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INTRODUCTION

Uvarovite (Ca3Cr2Si3O12) garnets are only rarely found in 
metamorphic rocks, the most prominent locality of which is 
probably Outokumpu in Finland (Deer et al. 1992). Metamor-
phic uvarovites are commonly interpreted to have formed from 
Cr-rich spinels by metasomatic reaction, the exact nature of 
which is uncertain (Arai et al. 1999; Challis et al. 1995; Frankel 
1959; Franklin et al. 1992; Graham et al. 1996; Proenza et al. 
1999; Viswanathiah et al. 1979; Wan and Yeh 1984). However, 
as the Earthʼs mantle usually contains much more Cr than the 
Earth s̓ crust (Green and Falloon 1998; OʼNeill and Palme 1998), 
uvarovite is an important mineral end-member component of 
most mantle garnets.  

Given the importance of garnets in both metamorphic and 
magmatic systems, a large number of studies have investigated 
thermodynamic properties of garnets (among many others, 
Anovitz et al. 1993; Hensen et al. 1975; Newton et al. 1977; 
Wood 1988; Wood and Kleppa 1984). As calculations of phase 
equilibria in the Earthʼs mantle require reliable thermodynamic 
data for Cr-bearing minerals, the thermodynamic properties of 
Cr-bearing pyroxenes (Klemme and OʼNeill 2000), Cr-bearing 
spinels (Ehrenberg et al. 2002; Klemme and OʼNeill 1997; Kl-
emme et al. 2000; Klemme and van Miltenburg 2002), and knor-
ringite garnet (Mg3Cr2Si3O12) (Klemme 2004) were investigated 
in a series of previous studies. 

Most Cr-garnets such Mg3Cr2Si3O12 (knorringite) or 
Fe3Cr2Si3O12 are only stable at very high pressures (Doroshev 
et al. 1997; Girnis et al. 2003; Klemme 2004; Ringwood 1977; 
Turkin et al. 2002), and high-precision calorimetric data probably 
will never be available for these phases. Uvarovite, however, is 
stable at atmospheric pressure and, therefore, may be synthesized 
in large quantities relatively easily (Carda et al. 1989; Geller and 
Miller 1959; Glasser 1959; Hummel 1950; Isaacs 1963; Llusar et 
al. 1999a; Llusar et al. 1999b; Lowell et al. 1971). Despite this, 
little is known about the thermodynamics of uvarovite. A number 
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of studies have investigated the crystal structure, elasticity, and 
low-pressure stability of uvarovite (Andrut and Wildner 2001; 
Arnould et al. 1969; Bass 1986; Carda et al. 1994b; Geller and 
Miller 1959; Glasser 1959; Huckenholz and Knittel 1975, 1976; 
Isaacs 1963, 1965; Leger et al. 1990; Milman et al. 2001; Wild-
ner and Andrut 2001), but apart from a study that investigated 
the thermodynamics of mixtures along the join Ca3Cr2Si3O12-
Ca3Al2Si3O12 (Wood and Kleppa 1984; Mattioli and Bishop 
1984) there are, to our knowledge, no previous studies on the 
thermodynamic properties of end-member uvarovite garnet. To 
partially address these matters, the present study was initiated 
to determine the low-temperature heat capacity of uvarovite 
between 2 and 400 K.  

EXPERIMENTAL TECHNIQUES

Sample preparation and characterization
Heat-capacity measurements were performed on synthetic polycrystalline 

uvarovite samples. CaCO3 (purity 99.99%), Cr2O3 (purity 99.999%), and SiO2 
(purity 99.999%) were mixed stoichiometrically in an agate mortar under acetone. 
The mixture was then pressed into pellets (1.27 cm diameter) and sintered in a 
conventional gas-mixing vertical furnace at atmospheric pressure and 1250 °C for 
24 h using CO2 gas. The pellets were then quenched in the cold part of the furnace. 
The samples were subsequently reground, repressed, and reannealed under identi-
cal conditions for another 24 h before being quenched rapidly. X-ray diffraction 
(XRD) indicated mostly Ca3Cr2Si3O12. Only very little (≤5%) unreacted Cr2O3 was 
detected. Our synthetic uvarovite had a cell parameter of a0 = 12.021 ± 0.002 Å, 
which compares reasonably well with previous results for synthetic uvarovite (Carda 

et al. 1994a; Hummel 1950; Lowell et al. 1971; Milman et al. 2001). 

Low-temperature calorimetry
The heat capacity of uvarovite was measured between 20 and 400 K using 

adiabatic calorimetry. We used home-built adiabatic calorimeter (laboratory-des-
ignation CAL V), which has been described before (van Miltenburg et al. 1987, 
1998). Temperature was measured with a calibrated 27 ohm Rh/Fe thermometer 
(calibration by Oxford Instruments), using an automated AC bridge (Tinsley). The 
thermometer scale used was the ITS-90 scale (Preston-Thomas 1990). The sample 
(altogether 10.07 g) was broken into several grains of about 2 mm. A helium pres-
sure of 1000 Pa was established in the sample chamber to promote heat exchange. 
Measurements were made in the intermittent mode, and stabilization periods of 
about 500 s were used in between the heating periods. Below 30 K, the periods 
were on the order of 150 s. Every temperature interval was measured at least twice. 
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Below 30 K, the reproducibility of the adiabatic calorimeter is about one percent, 
between 30 and 100 K 0.05�0.1%, and above 100 K 0.03%. Checking the adiabatic 
calorimeter with standard materials (n-heptane and synthetic sapphire) showed no 
deviations larger than 0.2% from the recommended values. 

 Additional heat-capacity measurements at very low temperatures (2 < T < 40 
K) were done at ITU Karlsruhe using a commercial PPMS-9 instrument (Quantum 
Design). The measurements were done on a 2.3 mg sample thermally connected 
by grease (apiezon N). The two-tau relaxation method was used to determine the 
heat capacity with the PPMS software. General reliability of the heat-capacity 
measurements using the PPMS instrument is reported by Lashley et al. (2003). 
The accuracy of the apparatus installed at ITU Karlsruhe was veriÞ ed, e.g., with 
gold samples (NBS/NIST purity) (Javorsky et al. 2005). The uncertainty of the 
measurements reported in this paper (with respect to actual sample mass) is esti-
mated to be below 1%. 

RESULTS AND DISCUSSION

The experimental values for the low-temperature heat capac-
ity of uvarovite are compiled in Table 1 and results are depicted 
in Figure 1. The data Þ t a smooth and continuous curve at tem-
peratures above 20 K, whereas below 20 K, the data indicate a 
lambda transition that peaks at around 9 K. To our knowledge, 
this transition has not been reported before. The standard entropy 
at 298.15 K was calculated from the CP data (using a T3 extrapola-
tion to 0 K) and resulted in S0

298.15 = 320.9 ± 0.6 J/(mol·K). Table 
2 compiles selected thermodynamic properties for Ca3Cr2Si3O12. 
The latter were calculated from the experimental results using 
interpolations of the data for every degree. The interpolation 
procedure is such that interpolated data always pass through 
the experimental data. Then S(T) and H(T) are calculated by 
numerical integration. This procedure was compared to a direct 
integration of a Þ tted CP-curve and gives the same result within 
the expected uncertainties. Further work is clearly needed to 
investigate magnetic properties of uvarovite at low temperatures, 
which may help to shed some light on the aforementioned heat-
capacity anomaly. 

 Table 3 compares thermodynamic data for some Ca and Mg 
garnet end-members that are common components of garnets 
in the Earthʼs mantle. It is obvious that Cr-rich garnets have 
substantially higher entropy values when compared to their Al 
counterparts as the standard entropy depends on molar mass 
(Gopal 1966; Hemminger and Höhne 1979). Furthermore, as 
shown previously also for spinels (Klemme et al. 2000), magnetic 
transitions at low temperature can also contribute signiÞ cantly 
to the standard entropy. Figure 2 compares the low-temperature 
heat capacity of grossular (Haselton and Westrum 1980) to our 
new data for uvarovite. 

Although we have constrained the standard entropy of 
Ca3Cr2Si3O12 using low-temperature calorimetry, there is still a 

TABLE 1. Experimental data
T  CP T  CP T  CP T CP

K  J/(mol·K) K  J/(mol·K) K  J/(mol·K)  K  J/(mol·K)

1.99 1.07 12.20 5.03 75.44 68.61 198.79 259.45
2.23 1.44 12.49 4.63 77.32 71.77 201.61 262.75
2.45 1.83 12.84 4.23 79.2 75.11 204.42 265.99
2.66 2.26 13.19 3.91 81.09 78.43 207.21 269.13
2.86 2.72 13.53 3.64 82.99 81.71 209.98 272.30
3.08 3.24 13.87 3.40 84.88 85.01 212.73 275.30
3.28 3.78 14.21 3.18 86.78 88.31 215.46 278.40
3.49 4.26 14.55 3.01 88.67 91.64 218.18 281.31
3.69 4.73 14.89 2.86 90.58 95.08 220.88 284.19
3.90 5.28 15.23 2.72 92.48 98.43 223.56 286.95
4.11 5.83 15.73 2.68 94.39 101.76 226.23 289.79
4.31 6.30 16.24 2.43 96.3 105.23 228.89 292.63
4.52 6.84 16.75 2.36 98.22 108.58 231.53 295.23
4.72 7.48 17.25 2.30 100.14 111.90 234.15 297.81
4.93 8.15 17.76 2.27 102.06 115.86 236.76 300.50
5.15 8.52 18.26 2.26 103.98 118.96 239.36 303.14
5.35 9.03 18.77 2.24 105.91 122.42 241.95 305.50
5.55 9.65 19.28 2.42 107.84 126.14 244.52 308.06
5.76 9.94 19.78 2.53 109.77 129.37 247.09 310.52
5.96 10.89 20.30 2.61 111.70 132.65 249.64 313.00
6.16 11.35 20.82 2.64 113.64 135.89 252.18 315.42
6.38 11.95 21.5 3.13 115.58 139.09 254.71 316.69
6.57 12.44 23.14 3.69 117.36 141.97 257.23 319.22
6.77 12.98 25.04 4.58 120.23 145.83 259.75 321.46
6.98 13.68 27.02 5.61 123.11 151.74 262.25 323.86
7.18 14.42 29.04 6.62 125.99 156.59 264.74 326.14
7.39 15.03 32.63 9.51 128.88 161.34 267.23 328.41
7.59 15.72 34.73 11.04 131.77 165.98 269.7 330.79
7.82 16.68 36.55 12.86 134.67 170.64 272.16 332.88
8.00 17.29 38.22 14.06 137.56 175.28 274.61 335.04
8.20 18.23 39.86 15.99 140.47 179.8 277.05 337.16
8.41 19.10 41.53 17.65 143.37 184.31 279.49 339.34
8.61 19.96 43.2 19.65 146.28 188.73 281.92 341.4
8.82 20.86 44.88 21.58 149.19 193.2 284.34 343.43
9.02 21.39 46.58 23.8 152.11 197.49 286.75 345.65
9.23 21.61 48.29 26.03 155.03 201.79 289.15 347.81
9.43 21.30 50.02 28.37 157.95 205.95 291.54 349.94
9.64 19.71 51.77 30.79 160.88 210.16 293.93 352.05
9.84 17.56 53.52 33.25 163.8 214.19 296.31 354.4
10.04 15.76 55.29 35.86 166.73 218.23 298.68 356.29
10.25 13.03 57.08 38.56 169.66 222.32 301.04 358.4
10.41 10.86 58.87 41.22 172.59 226.42 303.4 360.93
10.60 9.49 60.68 44.11 175.52 230.28 305.75 362.91
10.80 8.54 62.49 47.04 178.45 234.16 308.1 361.68
10.99 7.78 64.32 49.92 181.39 237.99 310.45 360.91
11.19 7.13 66.15 52.92 184.32 241.67 312.79 361.42
11.39 6.58 67.99 55.96 187.26 245.39 315.14 362.41
11.59 6.11 69.85 59.07 190.17 249.09 317.48 363.26
11.79 5.71 71.71 62.15 193.07 252.58 319.82 364.26
11.99 5.37 73.57 65.35 195.94 255.54  

Note: CP data were collected using a PPMS (Quantum Design) from 2–20.8 K. All 
CP data at higher temperatures were collected with an adiabatic calorimeter (see 
text for details). Uncertainties at 2 K < T < 21 K are about 2%, whereas uncertain-
ties at higher temperatures are about 0.2%. 
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FIGURE 1. The heat capacity of polycrystalline Ca3Cr2Si3O12 
(Uvarovite) measured between 2 and 300 K. A sharp heat-capacity 
anomaly occurs at around 9 K, the nature of which is unknown. The insert 
shows an enlarged view of the low temperature part of the experimental 
data and the heat-capacity anomaly.
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lack of complementary thermodynamic data for Ca3Cr2Si3O12 as 
there are, to our knowledge, neither high-temperature heat-capac-
ity data nor high-temperature heat content data published in the 
literature. The determination of the latter remains an important 
task for experimentalists because uvarovite is an ubiquitous com-
ponent in garnets of the Earthʼs mantle. Ca- and Cr-rich rocks 
(and minerals) are common in the deep Earth, as indicated by 
xenoliths in kimberlites and inclusions in diamonds (e.g., Nixon 
1995; Stachel and Harris 1997; Stachel et al. 1998; Bulanova et 
al. 2004). To date, meaningful phase-equilibria calculations in 
realistic mantle compositions cannot be performed, as thermo-
dynamic data for many Cr- and Fe-rich minerals (such as garnets 
and spinels) are not as well understood as one would wish (e.g., 
Asimov et al. 1995; Klemme 2004).  
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