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INTRODUCTION

The iron sulfate FeOHSO4 was crystallized for the fi rst time 
by Maus (1827) but the chemical formula he proposed for this 
compound was shown to be incorrect. Posnjak and Merwin 
(1922) determined some of the crystallographic and optical 
features and studied the stability over a limited temperature 
range of 50 to 200 °C. Synthetic crystals suitable for single-
crystal X-ray analysis were obtained and structurally investigated 
by Johansson (1962). According to this author, the compound 
forms orthorhombic crystals with lattice parameters aJ = 7.331(5), 
bJ = 6.419(5), and cJ = 7.142(5) Å [aJ, bJ, and cJ are the lattice 
parameters measured by Johansson (1962) for the orthorhombic 
form], space group Pnma, and Z = 4. The structure contains two 
crystallographically independent iron atoms, each octahedrally 
coordinated by four oxygen atoms and two hydroxyl groups. The 
OH– groups are shared between two adjacent Fe-octahedra which 
are connected to each other to form chains, of {…Fe(OH)O2…}

composition, running parallel to a. The four octahedral O atoms 
are shared with sulfate tetrahedra. They provide connectivity 
between the Fe-chains to make up a three-dimensional network 
which is based on [Fe3+O4(OH)2]7– octahedra and [SO4]2– tet-
rahedra. Recently, FeOHSO4 has received a lot of attention 
because its thermal decomposition and hydrolysis products are 
important for industrial application such as pigments, catalysis, 
and magnetic materials. Several studies (Mahapatra et al. 1990; 
Pelovski et al. 1996 and references therein) have been carried 
out on the quoted compound with different techniques and 
methods (derivatographic, thermogravimetric, powder X-ray 
phase analysis, and Mössbauer spectroscopy) with the aim of 
acquiring a deep knowledge of its stability, synthesis in various 
gaseous environments, and fi nally to investigate its behavior in 
the dehydration processes.

The sample used for this study has been identifi ed as a high-
temperature phase derived from a metahohmannite compound 
during a synchrotron real-time powder diffraction experiment. 
In fact at about 100 °C hohmannite Fe2(H2O)4[O(SO4)2]·4H2O
transforms to metahohmannite Fe2
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ABSTRACT

The iron sulfate FeOHSO4 studied was obtained as a dehydration product of metahohmannite 
Fe2(H2O)4[O(SO4)2] during a synchrotron real-time powder diffraction experiment. As quoted in the 
literature, FeOHSO4 has iron atoms octahedrally coordinated with two hydroxyl groups and four sul-
fate O atoms, while each hydroxyl group is bonded to two iron atoms. This compound is commonly 
described in the orthorhombic system with space group Pnma, lattice parameters aJ = 7.33, bJ = 6.42, 
and cJ = 7.14 Å (aJ, bJ, and cJ are the Johansson lattice parameters), and Z = 4. However a preliminary 
Rietveld refi nement of the pattern at about 220 °C using the structural model from the literature yielded 
a poor fi t of the observed data and a fi nal Rp value of about 23%. A careful analysis of the calculated 
powder diffraction pattern showed unexpected peaks, not observed in the experimental trace, for h
= 2n + 1, while sharp refl ections for h = 2n seemed to point to different lattice constants and space 
group. The recognition of the order-disorder character of the FeOHSO4 compound was the key to 
successfully interpreting the unexpected features of the experimental powder pattern and the misfi t 
with respect to the calculated pattern. In fact, FeOHSO4 belongs to a family of OD structures formed 
by equivalent layers of symmetry Pbmm. Only two MDO (Maximum Degree of Order) polytypes are 
possible. MDO1 results from a regular alternation of stacking operators 21/2 and 2–1/2, and yields an 
orthorhombic structure with space group Pnma and lattice parameters aJ = 7.33, bJ = 6.42, and cJ = 
7.14 Å. MDO2 results from the 21/2|21/2 |21/2... sequence of symmetry operators and yields a monoclinic 
structure with space group P21/c, aM = 7.33, bM = 7.14, cM = 7.39 Å, and β = 119.7°.

The analysis of one-dimensional stacking disorder was performed by fi tting the observed XRPD 
pattern with a calculated intensity curve generated by DIFFaX. The disorder model was investigated 
by taking into account a probability matrix for the occurrence of OD layer sequences. The best fi t (Rp = 
0.009) to the observed powder pattern was obtained with a 61:39 ratio of monoclinic and orthorhombic 
polytypes for a fully disordered OD layers sequence.
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almost instantly all the interstitial water molecules (Césbron 
1964; Scordari et al. 2004). At higher temperature, about 190 
°C, the decomposition of metahohmannite begins, producing 
by solid-state reaction the ferric-hydroxysulfate compound 
studied here.

In situ synchrotron X-ray diffraction combined with Rietveld 
analysis is the best experimental tool for following in detail the 
temperature-induced solid-state transformation and for providing 
insight into the dehydration mechanisms and structural changes 
taking place upon heating.

The Rietveld refi nement of the pattern at 220 °C beginning 
with the structural model of Johansson (1962) was unsuccessful 
and suggested that the dehydration product of metahohmannite 
could present order-disorder (OD) character. Recognition of OD 
character, and the solution and refi nement of the disordered struc-
tures, is a consonant practice with single crystal X-ray diffraction 
techniques (Merlino 1990a, 1990b, 1997; Kampf et al. 2003). In 
the case of powder data, the reduced information content com-
pared to single-crystal analysis makes it rather complicated to 
model the structural disorder. Nevertheless, in the last few years 
the development of modeling methods makes it possible to deter-
mine both the nature and quantity of structural disorder in XRPD 
patterns. The diffraction effects in the case of planar disorder can 
be successfully treated using a recursion algorithm implemented 
in the program DIFFaX (Treacy et al. 1991) and the occurrence 
and model of disorder can be extracted from a high resolution 
X-ray powder pattern (Artioli et al. 1995; Gualtieri 1999; Muller 
et al. 1999; Viani et al. 2002). The program DIFFaX is based 
on a rigorous recursion method (Michalsky, 1988; Michalsky 
et al. 1988) for the generation of random stacking sequences 
modeling the presence of planar faults. The program allows the 
calculation of the incoherent sum of scattered intensities from 
a fi nite ensemble of layers stacked along a particular direction. 
A probability matrix for the occurrence of different layer se-
quences is taken into account, and the extensive planar disorder 
is described using a mathematical model (Hendricks and Teller 
1942; Wilson 1943; Allegra 1964; Kakinoki and Komura 1965; 
Kakinoki 1967). The details of the algorithm and the theoretical 
aspects are described in Treacy et al. (1991).

In this paper, using the OD approach (Dornberger-Schiff 
1964, 1966; Dornberger-Schiff and Fichtner 1972; urovi
1997; Merlino 1997; Ferraris et al. 2004), we describe the pe-
culiar features of the observed powder pattern in terms of the OD 
character of the structure, discuss the “superposition structure” 
of the OD family, and derive the possible MDO polytypes. It 
shows that they are only two: MDO1 (previously discussed by 
Johansson 1962) and MDO2, described here for the fi rst time. 
The proposed one-dimensional disorder model was evaluated 
by fi tting a calculated intensity curve, generated by DIFFaX, to 
the observed X-ray powder diffraction pattern. In addition, the 
powder patterns of the two polytypes were generated by DIFFaX 
and are presented here. 

EXPERIMENTAL METHODS

The investigated iron sulfate FeOHSO4 was obtained by heating metahohman-
nite during a phase-transformations study of a sample of hohmannite from Northern 
Chile. The crystal chemical formula assigned to both compounds according to struc-
tural results were Fe2(H2O)4[O(SO4)2] and Fe2(H2O)4[O(SO4)2]·4H2O respectively 
(Scordari 1978; Scordari et al. 2004). Intensities for the structure solution were 

collected during a synchrotron real-time powder diffraction experiment performed 
at the Italian beamline BM8 at ESFR (Grenoble, France). The BM8 beamline 
geometry is described in detail by Meneghini et al. (2001). The capillary (0.5 mm 
diameter) sample was mounted on a standard goniometer head and kept spinning 
during the data collection in parallel-beam Debye geometry. A monochromatized 
fi xed wavelength of 0.68881 Å was employed and calibrated with FIT2D (Hammer-
sley 1998) against an Si standard NBS-640b with a = 5.43094(4) Å at 298 K.

Temperature-resolved experiments were performed by continuous heating 
of the sample in the range 20–800 °C using a heating gun. The temperature was 
monitored with a thermocouple positioned about half a millimeter below the capil-
lary. Two dimensional diffraction circles were recorded with an imaging-plate (IP) 
detector (Amemija 1990) mounted perpendicular to the incoming beam at a distance 
of 257 mm. The IP detector was mounted on a translating system (TIPS: Norby 
1996; Meneghini et al. 2001) behind a steel screen with a vertical 3 mm slit and the 
heating rate of the experiment was synchronized with the speed of the translating 
system. The image stored in the IP was recovered using a Molecular Dynamics 
scanner with a dynamical range of 16 bit/pixel and a minimum pixel size of 50 ×
50 μm2 (Fig. 1a). Slices of intensity representing a specifi ed temperature range, 
encompassing about 11 K each, were extracted from the stored digitalized fi le using 
a specially developed program SCANTIME for the extraction of powder patterns 
(see the 3-dimensional 2θ-intensity-temperature pattern in Fig. 1b).

STRUCTURE REFINEMENT

The present study is part of a general project on phase 
transformations involving iron hydrated sulfates formed by 
temperature-induced dehydration reactions, using in situ time-
resolved synchrotron powder diffraction. Scordari et al. (2004) 
studied the phase transition hohmannite → metahohmannite and 
solved the crystal structure of the latter by profi le deconvolution 
and the application of standard Patterson and difference Fourier 

FIGURE 1. The image obtained from the IP (a) and the three-
dimensional plot (2θ-intensity-temperature) extracted by integration in 
the direction normal to the IP translation (b). The 7–15.5 °2θ region is 
reported in the temperature range 120–240 °C.
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maps. This work is focused on the structural response of me-
tahohmannite to a temperature-induced transition, particularly 
the structural details of the new phase that originates from it. 
Hohmannite, Fe2(H2O)4[O(SO4)2]·4H2O, and metahohmannite, 
Fe2(H2O)4[O(SO4)2], are based on the same centrosymmetric 
chain with (Fe4(H2O)8[O2(SO4)4]) composition. Thus, they dif-
fer only for the water content and consequently for the hydrogen 
bond system of their structure.

Our synchrotron X-ray diffraction data showed that at about 
190 °C the overall intensity of the metahohmannite diffraction 
pattern started to decrease, suggesting that some metahohmannite 
was decomposing. The decline in overall peak intensities with 
growing temperature continued up to the disruption of this com-
pound, which occurred at about 210 °C. At higher temperature 
a new phase became visible (∼220 °C) that remained stable up 
to at least 290 °C, where the fi rst FeSO4 diffraction peaks ap-
peared. To sum up, the reaction sequence obtained from thermal 
decomposition of hohmannite in the range 20-290 °C, is:

 hohmannite  → metahohmannite →
 (Fe2(H2O)4[O(SO4)2]·4H2O)  (Fe2(H2O)4[O(SO4)2])

 amorphous phase → synthetic phase 
 (Fe - H2O - SO4)  (FeOHSO4)

These solid-state transformations are easily explained if the 
structure of the quoted compounds is taken into account. Dur-
ing the transformation hohmannite → metahohmannite, only the 
structural water is involved in the reaction (4 H2O, lost/regained). 
Therefore, in the presence of water, this reaction is simple and re-
versible. As a consequence, the backbone of the structure, i.e., the 
(Fe2(H2O)4[O(SO4)2]) chain, should be topologically unchanged 
in both the hohmannite and metahohmannite structures. The next 
reaction, metahohmannite → FeOHSO4, is quite different. In fact, 
metahohmannite should lose three water molecules directly coor-
dinated by Fe3+ cations to form the more stable compound. This 
triggers the breakdown of the (Fe2(H2O)4[O(SO4)2]) chains and 
the consequent formation of an intermediate amorphous phase 
from which the FeOHSO4 compound later forms. The fi rst re-
action (hohmannite to metahohmannite) is certainly topotactic 
whereas the formation of FeOHSO4 is a typical nucleation and 
growth reaction process.

Theses observations seem to be consistent with the results of 
the differential thermal analysis (DTA) of hohmannite samples 
performed by Césbron (1964). According to this author one sharp 
and one large peak are visible at about 120 and 240 °C, in keeping 
with the hohmannite → metahohmannite and metahohmannite 
→ FeOHSO4 transformation temperatures observed here. In ad-
dition, the FeOHSO4 structure is completely destroyed at about 
500 °C, in agreement with the stability studies carried out by 
Pelovski et al. (1996).

A full-profi le Rietveld refi nement of the FeOHSO4 material 
formed during the heating experiment was performed with GSAS 
(Larson and Von Dreele 2000). The starting lattice and atomic 
parameters for the 220 °C pattern refi nement were taken from 
Johansson (1962). The refi nement parameters included the scale 
factor and 14 background terms in a Chebyshev polynomial 
function. Peak profi les were modeled using a pseudo-Voigt 

function with three Gaussian and two Lorentzian line-broad-
ening terms. During refi nement of the atomic positions in the 
space group Pnma, soft constrains to the S-O and Fe-O distances 
were applied, and the weighting factor was gradually reduced in 
successive cycles. Unfortunately, the refi nement did not yield 
an Rp value below 22.8%. Thereafter we carefully analyzed the 
features of the powder diffraction pattern and we observed that 
the experimental powder pattern was quite different from that 
calculated (Fig. 2) using the parameters and atomic positions 
given by Johansson (1962).

In particular we noticed:
(1) unexpected absences for refl ections with h = 2n + 1, 

indicated by stars in the powder pattern; and
(2) indexing of the pattern using the program Treor99 (Werner 

et al. 1985) indicated an orthorhombic cell with lattice parameters 
a'J = 3.6677(1), b'J = 6.4176(1), and c'J = 7.1590(2) Å. Moreover, 
taking into account these lattice parameters, systematic absences 
were observed corresponding to a body centered cell and point-
ing to the space group Immm (see Table 1). On the contrary, if 
Johansson lattice parameters are used, some calculated powder 
pattern peaks are not seen in the experimental pattern (marked 
by stars in Table 2).

In addition, forewarning about the OD character of the 
FeOHSO4 structure also arises from the existence in the 1995 
edition of Powder Diffraction File (PDF) of more than one data 
set concerning the quoted compound with lines corresponding to 
the same observed d values, but with some relative intensities in 
disagreement with our observed pattern (Fichtner 1979).

TABLE 1.  Powder pattern indexed with a’J, b’J, and c’J parameters in 
the range 7–20°(2θ)

h k l d (Å) Irel

0 1 1 4.774 24.6
0 0 2 3.570 26.9
1 0 1 3.261 100
0 2 0 3.210 72.1
1 1 0 3.183 < 1
0 2 2 2.387 < 1
1 1 2 2.376 3.8
1 2 1 2.288 13.4
0 1 3 2.232 13.8
0 3 1 2.050 13.6
1 0 3 1.996 13.1

TABLE 2.  Powder pattern indexed with aJ, bJ, and cJ parameters in 
the range 7–20 °2θ 

h k l d (Å) Irel

1 0 1 5.115 16.1*
0 1 1 4.770 19.2
1 1 1 3.998 16.4*
0 0 2 3.570 28.7
2 0 1 3.261 100
0 2 0 3.210 78.7
2 1 0 3.182 12.8
1 1 2 2.870 18.4*
1 2 1 2.716 4.9*
0 2 2 2.385 2.2
2 1 2 2.375 3.2
3 0 1 2.312 1.4*
2 2 1 2.286 14.4
1 2 2 2.268 9.6
0 1 3 2.231 14.8
3 1 1 2.175 1.1*
0 3 1 2.047 11.9
2 0 3 1.996 12.7
3 1 2 1.923 2.7*

* Refl ections with h = 2n + 1 not present in the experimental pattern.
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These facts confi rmed the hypothesis that order-disorder phe-
nomena were active in the structure of the examined compound. 
As discussed in the next section, in the light of the OD theory 
the observed powder pattern is the product of a “superposition 
structure” which arises from the OD character of the compound. 
Although the reliability is only indicative, the application of 
direct methods (Altomare et al. 1999) using space group Immm
resulted in a fi ctitious structure (RF = 13.3%) in agreement with 
the OD theory. A new Rietveld refi nement was successfully 
performed with the same criteria discussed above for the last 
structural model. The best fi t with Rp = 4.77% was obtained for 
the pattern at 220 °C.

Details of the data collection and structure refi nement are 
included in Table 3. The fi nal fractional coordinates and equiva-
lent isotropic displacement parameters for the “superposition 
structure” are reported in Table 4, while the interatomic distances 
are shown in Table 5. The fi nal observed, calculated, and dif-
ference powder diffraction patterns resulting from the Rietveld 
refi nement are plotted in Figure 3.

OD CHARACTER OF FEOHSO4

In this section we show that all the quoted pattern features 
may be easily explained in terms of OD theory. Let us consider 
the unit cell of FeOHSO4 determined by Johansson (1962) seen 
along cJ in Figure 4a. To give a more complete representation 
of the structure projected along bJ more unit cells need to be 
considered (Fig. 4b). From inspection of Figure 4b it is easy to 
see that two different ways of connecting adjacent neighboring 
layers are possible. The fi rst is shown in Figure 4b. The second 
can be obtained by shifting the upper layer by a/2 with respect 
to that immediately below. Combinations of the two stacking 
sequences make it possible to obtain a family of structures with 
variable degree of order, and then a family of OD structures.

For a clear and complete description of an OD family, the 
metrics and symmetry of the OD layer (λ-operations) as well 
as the operators which bring a layer into coincidence with an 
adjacent layer (σ-operations) should be considered. These opera-
tions are called partial operations (POs) in the OD terminology, 
since they are not necessarily valid for the whole structure. The 
symbols for these operators are in keeping with the symbols used 
in normal space groups. 

To obtain an OD groupoid family symbol consistent with 
that indicated in the basic compilation of Dornberger-Schiff and 
Fichtner (1972), the aJ, bJ, and cJ axes of the single layer must 
be interchanged with respect to those assumed by Johansson 
(1962). With this interchange the basic OD layer in FeOHSO4

seen along a has translation periods a (cJ) and b (aJ), and width 
c0, one half of the bJ translation of the orthorhombic cell and 
symmetry defi ned by the layer group Pbmm (see Fig. 5).

The OD-groupoid symbol is the following:

P   b      m     (m)
  {2r/ns–1,2 2s–1/n2, r (22/nr, s)}

The fi rst and the second lines of the groupoid symbol indicate 
the λ- and σ-POs respectively, and the round brackets indicate 
the direction of missing periodicity. For the present case r = 1 
and s = 1/2. 

FIGURE 2. Comparison between the diffraction pattern calculated 
from the data of Johansson (1962) and our experimental data. The stars 
indicate the unobserved refl ections.

TABLE 3. Crystal data and Rietveld refi nement parameters at T = 220 °C
Formula sum Fe4S8O24H4

Formula weight 675.67
Crystal system orthorhombic
Space group Immm
Unit cell dimensions a = 3.668(1) Å
 b = 6.418(1) Å
 c = 7.159(1) Å
Cell volume 168.51(1) Å3

 
Rwp(%) = 6.18 
Rp(%) = 4.77     
Reduced χ2 = 190.6 R(F2)(%) = 6.44

TABLE 4. Atomic coordinates and isotropic displacement parameters 
(in Å2)

Atom Wyckoff  x y z Uiso

Fe 2e 0.000 0.000 0.000 0.013(3)
S 4j 0.000 0.500) 0.881(1) 0.028(4)
O1 4g 0.000 0.683(1) 0.000 0.023(4)
O2 8m 0.170(1) 0.000 0.264(1) 0.023(4)
O4 4j 0.000 0.500 0.401(1) 0.023(4)

TABLE 5. Selected geometric parameters (Å)
Fe-O1 2.035 (3) S-O1 1.451(2)
Fe-O2 1.993 (3) S-O2 1.473 (4) 
Fe-O4 1.970 (2) 

FIGURE 3. Rietveld refi nement results for the FeOHSO4 compound. 
The crosses represent the observed data points, and the smooth line 
through them the calculated pattern. The different pattern is plotted at 
the same scale as the other patterns. The row of tick marks indicates the 
calculated refl ection positions.
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With the new cell setting, layers can be stacked along c
according to either of the two stacking operators 2+1/2 and 
2–1/2 parallel to b. Pairs of layers related by either of the two 
operations are geometrically equivalent. Different sequences of 
operators 2+1/2 and 2–1/2 give rise to different structures, actually 
an infi nite number of polytypes, as well as disordered structures, 
corresponding to ordered or disordered sequences of 2+1/2 and 
2–1/2 operators. The symmetry of each possible polytype may be 
derived from the symmetry properties of the family embodied 
in the OD-groupoid family symbol. Among all possible ordered 
stacking sequences, there are two in which not only couples, but 
also triples (quadruples,…,n-ples) of adjacent layers are geo-
metrically equivalent. These are the so-called MDO (Maximum 
Degree of Order) structures. Focusing on the layer shown in 
Figure 5, we have only two possible MDO polytypes: (1) MDO1 
(Fig. 6) results from a regular alternation of 2+1/2 and 2–1/2 stacking 
operators. In this case an orthorhombic structure is obtained with 
lattice parameters aJ = 7.331(5), bJ = 6.419(5), and cJ = 7.142(5) 
Å and space group Pnma (the compound studied by Johansson 
1962); (2) MDO2 (Fig. 7) results if 2–1/2 is invariably followed 
by 2–1/2; in this case a monoclinic (M) structure is obtained with 
lattice parameters aM = 7.33, bM = 7.14, and cM = 7.39 Å, β = 
119.7° and space group P21/c. Calculated atomic coordinates 

are given in Table 6. It seems proper to recall that the structure 
obtained when 2+1/2 is constantly followed by 2+1/2 is no different 
from the preceding one and corresponds to its (001) twin. 

We know that various disordered and ordered structures 
display powder diffraction patterns with common refl ections, 
“family refl ections”, which are always sharp and have the same 
positions and intensities in all the OD structures of the family. 
The family refl ections arise from a fi ctitious structure, periodic 
in three dimensions, closely related to the structures of the family 
and called the “family structure” or “superposition structure”.

It seems useful to observe that in FeOHSO4 layers related by 
2+1/2 and 2–1/2 operators are translationally equivalent and related 
by the stacking vectors t1 = a/2 + b/4 + c/2 and t2 = a/2 – b/4 + 
c/2, respectively. Therefore in general adjacent layers may be 
described as being related by vectors

FIGURE 4. The crystal structure of FeOHSO4, studied by Johansson 
(1962) projected along c (a) and b (b).

FIGURE 5. Projection along a of the single layer characteristic of all 
FeOHSO4 crystals belonging to the OD family.

FIGURE 6. Projection along a of the MDO1 structure showing the 
σ-POs and the orthorhombic unit cell.

FIGURE 7. Projection along a of the MDO2 structure showing the 
σ-POs and the monoclinic unit cell.
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tp = a/2 ± b/4 + c/2  (1)

By using Equation 1 and following the procedures described 
in Merlino (1990a, 1997) the Fourier transform of the structure 
is

F(hkl) = S(hkl)F0(hkl) with F0(hkl) the Fourier transform of 
the L0 layer and 

S(hkl) = exp{ [ ]}2 2 4 2 2i ph k l
p

k

p

+ +( ) +m  (2)

with mp and p as integers.

For k = 2n Equation 2 becomes

S(hkl) = exp{ }2 2 2
4i ph k l

p

+ +( )( )   (3)

With many layers (p) this expression vanishes except for 

2h + k + 2l = 4n  (4)

These refl ections correspond to a reciprocal lattice with vectors A*

B* and C* which are related to the basic vectors a* b* c* as follows: 

A* = a*, B* = 2b*, C* = c* (5)

Therefore, for these refl ections Equation 4 becomes: h + k + 
l = 2n, which points to an I lattice.

Assuming two basis vectors of the family structure collinear 
with the translation vectors a and b of the single layer, the vectors 
A B C of the family structure are such that: a = tA, b = qB, and 
C = pc0, where q, t, and p are integers.

From Equation 5 we obtain a = A and b = 2B; therefore q
= 2 and t = 1. 

The number of layers, p, for each C translation of the “fam-
ily structure” may be obtained as the product of three factors 
p = p1p2p3 (Dornberger-Schiff and Fichtner 1972), where p1
depends on the category of the OD structure, p2 depends on the 
isogonality relationships of operations in the OD-groupoid fam-
ily symbol, and p3 depends on the Bravais lattice of the family 
structure ( urovi  1997; Ferraris et al. 2004). In the case under 
study we have category I (p1 = 1), isogonality (p2 = 1), and I
centering (p3 = 2). As a consequence p = 2.

Therefore the symmetry operations of the family structure 
may be obtained from the POs presented in the OD groupoid 
symbol of the family 

P   2/b 21/m     (2/m)
{21/n1/2 2–1/2/n2, 1 (22/n1, 1/2)}

by doubling the translational components which refer to b and divide 
by two the translational components which refer to c. The symmetry 
operations thus obtained exactly correspond to those of space group 
Immm. It is therefore confi rmed that the family structure has Immm
symmetry with a = 7.142, b = 3.66, and c = 6.419 Å.

Order-disorder model

According to the conclusions from the application of the OD 
theory, FeOHSO4 belongs to a family of OD structures made up 
of equivalent layers. Regular sequences of stacking vectors be-
tween layers yield ordered structures, and, in particular, only two 
MDO polytypes: orthorhombic MDO1 and monoclinic MDO2. 
Disordered sequences of stacking vectors yield one-dimension-
ally disordered structures. The program DIFFaX was applied to 
simulate the XRPD patterns of these two polytypes. Because the 
program requires that c be parallel to the stacking direction, the 
unit layer and the same axes setting applied in the OD section 
were used. If domains of MDO1 polytype are present, they are 
characterized by a regular alternation of stacking vectors t1 =a/2
+ b/4 + c/2 and t2 = a/2 – b/4 + c/2, while the MDO2 polytype 
domains are characterized by a regular sequence of stacking vec-
tor t1 (or t2)and t1 and t2 for the (001) twinned case. However, the 
coexistence of domains of both polytypes would cause, besides 
the “family refl ections,” weak and diffuse refl ections that are not 
observed in the experimental powder pattern (see Figs. 2–3).

We employed a pseudo-Voigt function to describe the intensity 
distribution of the Bragg peaks due to instrumental and sample 
effects. A cross-check of the consistency of the simulated powder 
patterns was performed by comparing the diffraction profi le from 
DIFFaX with other programs (GSAS) showing that the two patterns 
(Figs. 8–9) were in excellent agreement. It seems proper to remark 
that the powder pattern of the two polytypes exhibit close analogies 
(“family refl ections”), as well as signifi cant differences.

From the comparison of the experimental and simulated pat-
terns it is clear that the observed refl ections correspond to “family 
refl ections,” and refl ections characteristic of the two individual 
polytypes are missing. This rules out the existence of coherent 
diffracting domains of individual polytypes and points to a ran-
dom sequence of the polytypes indicative of an extensive stacking 
disorder in the structure. Such a random sequence can only be 
simulated using DIFFaX which takes advantage of the recursive 
method. The matrix method implemented in the program DIFFaX 
was applied to calculate the intensity distribution in powder X-ray 
diffraction patterns of FeOHSO4, taking into account a probability 
matrix for the occurrence of different layer sequences. 

The full description of disorder in each simulation implies a 
square probability matrix of order n (with n equal to the number of 
crystallographically distinct layers), where each element aij refers 
to the probability of stacking layer j over layer i in the sequence. 
A disorder model of Reichweite R = 1 was handled by using four 
different layers. The term Reichweite was introduce by Jagodzinski 
(1949a, 1949b, 1949c) and defi nes the range of interaction between 
the arrangement of neighboring layers. In this simple case, only next-
nearest interactions are considered. Layer 1 and 3 are characterized 
by a b/2 translation, and layers 2 and 4 by a –b/2 translation. By 
gauging the matrix elements, we can control the interaction prob-
ability between any two layers in the structure, and at the same time 
evaluate the volume ratio of orthorhombic to monoclinic domains. 

TABLE 6. Atomic coordinates of the MDO2 polytype*
Atom Wyckoff  x y z

Fe1 2a 0.000 0.000 0.000
Fe2 2b 0.5 0.5 0.5
S 4e 0.25 0.616 0.0
O1 4e 0.3415 0.5 0.183
O2 4e 0.916 0.270 0.0
O3 4e 0.584 0.270 0.0
O4 4e 0.25 0.100 0.0
O5 4e 0.8415 0.0 0.683

* The  symmetry and the cell parameters of the MDO2 polytype are: space group 
P21/c , aM = 7.33, bM = 7.14, and cM = 7.39 Å, and β = 119.7°.
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Therefore, as shown in Figure 10, α11 andα44represent the probabil-
ity of occurrence of monoclinic domains characterized by a stack-
ing sequence of vectors t1 and t2 respectively, whereas α23 ( = α32)
represents the probability of occurrence of orthorhombic domains 
characterized by regular stacking alternation of vectors t1 and t2.

We interpret the statistical probability indicated by α12 ( = 
α43) and α24 ( = α31) matrix elements to be related to the crystallo-
chemical probability of faulting in the monoclinic (orthorhombic) 
domains. The stacking transitions α13, α14, α21, α22, α33, α34, α41,
and α42 cannot occur by defi nition. 

When the faulting is random the stacking transition prob-
abilities follow the relations:

α = α11= α44 = α24 = α31= 1 – α12 = 1 – α23 = 1 – α32 = 1 – α43.

A fully ordered orthorombic structure is obtained for α = 0.00. 
With increasing probability α the volume fraction of monoclinic 
layer sequences increases (Fig. 11). The calculated patterns were 
compared to the observed one. The background was manually 
removed, the zero-shift corrected, and the scale factor was varied 
to obtain the best fi t. The best fi t to the observed powder pattern 
was obtained with α = 0.61 (Fig. 12) with the fi nal agreement 
(Rp = 0.009) evaluated using the factor: 

Rp = {Σ[yi(obs) – yi(calc)]2} / Σ[yi(obs)]2

The monoclinic form seems to be slightly favored although 
the close similarity of the stacking sequence of the two different 
polytypes should indicate a nearly identical activation energy for 
their formation. Although it is not possible here to ascertain if 
a different polytypic sequence could be obtained using differ-
ent kinetic conditions, the formation of an OD structure instead 
of a single polytype opens a debate on the stability of the OD 
structure. Is the existence of an OD character simply a kinetic 
effect due to the fast heating rate of the experiment (that is, the 
OD structure is actually a metastable phase and the precursor of 
a stable polytype), or is the OD-structure a stable phase?

There is clear evidence to support the latter statement. First 
of all, looking at the sequence of powder patterns with increasing 
temperature, the peaks of the OD structure are nearly unchanged 
up to about 500 °C, where, in concert with the stability studies 
carried out by Pelovski et al. (1996), the structure is destroyed. The 
fact that no transitions or transformations are observed in such a 
large temperature interval is a good indication that the OD phase 
is stable. In addition, the existence of an OD structure instead of 
a single polytype was evident to Johansson (1962) who reported 
the same order of problems during the crystal structure solution 
of two Fe3+ and In3+ sulfates. As a matter of fact, Johansson found 
that the R(Fo) factor was worse (from 7–8% to about 11–13%) 
when refl ections with h odd were included in the refi nement. He 
also reported that “diffi culties were encountered in fi nding good 
single crystals of the corresponding indium compound. The spots 
on the Weissenberg fi lms were often extended and diffuse (typical
of a disordered sequence) and showed very weak refl ections hk0 
for h odd.” This shows that both the compounds synthesized by 
Johansson were affected by stacking disorder and likely displayed 
an OD-structure despite the very different kinetic conditions of 
crystallization. In fact, it is important to remark that the condi-
tions of synthesis reported by Johansson (1962), a Fe2O3 + SO3

FIGURE 8. Simulated powder patterns of the MDO1 structure of 
FeOHSO4 calculated with (a) DIFFaX and (b) GSAS.

FIGURE 9. Simulated powder patterns of the MDO2 structure of 
FeOHSO4 calculated with (a) DIFFaX and (b) GSAS.

FIGURE 10. Diagram illustrating the transition rules implemented 
in DIFFaX.

FIGURE 11. Montage of powder X-ray diffraction patterns calculated 
as a function of the probability of monoclinic stacking. Instrumental 
peak broadening was simulated using a pseudo-Voigt function. The step 
size was 0.01 °2θ.
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rich solution heated at 200 °C for a month, a period long enough 
to indicate that equilibrium—or close to equilibrium—condi-
tions should have been obtained, are very different from the 
ones reported here, again indicating that the formation of the 
OD-structure is not simply determined by the reaction kinetics. 
Thus, if we rule out a kinetic factor for the formation of this OD 
structure, it is reasonable to state that for both structural and en-
ergetic reasons, the OD structure is stable and that the monoclinic 
and the orthorhombic polytypes can occur simultaneously, leading 
to a structure with stacking disorder.
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FIGURE 12. Comparison of calculated XRPD pattern (solid lines) 
with the observed one (crosses). The fi t is best (Rp = 0.009) for α =
0.61. Instrumental peak broadening was simulated using a pseudo-Voigt 
function. The step size was 0.01 °2θ.


