Site preference and local geometry of Sc in garnets: Part II. The crystal-chemistry of octahedral Sc in the andradite–Ca₃Sc₂Si₃O₁₂ join

SIMONA QUARTIERI,1,* ROBERTA OBERTI,2 MASSIMO BOIOCCHI,3 MARIA CHIARA DALCONI,1,† FEDERICO BOSCHERINI,4 OLGA SAFONOVA,5 AND ALAN B. WOODLAND6

1Dipartimento di Scienze della Terra, Università di Messina, Salita Sperone 31, I-98166 Messina S. Agata, Italy
2CNR, Istituto di GeoScienze e Georisorse, Unità di Pavia, via Ferrata 1, I-27100 Pavia, Italy
3Centro Grandi Strumenti, Università di Pavia, via Bassi 21, I-27100 Pavia, Italy
4Dipartimento di Fisica and CNISM, Università di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna, Italy
5European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France
6Institut für Mineralogie, Universität Frankfurt, Senckenberganlage 30, D-60054 Frankfurt, Germany

ABSTRACT

Investigation of scandium incorporation in garnets along the synthetic Ca₃Fe²⁺Si₃O₁₂–Ca₃ScSi₃O₁₂ (adr–CaSc) join, based on the same multi-technique approach used in the companion paper (Oberti et al. 2006a), shows that (1) Sc is incorporated exclusively at the Y octahedron; (2) the local coordination of Sc is slightly different in Sc-poor than in Sc-rich compositions (Sc–O = 2.06 Å in CaSc₁₀ vs. 2.10 Å in CaSc₉₀); (3) the local coordination of Ca is also slightly different in Sc-poor than in Sc-rich compositions [Ca₁₂-O are 2.34(2) and 2.48(2) Å in CaSc₁₀ and 2.36(2) and 2.50(2) Å in CaSc₉₀, with Δ fixed at 0.14 Å in all the samples]; (4) the linear increase of the unit-cell edge along the join derives from multiple changes in the geometry of the different polyhedra and from the rotation of the tetrahedron around the 4 axis (α rotation), and cannot be modeled from extrapolation of the behavior observed along the Ca₃Al₃Si₃O₁₂–Ca₃Fe³⁺Si₃O₁₂ (grs–adr) join.

Ca₃Sc-rich garnets, where a large X dodecahedron coexists with a large Y octahedron and a Z tetrahedron occupied by Si, similar to pyrope-grossular garnets, have the highest α values observed to date in calcium silicate garnets. Slightly lower α values are observed in pyrope and almandine, but correspond to a different structural arrangement, where a small X dodecahedron coexists with a small Y octahedron. These results further confirm the efficiency of a combined short- and long-range approach for understanding the properties of garnet solid solutions.

Keywords: Crystal structure, garnet, XAS, XRD data, trace elements and REE, scandium, crystal synthesis

INTRODUCTION

Investigation of Sc incorporation and partitioning in pyrope–grossular (prp–grs) garnet solid solutions has revealed variable crystal-chemical behavior. Oberti et al. (2006a) found that Sc enters the dodecahedral X site in the very compact structure of pyrope, but partitions itself among all the available structural sites when the presence of Ca allows local relaxation. Notably, Sc incorporation at the octahedral Y site never exceeds 0.20 atoms per formula unit (apfu) in the prp–grs join. This contrasts with the nearly ideal volumes of mixing found by Woodland and Angel (1996a, 1996b) along the (synthetic) Ca₃Fe₂⁺Si₃O₁₂–Ca₃Fe³⁺Si₃O₁₂ (adr–CaSc) join. In these binary compositions, electron microprobe and X-ray powder diffraction analyses indicated that Sc regularly substitutes for Fe³⁺ at the Y site.

The samples investigated by Woodland and Angel (1996a, 1996b) were therefore examined by single-crystal structure refinement (SREF) and X-ray absorption spectroscopy (XAS) to obtain a complete long- and short-range characterization of the Sc Fe³⁺ exchange in garnets, and to detect possible structural constraints that may limit Sc incorporation in garnet compositions that possess more compact structures.

EXPERIMENTAL DETAILS

Synthesis

End-member Ca₃Sc₂Si₃O₁₂ garnet was synthesized from a stoichiometric mixture of high purity oxides in air at 1 bar and 1000 °C using a K₂O–B₂O₃ (45 wt% K₂O) flux. The oxide mixture was combined with the flux in a 75:25 ratio. The sample crucible was quenched in water in a way to avoid direct water contact with the sample. The result was a mass of small equant colorless crystals that were separated from the flux by soaking in nitric acid.

Binary Ca₃Fe₂⁺Si₃O₁₂–Ca₃Sc₂Si₃O₁₂ solid solutions were produced in a piston-cylinder apparatus at the Bayerisches Geoinstitut, Germany using stoichiometric mixtures of CaSiO₃, Fe₂O₃, and Sc₂O₃. The CaSiO₃ was pre-synthesized by sintering an equimolar mixture of CaCO₃ and SiO₂ at 1 bar and 1200 °C for 12 h. The syntheses were performed without any flux at 2.0 GPa and 1000 °C, using silver capsules and tuc-pyrex pressure cells. Details of the pressure calibration are given in Woodland and O’Neill (1995). The duration of the experiments was approximately 24 h.

Electron microprobe and Mössbauer analysis

Chemical compositions were determined using a Cameca SX-50 electron microprobe (EMP) at the Mineralogisches Institut, Universität Heidelberg, Germany.
Operating conditions were 15 kV and 20 mA in wavelength dispersive mode, using various synthetic and natural standards and counting for 20 or 30 s each on the peak and background (PAP correction procedure by Pouchou and Pichoir 1985).

Sample compositions are presented in Table 1. For the end-member Ca$_3$Sc$_2$Si$_3$O$_12$ garnet, which was synthesized in the K$_2$O-B$_2$O$_3$ flux, peak searches and wavelength scans failed to detect any B and K, thus confirming the nominal composition.

All solid solutions were analyzed by Mössbauer spectroscopy to verify the valence and coordination of the Fe present. The samples were finely ground and mounted on thin plastic film using polyvinyl alcohol. Spectra were obtained at the Bayerisches Geoinstitut at room temperature, in transmission mode on a constant acceleration Mössbauer spectrometer with a nominal 50 mCi 57Co source in a 6 µm Rh matrix. The velocity scale was calibrated relative to 25 µm thick α-Fe at room temperature using the positions certified by NIST. Mirror image spectra were collected over 512 channels with a velocity range of ±5 mm/s. The spectra were folded and fit with the NORMOS software package (distributed by Wissenschaftliche Elektronik GmbH, Germany).

Mössbauer spectra generally exhibited a single doublet with hyperfine parameters consistent with Fe$^{3+}$ in octahedral coordination (Fig. 1, and see Amthauer et al. 1976; Woodland and Ross 1994). The hyperfine parameters and peak widths remain constant across the join, indicating that the chemical environment of Fe$^{3+}$ is essentially unaffected by the progressive substitution of Sc (Table 2). This behavior is similar to that observed for the octahedrally coordinated Fe$^{3+}$ in Fe$^{3+}$Al$_2$Si$_2$O$_6$–Fe$^{3+}$Si$_2$O$_5$ garnets, and supports the notion that the neighboring octahedra in the garnet structure are too distant from each other for significant electronic interactions to occur between these sites (Woodland and Ross 1994). In three samples, Mössbauer spectra revealed an additional, very small doublet corresponding to Fe$^{2+}$ on the dodecahedral sites (e.g., Fig. 1). This implies that these garnets contain traces of Fe$^{2+}$SiO$_4$ or “skiagite” component so that they deviate slightly from true Ca$_3$Fe$_2$Si$_3$O$_12$–Ca$_3$Sc$_2$Si$_3$O$_12$ binary compositions. However, the derived skiagite contents amount to no more than 1.5 mol% (Table 1) and, for such small quantities, we can reliably make a linear correction to the unit-cell parameter to compensate for this minor component.

X-ray analysis and structure refinement

X-ray powder diffraction (XRPD) patterns in the range of 30 to 120° 2θ were recorded for all samples on a Stoe STADI-P diffractometer equipped with a Co X-ray source, a monochromator aligned to yield Co Kα radiation, and a small-aperture linear PSD. Si metal was used as an internal standard. Unit-cell parameters were determined with the Rietveld whole-pattern method using the EXPGUI-GSAS software package (Toby 2001; Larson and Von Dreele 1997).

The measured cell parameter of Ca$_3$Sc$_2$Si$_3$O$_12$ [$a = 12.2451(3)$ Å] is slightly larger than that reported by Ito and Frondel (1968) [$a = 12.23(1)$Å], but tetragonally smaller than that reported by Mill et al. 1977 [a = 12.250 (2)]. For the afd–CaSc solid solutions, most samples were found to be single phase except for two samples, afd$_{80}$CaSc$_{20}$ and afd$_{65}$CaSc$_{35}$, which were found to contain traces of clinoxyroxene.

Single-crystal X-ray diffraction data were collected at the maximum resolution allowed by crystal dimensions at the CNR-IGG (Pavia) with a Bruker-AXS Smart-Apx CCD-based diffractometer, working with graphite monochromatized MoKα radiation at 55 kV and 30 mA. Omega rotation frames were collected using the SMART software (Bruker-AXS Inc.). Data reduction (including intensity integration, background, Lorentz, and polarization corrections) was performed with the SAINT software (Bruker-AXS Inc.). Absorption effects were evaluated using the SADABS software (Sheldrick 1996), and absorption correction was applied to the data. The unit-cell edge was obtained after data reduction from least-squares refinements of the centroid of gravity of all the collected reflections.

![FIGURE 1. A typical Mössbauer spectrum for the solid solution term in the afd–CaSc join, which also shows the presence of a very small skiagite component.](image-url)

TABLE 1. Sample codes and unit formulae for the samples of this work

<table>
<thead>
<tr>
<th>Nom. comp.</th>
<th>afd$_{65}$</th>
<th>afd${75}$CaSc${25}$</th>
<th>afd${80}$CaSc${20}$</th>
<th>afd${85}$CaSc${15}$</th>
<th>afd${90}$CaSc${10}$</th>
<th>afd${95}$CaSc${5}$</th>
<th>afd$_{100}$awi139</th>
<th>afd$_{100}$awi30</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.*</td>
<td>1</td>
<td>19</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>SiO$_2$ (wt%)</td>
<td>35.95</td>
<td>35.22(11)</td>
<td>35.77(12)</td>
<td>36.06(8)</td>
<td>36.14(7)</td>
<td>36.76(18)</td>
<td>37.46(9)</td>
<td>34.75(45)</td>
</tr>
<tr>
<td>Sc$_2$O$_3$</td>
<td>2.71(45)</td>
<td>5.94(45)</td>
<td>7.82(41)</td>
<td>13.93(37)</td>
<td>19.20(31)</td>
<td>24.83(28)</td>
<td>29.11(22)</td>
<td>0.69(1)</td>
</tr>
<tr>
<td>FeO</td>
<td>28.31</td>
<td>26.40(47)</td>
<td>22.95(54)</td>
<td>21.01(48)</td>
<td>14.57(34)</td>
<td>9.02(33)</td>
<td>3.26(24)</td>
<td>–</td>
</tr>
<tr>
<td>CaO</td>
<td>33.44</td>
<td>32.46(12)</td>
<td>32.95(14)</td>
<td>33.14(15)</td>
<td>33.65(17)</td>
<td>34.07(15)</td>
<td>34.79(13)</td>
<td>0.41</td>
</tr>
<tr>
<td>Total</td>
<td>97.68</td>
<td>96.79(24)</td>
<td>97.69(28)</td>
<td>98.05(45)</td>
<td>98.29(21)</td>
<td>99.35(30)</td>
<td>100.34(25)</td>
<td>98.38(30)</td>
</tr>
<tr>
<td>Fe$^{2+}$/Fe$^{3+}$</td>
<td>1.0</td>
<td>0.978</td>
<td>1.0</td>
<td>0.975</td>
<td>–</td>
<td>0.99</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* Number of points analyzed.
‡ From Mössbauer spectroscopy.
§ mol% of the skiagite (Fe$^{2+}$Fe$^{3+}$SiO$_4$) component. | From Mill et al. (1977).
Table 3. Selected results of the XRD analysis for the samples of this work

<table>
<thead>
<tr>
<th>Sample</th>
<th>(a)_SREF (Å)</th>
<th>(a)_PWD (Å)</th>
<th>(R_g) (%)</th>
<th>(X_{CaSc}) probe</th>
<th>(X_{Sc}) SREF (epfu)</th>
<th>(x(\text{O}))</th>
<th>(y(\text{O}))</th>
<th>(z(\text{O}))</th>
<th>(B_{01}(\text{Å}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>adr_100†</td>
<td>12.0578(2)</td>
<td>12.0596(2)</td>
<td>2.7</td>
<td>0.00</td>
<td>52.03</td>
<td>0.03940(9)</td>
<td>0.04870(9)</td>
<td>0.65540(9)</td>
<td>0.501(1)</td>
</tr>
<tr>
<td>adr_100_CaSc</td>
<td>12.0748(2)</td>
<td>12.0733(2)</td>
<td>5.3</td>
<td>0.10(1)</td>
<td>51.00(5)</td>
<td>0.03924(5)</td>
<td>0.04892(5)</td>
<td>0.65571(5)</td>
<td>0.401(1)</td>
</tr>
<tr>
<td>adr_0938_CaSc</td>
<td>12.0938(2)</td>
<td>12.0943(3)</td>
<td>3.3</td>
<td>0.217(15)</td>
<td>50.00(5)</td>
<td>0.03945(5)</td>
<td>0.04890(5)</td>
<td>0.65598(5)</td>
<td>0.491(1)</td>
</tr>
<tr>
<td>adr_1128_CaSc</td>
<td>12.1128(2)</td>
<td>12.1123(1)</td>
<td>2.8</td>
<td>0.28(2)</td>
<td>49.16(5)</td>
<td>0.03950(5)</td>
<td>0.04910(5)</td>
<td>0.65636(5)</td>
<td>0.481(1)</td>
</tr>
<tr>
<td>adr_1493_CaSc</td>
<td>12.1549(2)</td>
<td>12.1520(2)</td>
<td>3.2</td>
<td>0.50(1)</td>
<td>47.10(5)</td>
<td>0.03965(5)</td>
<td>0.04935(5)</td>
<td>0.65696(5)</td>
<td>0.501(1)</td>
</tr>
<tr>
<td>adr_1917_CaSc</td>
<td>12.1917(2)</td>
<td>12.1906(2)</td>
<td>3.2</td>
<td>0.68(1)</td>
<td>45.20(5)</td>
<td>0.03980(5)</td>
<td>0.04966(5)</td>
<td>0.65758(5)</td>
<td>0.511(1)</td>
</tr>
<tr>
<td>adr_2273_CaSc</td>
<td>12.2273(2)</td>
<td>12.2258(2)</td>
<td>3.6</td>
<td>0.87(1)</td>
<td>43.32(1)</td>
<td>0.04004(5)</td>
<td>0.05005(5)</td>
<td>0.65812(5)</td>
<td>0.421(1)</td>
</tr>
<tr>
<td>CaSc100‡</td>
<td>12.0578(2)</td>
<td>12.0578(2)</td>
<td>2.7</td>
<td>0.10(1)</td>
<td>52.03</td>
<td>0.03940(9)</td>
<td>0.04870(9)</td>
<td>0.65540(9)</td>
<td>0.501(1)</td>
</tr>
<tr>
<td>CaSc90‡</td>
<td>12.0938(2)</td>
<td>12.0943(3)</td>
<td>3.3</td>
<td>0.217(15)</td>
<td>50.00(5)</td>
<td>0.03945(5)</td>
<td>0.04890(5)</td>
<td>0.65598(5)</td>
<td>0.491(1)</td>
</tr>
<tr>
<td>CaSc80‡</td>
<td>12.1128(2)</td>
<td>12.1123(1)</td>
<td>2.8</td>
<td>0.28(2)</td>
<td>49.16(5)</td>
<td>0.03950(5)</td>
<td>0.04910(5)</td>
<td>0.65636(5)</td>
<td>0.481(1)</td>
</tr>
<tr>
<td>CaSc70‡</td>
<td>12.1493(2)</td>
<td>12.1520(2)</td>
<td>3.2</td>
<td>0.50(1)</td>
<td>47.10(5)</td>
<td>0.03965(5)</td>
<td>0.04935(5)</td>
<td>0.65696(5)</td>
<td>0.501(1)</td>
</tr>
<tr>
<td>CaSc60‡</td>
<td>12.1917(2)</td>
<td>12.1906(2)</td>
<td>3.2</td>
<td>0.68(1)</td>
<td>45.20(5)</td>
<td>0.03980(5)</td>
<td>0.04966(5)</td>
<td>0.65758(5)</td>
<td>0.511(1)</td>
</tr>
<tr>
<td>CaSc50‡</td>
<td>12.2273(2)</td>
<td>12.2258(2)</td>
<td>3.6</td>
<td>0.87(1)</td>
<td>43.32(1)</td>
<td>0.04004(5)</td>
<td>0.05005(5)</td>
<td>0.65812(5)</td>
<td>0.421(1)</td>
</tr>
<tr>
<td>CaSc40‡</td>
<td>12.3078(2)</td>
<td>12.3078(2)</td>
<td>4.9</td>
<td>1.00</td>
<td>42.00</td>
<td>0.04040(4)</td>
<td>0.05010(23)</td>
<td>0.65878(24)</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Notes: Abbreviations as specified in the text.
* Unit-cell edges by powder diffraction from Woodland and O’Neill (1995) corrected accordingly to their skagigite content (Fe3+).
† From Mill et al. (1977).
‡ From IGG-CNR (Pavia) database.

In the case of CaSc90, a crystal of suitable size for single-crystal analysis was not found in the relit material.

The unweighted full-matrix least-squares refinements (SREF) were done with a program locally developed to deal with complex solid solutions (Camilii, personal communication) using scattering factors for fully ionized chemical species. The refinement was done using the \(I \) values of reflections with \(k > 3 \sigma(I) \). The results of the XRD analysis are given in Table 3.

XAS Measurements and Data Analysis

The XAS experiments were performed on three selected samples (CaSc100, CaSc90, and CaSc80) at both the Ca and the Sc K-edges (4038 and 4492 eV, respectively) at the beamline ID26 of the European Synchrotron Radiation Facility (Grenoble, France).

Samples were prepared by grinding the garnet powders in a mortar to reduce the grain size, mixing them with cellulose and finally pressing them into 5 mm diameter pellets. XANES and EXAFS spectra were measured in the fluorescence mode using photo-diode detectors. Data acquisition was done at 40 K in the quick scan mode with synchronous movement of the undulator gap and the Bragg angle of the monochromator. About twenty scans were averaged for each sample.

XANES spectra were analyzed according to standard procedures. The pre-edge background was first subtracted from the raw XANES spectra. The spectra were then normalized on the high-energy side using a procedure that takes care of the effects resulting from the different sample thickness, and allows comparison of samples with different absorber contents.

The EXAFS signals were extracted from the experimental absorption spectra and analyzed using the interactive program IFEFFIT (Newville 2001) with the support of the graphical utilities ATHENA and DENAX (Ravel and Newville 2005).

For the Sc K-edge data (Fig. 2), phase and amplitude back-scattering functions were calculated using the FEFF8 code (Ankudinov et al. 1998), placing the Sc absorber atoms at the octahedrally coordinated Y site. Coordination distances were derived from the XRD data for CaSc100, CaSc90, and CaSc80 reported by Mill et al. (1977). The amplitude reduction factor (\(S_i = 1.0 \)) was obtained by fitting the data from sample CaSc90 using the structural model from the Ca3Sc2Si3O12 end-member.

Multiple-shell fits were done in \(R \) space \(1.2 < R < 3.5 \) Å with \(k \)-range \(3.5 < k < 10.5 \) Å⁻¹ by minimizing the difference between the raw data and the model EXAFS function (Table 4 and Fig. 3). The fitting parameters were a unique energy shift (\(\Delta E_0 \)) for all paths; two distinct mean-square displacement values \((\delta) \) for the oxygen shells and the non-oxygen paths (i.e., Ca and Si); two independent values of the path length (one for the oxygen shell and one for Ca and Si atoms occurring at the same distance).

For the Ca K-edge data (Fig. 4; \(S_i = 0.6 \)), a multiple-shell fit was done in the \(R \) space between 1.2 and 3.4 Å with a \(k \)-range \(3.0 < k < 9.8 \) Å⁻¹, using phase and back-scattering functions calculated for Ca absorber atoms occurring at the X-ray absorption edge.
The fitting parameters were a unique energy shift (ΔE_0) for all paths, distinct mean-square displacement values (σ_i^2) for the two oxygen shells and one common σ value for the non-oxygen paths, and four independent path length (ΔR_i) values. The Si and Ca atoms at the same distance in the fourth shell were constrained to have the same ΔR value (Table 5 and Fig. 5).

DISCUSSION

The crystal chemistry of Sc incorporation at the Y site

Unit-cell parameters measured either by single-crystal and by powder X-ray analysis are in excellent agreement with each other. As inferred by Woodland and Angel (1996a), the regular increase of the length of the unit-cell edge as a function of the Sc content (Fig. 6) suggests that Sc is incorporated at a unique structural site, and substitutes for a smaller cation.

The single-crystal structure refinement confirmed that Sc is incorporated only at the Y site. In fact, the refined site-scattering values (ss) at the X sites [59.9–60.2(1) epfu; Table 3] indicate that Ca is the unique chemical species, whereas those refined at the Y sites correspond to Sc occupancies in excellent agreement with the EMP analysis (Table 3). The very low contents of skagite component detected during the Mössbauer characterization of the powders are not apparent in the results of the single-crystal structure refinement.

Similar to the unit-cell edge, several geometric parameters change almost linearly along the binary (Fig. 7). However, the available data now allow a detailed modeling of the structural changes resulting from the incorporation of a cation larger than Fe$^{3+}$ at the Y site (0.745 vs. 0.645 Å, for Sc and Fe$^{3+}$, respectively; $\Delta = 0.10$ Å; Shannon 1976).

The garnet structure is characterized by extensive edge-sharing between the three available polyhedra. Therefore, even when a chemical exchange occurs at a single site, the geometry of the other two sites also changes to provide relaxation. In particular, the Y octahedron shares six out of its twelve edges with six adjacent X dodecahedra, and thus changes in the geometry of the octahedron also affect that of the dodecahedron (and vice versa). Rigid unit modes are forbidden in the garnet structure, and thus relaxation can only be achieved by distortion of the polyhedra and rotation of the tetrahedron (cf. Ungaretti et al. 1995; Merli et al. 1995 for a detailed long-range analysis of structural changes in silicate gar-
nets). As a consequence, relaxation mechanisms mainly involve the relative length of the O-O edges and the variation of α, the rotation angle of the tetrahedron about the 4 axis (Born and Zemann 1964).

The plotting of structural parameters as a function of the unit-cell edge allows comparison of the structural changes occurring in the samples of this work ($\Delta_{oo}=0.10 \text{ Å}$) with those occurring in gars–adr solid solutions, where Fe$^{3+}$ substitutes for Al ($\Delta_{oo}=0.11 \text{ Å}$). Along the adr–CaSc join, the Y-O distance (Fig. 7a) varies almost linearly, but the increase in the Y-O values (ΔY-O gars–adr = 0.10 Å; ΔY-O adr–CaSc = 0.08 Å) is smaller than expected based on values of the ionic radii and the unit-cell edge. In particular, the higher value of the gradient $\Delta_{oo}/\Delta Y$-O (2.4 vs. 2.1) in the adr–CaSc join implies that another polyhedron is increasing in size while Sc enters the Y site.

Inspection of the geometry of the X dodecahedron (Fig. 7b) shows that along the adr–CaSc join relaxation is mainly obtained by a significant lengthening of the X2-O distances, with a rate of lengthening greater than that along the gars–adr join (Fig. 7b). As a result, in spite of the constant X-site population, the difference between the X1-O and the X2-O distance significantly decreases along the gars–adr join, but is almost constant along the adr–CaSc join (Fig. 7c). This latter feature is confirmed by the analysis of the EXAFS data collected at the Ca K-edge, which is discussed in detail below. On the contrary, the size of the Z tetrahedron remains roughly constant (Fig. 7d; note that the slightly shorter Z-O (2.4 Å) distanceystem). A crucial piece of information on the crystal-chemical behavior of silicate garnets is provided by the α parameter, which describes the rotation of the tetrahedron about the 4 axis (Fig. 8). This parameter is a measure of the changes in the relative size of the polyhedra, because each Z tetrahedron shares two O-O edges with adjacent X dodecahedra and all its vertices with two X dodecahedra and one Y octahedron. Along the prp–grs join, where the larger Ca$^{2+}$ cation substitutes for Mg$^{2+}$ at the X site, the α parameter decreases from 27.5(1) to 24.6(1)$^\circ$. The opposite effect is observed along the gars–adr join, where α increases from 24.6(1) to 27.2(1)$^\circ$ (Fig. 8). The same trend is observed along the adr–CaSc join, where α increases further up to 28.8(1)$^\circ$.

Table 4. EXAFS fit results at the Sc K-edge

<table>
<thead>
<tr>
<th>CaSc_{10}</th>
<th>CaSc_{30}</th>
<th>CaSc_{90}</th>
<th>CaSc_{100}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sc-O]x 6: R (Å)</td>
<td>2.057(6)</td>
<td>2.099(4)</td>
<td>2.096(5)</td>
</tr>
<tr>
<td>σ (Å)</td>
<td>0.007(1)</td>
<td>0.006(1)</td>
<td>0.006(1)</td>
</tr>
<tr>
<td>[Sc-Sc]x 6, [Sc-Si]x 6: R (Å)</td>
<td>3.432(5)</td>
<td>3.432(4)</td>
<td>3.444(5)</td>
</tr>
<tr>
<td>σ (Å)</td>
<td>0.004(1)</td>
<td>0.005(1)</td>
<td>0.005(1)</td>
</tr>
<tr>
<td>ΔE_i</td>
<td>2 ± 1</td>
<td>4 ± 1</td>
<td>4 ± 1</td>
</tr>
<tr>
<td>R-factor</td>
<td>0.018</td>
<td>0.009</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Table 5. EXAFS fit results at the Ca K-edge (the corresponding values from single-crystal XRD are included for comparison)

<table>
<thead>
<tr>
<th>CaSc_{10}</th>
<th>CaSc_{30}</th>
<th>CaSc_{90}</th>
<th>CaSc_{100}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ca-O]x 4: R (Å)</td>
<td>2.34(2)</td>
<td>2.34(2)</td>
<td>2.36(2)</td>
</tr>
<tr>
<td>[Ca-O]x 4: σ (Å)</td>
<td>0.003(1)</td>
<td>0.003(1)</td>
<td>0.003(1)</td>
</tr>
<tr>
<td>[Ca-Sc]x 4: R (Å)</td>
<td>3.380(5)</td>
<td>3.377(3)</td>
<td>3.375(3)</td>
</tr>
<tr>
<td>[Ca-Fe]x 4: σ (Å)</td>
<td>0.004(2)</td>
<td>0.005(1)</td>
<td>0.005(1)</td>
</tr>
<tr>
<td>[Ca-Sc]x 4: σ (Å)</td>
<td>3.44(1)</td>
<td>3.418</td>
<td>3.424</td>
</tr>
<tr>
<td>ΔE_i</td>
<td>4 ± 1</td>
<td>4 ± 1</td>
<td>4 ± 1</td>
</tr>
<tr>
<td>R-factor</td>
<td>0.0022</td>
<td>0.0014</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

![Figure 4. Ca K-edge EXAFS data.](image-url)
almandine, and spessartine), which couple large α angles with a values ranging from 11.45 to 11.62 Å. Even larger α values are to be expected in silicate garnet containing X cations smaller than Ca and Y cations larger than Al. Using the predictive equation provided by Novak and Gibbs (1971), we can calculate the structural features of some of these end-members, most of which are either very rare or not found in nature, or unstable at ambient P/T conditions. For instance, nominal calderite ($\text{Mn}^{2+}\text{Fe}^{3+}\text{Si}_3\text{O}_12$) is predicted to have $a = 11.840$ Å and $\alpha = 28.9^\circ$, nominal kho-
harite ($\text{Mg}_3\text{Fe}^{3+}\text{Si}_3\text{O}_12$) to have $a = 11.690$ Å and $\alpha = 30.1^\circ$, and

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig5}
\caption{Left column: Fourier transform of Ca K-edge data (solid line) and fitted signal (dots) (k-weight = 2; k-range = 3.0–9.8 Å$^{-1}$); right column: inverse-Fourier transform of EXAFS data (solid line) and fitted signal (dots) ($1.2 < R < 3.4$ Å).}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig6}
\caption{Variation of the unit-cell edge along the adr–CaSc join. Empty squares = single-crystal; dots = powders. The line connecting the two end-members (black squares) is drawn to guide the eye.}
\end{figure}
QUARTIERI ET AL.: Sc INCORPORATION IN THE ANDRADITE–Ca₃Sc₂Si₃O₁₂ JOIN

FIGURE 7. Structural variations along the grs–adr and the adr–CaSc joins plotted as a function of the unit-cell edge. Empty squares = this work; filled squares = the relevant end-members; gray squares = the samples from the CNR-IGG (Pavia) crystal-chemical database for garnets (first described by Merli et al. (1995), which now contains 530 garnet compositions and structures). The lines indicate the ideal behavior in the grs–adr join and are extrapolated to evaluate the behavior of the samples in the adr–CaSc join.
nominal knorringite (Mg3Cr2Si3O12) to have \(a = 11.640 \) Å and \(\alpha = 29.3^\circ \). Experimental data are available only for skiagite-rich samples (\(a = 11.708 \) Å and \(\alpha = 29.6^\circ \) in the 90% Fe3+Fe2+Si3O12; Woodland and Ross 1994), and in blythite (Mn2+Mn3+Si3O12; Arlt et al. 1998), where \(a = 11.788 \) Å and \(\alpha = 29.5^\circ \).

Results of the XAS analysis

Hints from the Sc \(K \)-edge. The Sc \(K \)-edge XANES spectra of the solid-solution terms under investigation are reported in Figure 9; they are ordered from bottom to top as a function of increasing Sc content. The general form of the spectra, the energy positions and the relative intensities of the several clearly resolved features are very similar in the three samples. This is a further strong indication that Sc is hosted in the same crystallographic site in all the samples examined.

The background-subtracted EXAFS data are shown in Figure 2a, and the corresponding Fourier transforms are shown in Figure 2b. Also in this case, only minor changes are observed in both the magnitude and positions of the peaks, which is a further indication of the same local geometry around Sc.

The EXAFS analysis of the first coordination shell of CaSc\(_{10}\) provides a Sc-O bond distance slightly shorter (about 2.06 Å) than the “long-range” Sc-O value (about 2.10 Å) determined by SREF on the end-member Ca\(_3\)Sc\(_2\)Si\(_3\)O\(_{12}\) (Mill et al. 1977). This suggests that Sc, when present as a very minor species at the Y site in the andradite matrix, adapts itself to a smaller site volume likely imposed by the dominant Fe\(^{3+}\). In contrast, in samples CaSc\(_{30}\) and CaSc\(_{90}\) the octahedral Sc-O distance is virtually identical to that of the CaSc end-member. Therefore, Sc is able to impose its steric requirements at contents even lower than 0.60 apfu.

This finding confirms the hypothesis, made in the companion paper (Oberti et al. 2006a), that the incorporation of Sc at the Y site is hampered in the most compact garnet structures. In pyrope, where both X and Y sites are occupied by the smallest possible cations, Sc incorporation occurs only at the X site (in Sc-doped pyrope, \(a = 11.494 \) Å, \(\alpha = 27.7^\circ \)). In the intermediate solid-solution terms and in grossular, where the presence of Ca significantly increases the X site dimension and even changes the coordination geometry of the X cation (Oberti et al. 2006b), Sc partitions itself between the X, Y, and Z sites, so that an increase in the Y site dimension couples with an increase in the Z site dimension (in Sc-doped grossular, \(a = 11.883 \) Å, \(\alpha = 25.1^\circ \)). In any case, the size of the dominant Y cation (Al, with \(\Delta r = 0.535 \) Å) prevents Sc contents beyond 0.20 apfu (i.e., 10% occupancy).

From XAS analysis, we could estimate that the octahedral Sc-O distance in Sc-doped grossular is smaller or equal to that observed in CaSc\(_{10}\), i.e., 2.06 Å, as discussed in more detail in the companion paper (Oberti et al. 2006a).

Hints from the Ca \(K \)-edge. EXAFS measurements were also done on the same samples at the Ca \(K \)-edge (Fig. 4). Ca is the only dodecahedral cation in all the samples studied, hence the structural results from XAS must be directly compared with those obtained by XRD (Table 3). The results of high-quality multi-shell fits (done using Ca-Fe paths for CaSc\(_{10}\) and CaSc\(_{30}\) and Ca-Sc paths for CaSc\(_{90}\)) are reported in Figure 5 and Table 5, and are in excellent agreement with the trends evidenced by the XRD study. Notably, the first-shell Ca-O distances are shorter in the low-Sc than in the high-Sc samples: Ca1,2-O are 2.34(2) and 2.48(2) Å in CaSc\(_{10}\) and 2.36(2) and 2.50(2) Å in CaSc\(_{90}\) with \(\Delta \) fixed at 0.14 Å in all the samples. The values obtained by single-crystal structure refinement are 2.362(1) and 2.501(1) for CaSc\(_{10}\) and 2.389(1) and 2.526(1) for CaSc\(_{90}\), with \(\Delta \) equal to 0.139 and 0.137 Å, respectively. The X1-O and X2-O values refined by Mill et al. (1977) on Ca\(_3\)Sc\(_2\)Si\(_3\)O\(_{12}\) are even larger (2.390 and 2.532 Å, \(\Delta = 0.142 \) Å; Table 3), thus confirming that the Ca-O distances are dependent on the overall garnet composition. Even more significant Sc-dependent differences are observed in the higher-shell coordination geometries around calcium. In particular, the Ca-(Fe,Sc), Ca-Si, and Ca-Ca
bond distances strongly increase going from CaScSiO$_4$ to CaScO$_6$, in agreement with the results from diffraction reported in Table 3 (X-Y, X-Z, and X-X, respectively).

It is also important to note that EXAFS short-range data confirms that ∆X-O remains roughly constant along the adr–CaSc join, as shown by long-range information in Figure 7c. This has implications for the neighboring Y-sites since there is extensive edge-sharing between the dodecahedral and octahedral polyhedra and next-nearest neighbor effects are known to be significant (e.g., Woodland and Ross 1994; Oberti et al. 2006b). Thus, the similar X-site geometries in the adr–CaSc garnets are consistent with the constant quadrupole splitting values of Fe$^{3+}$ observed in the Mössbauer spectra, implying that the local electric charge density about the Fe atoms remains unchanged across the join.

CONCLUDING REMARKS

The general conclusion of this work is that the study of solid-solution behavior of garnet is a rather complicated matter, which must be performed by means of a complete structural and spectroscopic characterization. Apparently ideal behavior of the given cation in a given site strongly depends on the site population of the other sites, and changes in local environments are not necessarily linear. XAS analysis often reveals differing behavior across different binary joins that may be explained by constraints determined by the garnet matrix. Across the pyrope-grossular join, Ca at the X site changes its coordination from an almost regular [8]-fold coordination in pyrope-dominant compositions to a [4+4]-fold coordination with ∆ = 0.15–0.16 Å in grossular dominant compositions (Oberti et al. 2006b). In andradite–Ca$_3$Sc$_2$Si$_3$O$_{12}$ solid solutions, the CaO and Ca$_2$O distances increase with Sc content, but their difference remains almost constant (∆ = 0.14 Å). In these garnets, the octahedral Sc-O distances are ~2.06 Å for the adr–CaSc garnets are consistent with the constant quadrupole splitting values of Fe$^{3+}$ observed in the Mössbauer spectra, implying that the local electric charge density about the Fe atoms remains unchanged across the join.

REFERENCES

Woodland, A.B. and Angel, R.J. (1996a) Incorporation of Sc in garnet and the properties of Ca$_3$Fe$_2$Si$_2$O$_6$–Ca$_3$Sc$_2$Si$_3$O$_{12}$ garnet solid solutions. EOS Transactions of the American Geophysical Union, 77, F829.

MANUSCRIPT RECEIVED JULY 18, 2005

MANUSCRIPT ACCEPTED APRIL 10, 2006

MANUSCRIPT HANDLED BY MARC HIRSCHMANN