ranged from –1.3 to 1.5 GPa, without a definite trend, with an average of about 0.03 GPa and a standard deviation of 0.5 GPa. We decided to use a nominal uncertainty of 0.1 GPa on P to fit the experimental P–V curve, according to our previous experience with data collected at ID9A under similar conditions. This was motivated by the fact that the uncertainties on the elastic constants of ZnCr2O4 might skew the inferred Kc and K’ values, had we used a weighted scheme based on σt(σt) = σt − σn, in the EoS calculations. Note that σ(σt) = 0.1 GPa is likely an underestimation of the actual uncertainty, and therefore we expected P–V fittings giving y2 values significantly larger than unity. Measurements were carried out using an angle dispersive set up: a monochromatic beam (λ = 0.41507 Å, by Si-NBS calibration) was focused onto a 30 × 30 μm2 spot, and powder diffraction rings were recorded with a 2D imaging plate (MAAR345, with 100 μm pixel size) placed 359.935 mm from the sample. Such an experimental set up provides an angular resolution of about 0.04° and allows data collection times (recording, readout, and erasing) <1–2 min. The 2D diffraction rings were then converted into 1D 2θ patterns using the FIT2D software (Hammersley et al. 1996). Saturated diffraction spots, erased before the 2D into 1D pattern transformation, occurred in the recorded images, presumably as a consequence of preferred orientation of crystallites in the HP cell. The GSAS-EXPGUI software (Larson and Von Dreele 2000; Toby 2001) was used for structure refinements. Crystalline N2 was first taken into account by a multiphase refinement, but this approach did not work very well and we chose to manually cancel the contribution of crystalline N2 at the image integration stage. The increasing overlap at HP between the diffraction signals of spinel and N2 made it impossible to eliminate the contribution of the nitrogen peaks above 21 GPa. The quality of the collected powder patterns did not allow full structural refinements, and we had to restrict our analysis to the behavior of the cell edge of spinel as a function of P. In Figure 1a we show the powder diffraction pattern obtained at 6.4 GPa. Above 23 GPa, some spinel peaks exhibited an asymmetry which hampered the refinement of reliable lattice parameters. At about 29 GPa, shoulders appeared on the left of the main diffraction peaks of spinel. These shoulders developed into visible peaks which grew progressively in intensity with increasing P and, at about 40 GPa, the presence of a new phase became apparent, whereas spinel gave a modest contribution (Fig. 1b). We tried to fit the diffraction pattern of the new phase using the simple oxide constituents and the CaMnO2-like structure models (Introduction). The diffraction patterns of oxides do not fit our observations, whereas those of the CaMnO2-like structures provide a reasonable agreement, although no choice can be made between the different orthorhombic models [Pnmm (Pausch and Müller-Buschbaum 1974); Pnma (Becker and Kasper 1957); Bbmm (Bertaut and Blum 1956); Pbcm (Giesber et al. 2001); for a survey see Müller-Buschbaum (2003)].

Ambient pressure, high-temperature experiments were performed using an X’PERT Philips θθθ diffractometer equipped with an AHT-PAP 1600 furnace. Optimal sample positioning throughout the accessible temperature range was achieved by means of a stepper motor which moves the sample downward as a function of the thermal expansion of the sample holder. The temperature is read on a thermocouple placed about 20 mm from the sample. Si-NBS was mixed with ZnCr2O4 powder as an inner calibrant to enhance the precision of the temperatures measured from the sample, and the thermal expansion of Swenson (1983) was used to determine T. Diffraction patterns were collected over the temperature range from 298 to 1240 K, between 17 and 118° 2θ, with a step size of 0.02° 2θ, a counting time of 4 s per step, and a heating rate of 255° min–1. Before each HT data collection, the temperature was kept fixed for two hours to achieve thermal equilibrium. The data treatment was carried out by means of the GSAS-EXPGUI software. The quality of the HT measurements allowed us to perform full structure refinements.

RESULTS AND DISCUSSION

P–V equation of state

Table 1 reports the cell edge of ZnCr2O4, as a function of pressure. Two EoS models, shown below for the sake of completeness, were fitted to the observed P–V data: the Birch-Murnaghan EoS (Birch 1986) and the Vinet EoS (Vinet et al. 1986, 1987). The Birch-Murnaghan EoS relies on a Taylor expansion of energy as a function of the Eulerian strain f2 and results in:

\[P(V) = 3\sigma f'_2(1 + 2f'_2)^{3/2} + (1 + A_{f_2} + B_{f_2}^3) \]

(1)

Table 1. Cell edge of zincochromite as a function of P

<table>
<thead>
<tr>
<th>P (GPa)</th>
<th>a (Å)</th>
<th>P (GPa)</th>
<th>a (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>8.3291(7)</td>
<td>0.0001</td>
<td>8.3291(7)</td>
</tr>
<tr>
<td>0.33</td>
<td>8.32205(5)</td>
<td>0.97</td>
<td>8.29783(8)</td>
</tr>
<tr>
<td>1.13</td>
<td>8.31342(8)</td>
<td>4.67</td>
<td>8.26604(6)</td>
</tr>
<tr>
<td>1.87</td>
<td>8.30458(9)</td>
<td>7.15</td>
<td>8.2357(6)</td>
</tr>
<tr>
<td>3.31</td>
<td>8.30380(7)</td>
<td>8.69</td>
<td>8.2178(1)</td>
</tr>
<tr>
<td>4.22</td>
<td>8.29630(5)</td>
<td>9.66</td>
<td>8.2073(1)</td>
</tr>
<tr>
<td>4.94</td>
<td>8.26212(8)</td>
<td>11.28</td>
<td>8.1871(1)</td>
</tr>
<tr>
<td>5.86</td>
<td>8.2530(1)</td>
<td>12.9</td>
<td>8.17387(7)</td>
</tr>
<tr>
<td>6.44</td>
<td>8.2444(7)</td>
<td>13.56</td>
<td>8.16588(8)</td>
</tr>
<tr>
<td>7.84</td>
<td>8.2275(1)</td>
<td>14.67</td>
<td>8.1552(1)</td>
</tr>
<tr>
<td>8.63</td>
<td>8.2185(2)</td>
<td>15.79</td>
<td>8.1450(1)</td>
</tr>
<tr>
<td>9.74</td>
<td>8.2063(2)</td>
<td>17.65</td>
<td>8.1272(1)</td>
</tr>
<tr>
<td>19.35</td>
<td>8.1778(2)</td>
<td>21.04</td>
<td>8.1032(2)</td>
</tr>
</tbody>
</table>

Figure 1. (a) Powder diffraction pattern at 6.4 GPa (bars are peak markers of spinel) and (b) at 44 GPa [upper and lower bars: peak markers of HP-phase (SG: Pnnm) and of spinel, respectively]. Dots are measurements, curves are fits.
where \(K_0 \) is the bulk modulus at \(P = 0.0001 \) GPa, \(A = 3/2(K – 4) \), and \(B = 3/2(2K_0^7 + (K – 4)K_0^3 + 35/9) \), with \(K \) and \(K_0 \) first and second pressure derivatives of bulk modulus at ambient conditions, respectively. \(f_1 \) is defined as \(f_1 = \{P / V \}^{3/2} – 1/2 \) where \(V_0 \) and \(V \) are the volumes at \(P = 0.0001 \) GPa and at a given pressure, respectively.

The Vinet EoS, derived from quantum mechanics first principles, is:

\[
P(V) = 3K_0 \left(\frac{1 - f_1}{f_1} \right)^{2\eta} \exp \left[\eta \left(1 - f_1 \right) \right]
\]

where \(\eta = 3/(2(K – 1)) \) and \(f_1 = (V/V_0)^{\eta/3} \).

The best-fit parameters obtained by the EoS models reported above are given in Table 2; in Figure 2 the experimental \(P-V \) curve is displayed together with the calculations using the BM3 model. Figure 3, showing the normalized uncertainties as a function of the Eulerian strain, suggests that a third-order truncation of expansion (1) suffices to fit the experimental data, in agreement with previous studies (see references in the introduction); this is consistent with the fact that BM4 and BM4V yield \(K \) and \(K' \) values <3σ. The enhancement in terms of \(\chi^2 \)-value provided by a fourth-order truncation is fictitious, and rather a consequence of an additional degree of freedom, than of a physically sound need for fitting \(K' \). The refinement of \(V_0 \) does not produce a significant decrease in \(\chi^2 \), and the resulting elastic parameters are in a general agreement with those from the fittings performed keeping \(V_0 \) at its experimental value. The confidence ellipses (Bass et al. 1981) displayed in Figure 4 show that BM3 and Vinet are fully consistent with one another. In this light, we will henceforth use the BM3 model as a reference for our discussion.

Had we used \(\sigma(\sigma) = (\sigma_1^2, \sigma_2, \ldots, \sigma_n) \) and the third-order Birch-Murnaghan model would yield \(K_0 = 188.7 \pm 1.3 \) GPa and \(K = 6.3 \pm 0.2 \), which are consistent within 2σ with the values of BM3 in Table 2.

The best-fit parameters of BM3 may be compared with the only previous determination of elastic properties for ZnCr\(_2\)O\(_4\) in the literature, i.e., the quantum mechanics study of Catti et al. (1999), who provide \(K_0 \) and \(K' \) values of 215 GPa and 3.96 (Hartree-Fock model), and 285 GPa and 2.55 (Hartree-Fock model and a posteriori correction for correlation energy). The discrepancy between measured \(K_0 \) and its theoretical value is about 15%, in keeping with the average precision of the Hartree-Fock technique in reproducing the elastic properties of crystals.

Hazen and Yang (1999) proposed a model which allows one to predict elastic properties of spinels as a function of octahedral and tetrahedral cation-oxygen bond lengths, and of their compressibilities (\(\beta_{c(\sigma)} \)). In Table 3 we compare the experimental \(K_0 \) values of some spinels with those calculated by means of the model in question, using bond lengths and bond compressibilities reported by Hazen and Young (1999), Hazen and Finger (1982), and Menegazzo et al. (1997). The normal spinel structure ZnX\(_2\)O\(_4\) series (\(X = Al, Cr, Fe \)) reveals consistency between the predicted dependence of \(K_0 \) on the octahedral bond length compressibility [\(\beta_{c(\sigma)} < \beta_{c(\sigma)} \) and the measured bulk modulus values [\(K_0(franklinite) < K_0(zincocromite) < K_0(gahnite) \). ZnCr\(_2\)O\(_4\) and ZnAl\(_2\)O\(_4\) show agreement between measurements and calculations, whereas an 11% discrepancy occurs for ZnFe\(_2\)O\(_4\). MgAl\(_2\)O\(_4\) was modeled to have a larger \(K_0 \) than garnite, in contrast with

TABLE 2. Elastic parameters determined using different EoS models

<table>
<thead>
<tr>
<th>EoS</th>
<th>(V_0) ((\AA^3))</th>
<th>(K_0) (GPa)</th>
<th>(K')</th>
<th>(K'') (GPa(^{-1}))</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM3</td>
<td>577.8221</td>
<td>183.3 (±3.5)</td>
<td>7.9 (±0.6)</td>
<td>–0.1278</td>
<td>2.6</td>
</tr>
<tr>
<td>BM3V</td>
<td>578.03(3)</td>
<td>183.3 (±5.1)</td>
<td>7.2 (±0.5)</td>
<td>–0.1472</td>
<td>2.6</td>
</tr>
<tr>
<td>BM4</td>
<td>577.8221</td>
<td>198.1 (±5.2)</td>
<td>1.7 (±1.9)</td>
<td>0.75 (±0.26)</td>
<td>0.9</td>
</tr>
<tr>
<td>BM4V</td>
<td>578.03(5)</td>
<td>207.3 (±8.6)</td>
<td>–0.16 (±2.4)</td>
<td>0.84 (±0.30)</td>
<td>1.8</td>
</tr>
<tr>
<td>Vinet</td>
<td>577.8221</td>
<td>183.3 (±2.2)</td>
<td>7.8 (±0.4)</td>
<td>0.3 (±0.4)</td>
<td>1.8</td>
</tr>
<tr>
<td>VinetV</td>
<td>578.03(3)</td>
<td>180.4 (±4.7)</td>
<td>8.1 (±0.6)</td>
<td>0.3 (±0.4)</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Notes: BM3 (third-order Birch-Murnaghan model), BM4 (fourth-order Birch-Murnaghan model), Vinet (Vinet model). Suffix \(V \) indicates that \(V_0 \) has also been refined. \(\chi^2 = \sum_{i=1}^{N} \frac{P_{obs,i} - P_{calc,i}^2}{\sigma(P_{obs,i})^2} \), where \(\sigma(P) = \sqrt{\sigma(P_{obs})^2 + \sigma(P_{calc})^2} \), where \(\sigma_0 \) is the uncertainty on the experimental determination of \(P \), and \(\sigma_1 \) is the error on pressure calculated via EoS due to the propagation of the uncertainty on \(V \).

TABLE 3. Observed and calculated [model of Hazen and Yang (1999)] \(K_0 \) values

<table>
<thead>
<tr>
<th>Spinel</th>
<th>(K_0) (GPa)</th>
<th>Structure</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnCr(_2)O(_4)</td>
<td>183</td>
<td>190</td>
<td>Present work</td>
</tr>
<tr>
<td>ZnFe(_2)O(_4)</td>
<td>166</td>
<td>187</td>
<td>Levy et al. (2000)</td>
</tr>
<tr>
<td>Mg(_2)O(_3)</td>
<td>202</td>
<td>197</td>
<td>Levy et al. (2001)</td>
</tr>
<tr>
<td>Mg(_2)Fe(_2)O(_4)</td>
<td>191</td>
<td>201</td>
<td>Levy et al. (2003)</td>
</tr>
<tr>
<td>Fe(_2)O(_3)</td>
<td>182</td>
<td>183</td>
<td>Levy et al. (2004)</td>
</tr>
<tr>
<td>Fe(_2)O(_3)</td>
<td>222</td>
<td>184</td>
<td>Haak et al. (2000)</td>
</tr>
</tbody>
</table>

Note: \(N \) stands for normal structure, \(I \) stands for inverse structure.
the observations reported in Table 3. The K_0 value for MgAl$_2$O$_4$ might be reflective of the vacancies present in the sample used, as stated by Levy et al. (2003), causing an increase of the bond length compressibility. Note that an 8% change of the tetrahedral bond length compressibility suffices to shift the K_0 of MgAl$_2$O$_4$ in agreement with that measured. For MgFe$_2$O$_4$, which is an Mg-Fe solid solution based on an inverse spinel structure, theoretical and experimental determinations of K_0 fully agree; this success makes us confident that the model of Hazen and Yang (1999) can be transferred to spinel solid solutions, though more experimental evidence is needed for a complete validation. Lastly, calculations and measurements are remarkably discrepant in the case of magnetite; however, one has to take into account that K_0 values earlier measured and reported by Haavik et al. (2000) cover a wide range (161–222 GPa).

Although the failure to fully refine the structure of ZnCr$_2$O$_4$ hampers a complete analysis of its behavior at HP, Levy et al. (2004, 2003) have observed that the one symmetry-independent coordinate (of oxygen) in spinels changes negligibly as a function of pressure, and the structural shrinking is mainly controlled by the cell-edge shortening. Given that the coordinate of oxygen in ZnCr$_2$O$_4$ shows a modest variation as a function of temperature (see the next section), one might expect a degree of “inertness” to P as well.

Thermal expansion

Table 4 reports the structural parameters refined as a function of temperature, up to about 1240 K. We did not carry out measurements above 1240 K for the following reasons: (1) a solid state reaction involving zincochromite and Si takes place above 1200 K, with formation of eskolaite and willemite (2ZnCr$_2$O$_4$ + Si + O$_2$ → 2Cr$_2$O$_3$ + Zn$_2$SiO$_4$); (2) the trend of the cell edge is quasi-linear, and we expect that points at higher temperatures would not add information significant to our aims. For the sake of brevity, we omit here the site occupancy factors, which have variations smaller than 3σ and confirm that the normal structure of ZnCr$_2$O$_4$ is a reliable approximation. The absence of change in the slope of the $a(T)$ curve (see Fig. 5), conversely observed in the case of MgFe$_2$O$_4$ at about 850 K (Levy et al. 2004) in relation to the onset of an order-disorder reaction, further suggests that no inversion occurs in the structure of ZnCr-spinel. Although the use of an approximate composition might hinder the occurrence of a very modest degree of inversion, our results are in full agreement with those of O’Neill and Dollase (1994), who reported no inversion in ZnCr$_2$O$_4$ after thermal treatment at 1300 °C. All of this suggests that no order-disorder reaction relevant in terms of a configurational entropic contribution to stability has occurred. The volume thermal expansion is commonly modeled by (Fei 1995)

$$
\alpha_v = \alpha_0 + \alpha_1 T + \alpha_2 / T^2
$$

(3)

The coefficients of Eq. 3 were determined by calculating the first temperature derivative of the curve $c + \alpha_1 T + 1/2\alpha_2 T^2 - \alpha_2 / T$ fitted to the experimental $\ln[V(T)/V_0]$ values, where V_0 is the cell volume at room conditions. We observed that α_1 and $\alpha_2 < 1 \sigma$; this motivated the use of a simpler expansion, i.e., $c + \alpha_0 T$, which yields $\alpha_0 = 23.0(4) \times 10^{-6} \text{ K}^{-1}$. This value is comparable with those reported by Smyth et al. (2000) for MgAl$_2$O$_4$, FeAl$_2$O$_4$, and Fe$_2$O$_3$, which range from 20.6 to 35.5 $\times 10^{-6} \text{ K}^{-1}$.

P-T field of stability

Because of the lack of thermodynamic data for the HP-phase, we have restricted our analysis of the ZnCr$_2$O$_4$ P-T field of stability (Fig. 6) to a comparison of spinel with its oxides (the rocksalt-like structures of ZnO and Cr$_2$O$_3$); the many approximations and assumptions we have made require due care in considering our inferences. The Gibbs energy of a phase is calculated by

![Figure 4](https://example.com/f4.png)

Figure 4. Confidence ellipses (68%, 90%, and 99%, from inner to outer, respectively). The elastic properties of the Vinet model correspond to the solid diamond.

![Figure 5](https://example.com/f5.png)

Figure 5. Cell edge as a function of temperature. Second order polynomial in T (solid line) to appreciate the smoothness of the experimental data.
analogy with MgFe$_2$O$_4$ (Levy et al. 2004), ZnCr$_2$O$_4$ is expected to stabilize as a function of increasing pressure and room temperature, at variance with our experiment giv-
ing hints of onset of a structure transformation above 23 GPa. Wang et al. (2002) and ours (the
variation of state of magnetite and its high-pressure modi-

ACKNOWLEDGMENTS

The European Synchrotron Radiation Facility is kindly acknowledged for al-
locating beamtime for the measurements at high pressure and the National Research
Council (CNR), Istituto per la Dinamica dei Processi Ambientali (IDPA), for the maintenance and functioning of the electron microscope. The authors are grateful to W. van Westrenen and an anonymous referee for suggestions and corrections which enhanced the quality of the manuscript.

REFERENCES CITED

Andraud, D. and Bollfan-Casanova, N. (2001) High-pressure phase transforma-
tions in the MgFe$_2$O$_4$ and Fe$_3$O$_4$-MgSiO$_3$ systems. Physics and Chemistry of

ity of single-crystal MgAl$_2$O$_4$ spinel up to 1273 K by Brillouin spectroscopy. Physics
and Chemistry of Minerals, 19, 511–519.

erties from acoustic and volume compression experiments. Physics of the Earth and
Planetary Interiors, 25, 140–158.

lographica, 10, 332–337.

Bertrand, E.F. and Blum, P. (1956) Determination de la structure de Ti$_3$CaO$_4$ par

Birch, F. (1986) Equation of state and thermodynamic parameters on NaCl to 300

Dubrovinsky, L.S., Dubrovinskaia, N.A., McCammon, C., Rozenberg, G.K.,
Ahuja, R., Osorio-Guillen, J.M., Dmitriev, V., Weber, H.P., Le Bihan, T., and

Fei, Y.W., Frost, D.J., Mao, H.K., Prewitt, C.T., and Hausermann, D. (1999) In-
situ structure determination of the high-pressure phase of Fe$_3$O$_4$. American
Mineralogist, 84, 203–206.

Funamori, N., Jeanlou, R., Nguyen, J.H., Kavner, A., Caldwell, W.A., Fujino,
K., Miyajima, N., Shimmei, T., and Tomioka, N. (1998) High-pressure transforma-

New York.

Hazen, R.M. and Yang, H. (1999) Effects of cation substitution and order-dis-

Hazen, R.M. and Isaak 1161

ES = E_V (0, 0) + \int_0^{T_0} C_V (T') (1 - T / T') dT' + \int_T_0 T' V (P', T') dP'

Experimental $E_0(0, 0)$ [binding energy in the athermal limit at 0 K; values from Table 3 of Catti et al. (1999)] is available for Cr$_2$O$_3$; for ZnO and ZnCr$_2$O$_4$ we re-scaled the theoretical E_0 by the E_0(obs)/E_0(calc) ratios computed for MnO and MgCr$_2$O$_4$, respectively. $C_V(T) = C_V(T) + T V_T^2 / K$ (Wallace 1972), where specific heat at constant V is determined by the Debye model [where the Debye temperatures of ZnO, Cr$_2$O$_3$, and ZnCr$_2$O$_4$ are replaced by those of wurtzite-like ZnO (Nedoseikina et al. 2000), Al$_2$O$_3$ (Goto et al. 1989), and ZnAl$_2$O$_4$ (Fang et al. 2002), respectively]. An experimental value for $C_V(T)$ [Klemme et al. (2000) and Klemme and Van Miltenburg (2004), for ZnCr$_2$O$_4$,] would not change significantly our inferences in the T-range explored with respect to the approximations adopted. The thermo-elastic parameters reported here have been used for ZnCr$_2$O$_4$; for ZnO, $K_0 = 203$ GPa, $K' = 3.6$, $V_0 = 77.6 \text{Å}^3$ (Jaffe and Hess 1993), $\alpha_v = 5.2 \times 10^{-4}$ $+ 2.0 \times 10^{-6}$ $- 0.03 / T^0 / T^2$ (Iwanaga et al. 2000, for wurtzite-like ZnO), and for Cr$_2$O$_3$, $K_0 = 240$ GPa, $K' = 3.5$, $V_0 = 289 \text{Å}^3$ (Rekhi et al. 2000), $\alpha_v = 21.6 \times 10^{-6} + 11.1 \times 10^{-8} / T - 0.29$ $/ T^2$ (Fei 1995). Unavailable dK/dT values for ZnCr$_2$O$_4$, ZnO and Cr$_2$O$_3$ have been replaced by those for MgAl$_2$O$_4$, MgO, and Al$_2$O$_3$, respectively (Anderson and Isaak 1995).

At room temperature, ZnCr$_2$-spinel is predicted to decompose into its oxides at about 18.3 GPa ($dP/dT = 0.014$ GPa/K), in contrast with Catti et al. (1999) who indicate 34 GPa. Wang et al. (2002) determined the pressure of the phase transition (P_1) of zincochromite to an orthorhombic phase at about 17.5 GPa and room temperature, at variance with our experiment giving hints of onset of a structure transformation above 23 GPa. Significantly different experimental conditions can explain the discrepancy between the P_1 of Wang et al. (2002) and ours (the absence of a pressure-transmitting medium leads to deviations from hydrostaticity and inhomogeneities of the stress field). In analogy with MgFe$_2$O$_4$ (Levy et al. 2004), ZnCr$_2$O$_4$ is expected to stabilize as a function of increasing P first as a spinel, then as oxides, and finally as an orthorhombic HP phase. Our failure in observing oxides and a fully defined HP phase, save above 30 GPa, is presumably due to sluggish transformations and want of peak resolution.

MANUSCRIPT RECEIVED JULY 1, 2004
MANUSCRIPT ACCEPTED NOVEMBER 24, 2004
MANUSCRIPT HANDLED BY JOHN AYERS