Crystal chemistry of trioctahedral micas in alkaline and subalkaline volcanic rocks: A case study from Mt. Sassetto (Tolfa district, Latium, central Italy)

ANGELA LAURORA, MARIA FRANCA BRIGATTI, ANNIBALE MOTTANA, DANIELE MALFERRARI, AND ENRICO CAPRILLI

1Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, Modena, Italy
2Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre, Roma, Italy

ABSTRACT

This work provides a crystal-chemical description of trioctahedral micas from volcanic rocks (lavas, tuffs, ignimbrites, and xenoliths) outcropping at Mt. Sassetto (Tolfa district, Tuscan Province, central Italy). Mica crystals vary in composition from ferroan phlogopite to magnesian annite. Heterovalent octahedral substitutions are mainly related to Al

INTRODUCTION

The crystal chemistry of trioctahedral micas is deeply related to petrogenetic processes active during crystallization, as demonstrated by several studies pertaining to igneous and metamorphic environments (e.g., Brigatti and Guggenheim 2002; Guidotti and Sassi 2002; Cesare et al. 2003; Brigatti et al. 2005). Some authors suggest that trioctahedral micas from volcanic environments change in composition as a function of the chemical system, temperature, and pressure. Moreover, according to some of them (Shane et al. 2003; Harangi et al. 2005), major elements such as Ti, Mg, and Fe support the reconstruction of the stratigraphic sequence in pyroclastic deposits. Only minimal attention has been devoted so far to the crystal-chemical parameters in micas from volcanic rocks that may be possible indicators of other petrogenetic processes. Only a few studies have tried to relate the variation of certain crystal-chemical parameters in micas (e.g., the tetrahedral rotation angle, the distortion of tetrahedra and of octahedra, the sheet thickness) to regular changes in the chemical composition of the host rocks across a volcanic sequence, both effusive and pyroclastic.

As extensively demonstrated in the literature (Guidotti 1984; Redhammer et al. 1995, 2000, 2005), trioctahedral micas in the phlogopite–annite join are affected by different substitution processes, such as Tschermak substitutions (e.g., Mg

Keywords: Volcanic micas, central Italy, mica oxidation, hydrothermalism, crystal chemistry, Ti-substitutions, hydrothermalism

* E-mail: brigatti@unimore.it
a well-studied, easy-to-map volcanic sequence, thus opening inter-
teresting opportunities for the assessment of the interrelationships
between mica crystal chemistry and its genetic environment.

MATERIAL AND METHODS

Samples

All the samples under study are from Mt. Sassetto, a hill in the northwestern
corner of the Tolfa district (Fig. 1a). Volcanic rocks from the Tolfa district are
very hard to characterize from a chemical and petrographic point of view because
they bear a strong imprint of late hydrothermal acid-sulfate alteration. According
to a wide range of studies from Negretti et al. (1966) to Jolivet et al. (1998), this
hydrothermal effect, commonly observed to various extents over the entire district,
is less enhanced in the Mt. Sassetto area.

At Monte Sassetto, the volcanic rocks are emplaced over a sedimentary sub-
strate (Figs. 1a and 1b) and consist of ignimbrites and “chaotic tuffs” (Negretti et al.
1966), i.e., poorly consolidated benches holding agglomerates with heterogeneous
blocks (from a few centimeters to a meter in size, either rounded or angular) in a
poor “cineritic matrix” (i.e., volcanic ash). Acidic lava domes cut through the ignim-
brite plateau that, based on field observations, was placed stratigraphically above
the “chaotic tuffs.” Tuffs, ignimbrites, and lavas contain two types of magmatic
xenoliths. Type I xenoliths show a clear effusive origin and, from a structural and
paragenetic point of view, are very similar to other Tolfa lavas. Type II xenoliths
are latitic magma products resembling those of the Roman Perpotassic Province
(Pinarelli 1991; Bertagnini et al. 1995).

In the Mt. Sassetto hill, “cineritic matrix” of “chaotic tuffs”, ignimbrites,
lavas, Type I and Type II xenoliths were sampled (Fig. 1b). Table 1 reports the
complete list of the samples studied and some additional information on location
and petrographic features.

X-ray fluorescence analysis

Very little information has been published about the size or bulk-rock chemical
composition of the studied samples (see Table 2). All samples, with the exception
of MS9, MS10, and MS15, were analyzed following the methods by Franzini et al.
(1975) and Leoni and Saitta (1976), using a Philips PW1480 X-ray fluorescence
spectrometer, thus determining the concentrations of the major elements and of
trace elements Ni, Cu, Cr, V, Ce, Nd, Ba, La, Nb, Zr, Y, Sr, Rh, Pb, As, Zn, Cu, and
S. Final accuracies are within 2–5% for major elements and within 10% for trace
elements. Total Fe is reported as Fe2O3. Bulk-rock H2O contents were obtained via
thermal analysis (Seiko SSC 5200) in He gas flow.

1 Deposit item AM-07-015, Tables 2, 3, 8, and 9 (much detail of the sample studies). Deposit items are available two ways: For a paper copy contact the Business Office of the Mineralogical Society of America (see inside front cover of recent issue) for price information. For an electronic copy visit the MSA web site at http://www.minsocam.org, go to the American Mineralogist Contents, find the table of contents for the specific volume/issue wanted, and then click on the deposit link there.

FIGURE 1. (a) Geologic map of the Tolfa area (modified after De Rita et al. 1997); (b) geologic section of the Mt. Sassetto sector (modified after Negretti et al. 1966).
Electron-microprobe analysis (EMPA)

The chemical composition of mica crystals was determined by wavelength-dispersive EMPA using an ARL-SEMQ microprobe at Modena and Reggio Emilia University. The chemical composition was obtained both on mica crystals in thin section (Table 31) and on the same crystal selected for structure refinement (Table 4). For each crystal, several points were analyzed to check for sample homogeneity. Operating conditions were 15 kV accelerating voltage, 15 nA sample current, and 15 μm beam diameter. Analyses and data reduction were performed using the probe software package of Donovan (1995). The following standards were used: fluorite (F), sodalite (C), microcline (K), albite (Na), spessartine (Al, Mn), ilmenite (Fe, Ti), clinopyroxene (Si, Ca), olivine (Mg), paracelsian (Ba), and chromite (Cr). The F content was determined following the method reported by Foley (1989). No evidence of F volatilization was observed. Table 31 reports averaged analyses of different crystals from the same thin section and their relative standard deviations. Analyses of crystals coming from the same sample, but showing remarkable differences in their compositions (i.e., MS9 and MS12) were not averaged or averaged on different subgroups. Chemical formulae were determined following two different methods as reported in Brigatti et al. (2005). The first normalization procedure was...
Table 4

Major element analyses (oxide wt%) and chemical formulae (apfu) of Mt. Sassetto mica crystals used in single-crystal X-ray diffraction study

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Sample</th>
<th>M1+2M2</th>
<th>M1+2M2 (EMPA)</th>
<th>Tuffs</th>
<th>Lavas</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>36.04</td>
<td>36.65</td>
<td>36.69</td>
<td>35.94</td>
<td>36.97</td>
</tr>
<tr>
<td>TiO₂</td>
<td>5.24</td>
<td>4.87</td>
<td>5.29</td>
<td>5.01</td>
<td>5.22</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.53</td>
<td>12.88</td>
<td>12.81</td>
<td>12.52</td>
<td>12.70</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>16.60</td>
<td>17.31</td>
<td>18.65</td>
<td>18.12</td>
<td>16.56</td>
</tr>
<tr>
<td>CaO</td>
<td>0.08</td>
<td>0.05</td>
<td>0.09</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>BaO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.41</td>
<td>0.41</td>
<td>0.48</td>
<td>0.36</td>
<td>0.44</td>
</tr>
<tr>
<td>K₂O</td>
<td>9.28</td>
<td>8.73</td>
<td>8.93</td>
<td>9.00</td>
<td>9.27</td>
</tr>
<tr>
<td>FeO</td>
<td>1.67</td>
<td>1.97</td>
<td>1.85</td>
<td>1.82</td>
<td>1.84</td>
</tr>
<tr>
<td>Cl</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>H₂O</td>
<td>4.34</td>
<td>4.35</td>
<td>4.15</td>
<td>4.45</td>
<td>4.20</td>
</tr>
<tr>
<td>F</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cl</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OH</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>M₁⁺+₂M₂</td>
<td>54.1</td>
<td>54.4</td>
<td>54.57</td>
<td>55.04</td>
<td>55.37</td>
</tr>
</tbody>
</table>

Chemical composition (oxide wt%)

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Sample</th>
<th>M₁⁺+₂M₂</th>
<th>M₁⁺+₂M₂ (EMPA)</th>
<th>Tuffs</th>
<th>Lavas</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>36.04</td>
<td>36.65</td>
<td>36.69</td>
<td>35.94</td>
<td>36.97</td>
</tr>
<tr>
<td>TiO₂</td>
<td>5.24</td>
<td>4.87</td>
<td>5.29</td>
<td>5.01</td>
<td>5.22</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.53</td>
<td>12.88</td>
<td>12.81</td>
<td>12.52</td>
<td>12.70</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>16.60</td>
<td>17.31</td>
<td>18.65</td>
<td>18.12</td>
<td>16.56</td>
</tr>
<tr>
<td>CaO</td>
<td>0.08</td>
<td>0.05</td>
<td>0.09</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>BaO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.41</td>
<td>0.41</td>
<td>0.48</td>
<td>0.36</td>
<td>0.44</td>
</tr>
<tr>
<td>K₂O</td>
<td>9.28</td>
<td>8.73</td>
<td>8.93</td>
<td>9.00</td>
<td>9.27</td>
</tr>
<tr>
<td>FeO</td>
<td>1.67</td>
<td>1.97</td>
<td>1.85</td>
<td>1.82</td>
<td>1.84</td>
</tr>
<tr>
<td>Cl</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>H₂O</td>
<td>4.34</td>
<td>4.35</td>
<td>4.15</td>
<td>4.45</td>
<td>4.20</td>
</tr>
<tr>
<td>F</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cl</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OH</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>M₁⁺+₂M₂</td>
<td>54.1</td>
<td>54.4</td>
<td>54.57</td>
<td>55.04</td>
<td>55.37</td>
</tr>
</tbody>
</table>

Notes
- Xref = single-crystal X-ray refinement; EMMA = electron microprobe analysis.

Petrographic features

Tuffs ("cineritic matrix"), Type I xenoliths, and ignimbrites from Mt. Sassetto vary in texture from porphyritic to vitrophyric pseudo-pluvioidal (Fig. 2a). A typical assemblage is constituted

LAURORA ET AL.: MICAS IN ALKALINE AND SUBALKALINE VOLCANIC ROCKS

471

- Unit-cell content recalculated on the basis of Oₙ₋₁OHxFyClz
- \(2\)OH=F,Cl
- \(\text{Si}^{2.825} \text{Ti}^{5.24} \text{Al}^{13.53} \text{Fe}^{0.00} \text{Mg}^{16.60} \text{Ca}^{0.08} \text{Ba}^{0.00} \text{Na}^{0.41} \text{K}^{9.28} \text{Fe}^{1.67} \text{Cl}^{0.01} \text{H}^{4.34} \text{F}^{0.04} \text{M}^{54.1} \text{O}^{36.04}\)
by phenocrysts of plagioclase, sanidine, biotite, ortho- and clinopyroxene, and subordinate quartz. Devitrified glass in the groundmass, grayish to yellowish-brown in color, shows low transparency. Sanidine, plagioclase, and subordinate ilmenite, rutile, apatite, and zircon are present in the groundmass as microlites. The presence of secondary mineral species, such as rutile, apatite, and zircon are present in the groundmass as microcrystals. The presence of secondary mineral species, such as smectite and Fe-hydroxides, was revealed during SEM-EDS observations, and confirmed via Gandolfi X-ray analysis.

Lavas, mainly vitrophyric in texture (Fig. 2b), show the same assemblage as tuffs, ignimbrites, and Type I xenoliths. Also in this case, primary glass in the groundmass is nearly absent due to devitrification. A doleritic texture is common in Type II xenoliths (Fig. 2c), showing plagioclase, sanidine, biotite (euhedral), clinopyroxene (subhedral) as major phases, and ilmenite, apatite, titanomagnetite, and quartz as minor ones.

The trioctahedral mica crystals from Mt. Sassetto can be divided into two main groups, according to their euhedral vs. anhedral habit. Euhedral crystals, present only in Type II xenoliths (MS3, MS5, MS7, MS8, MS11, and MS15), are up to 300 μm long and 50 μm thick, and all show brown to pale-greenish-brown pleochroism, with the exception of micas from samples MS7 and MS8, which are reddish brown. Anhedral mica crystals occur in tuffs and ignimbrites (MS1, MS2, MS4, and MS10), in lavas (MS13 and MS14), and in Type I xenoliths (MS9 and MS12). They all show similar petrographic features, being up to 1 mm long and 0.5 mm thick, pleochroism from brown to pale greenish-brown, a commonly deformed shape and corroded rims.

Whole-rock composition

Major-and-trace element contents are reported in Table 2. According to the Irvine and Baragar (1971) classification, all Type II xenoliths but MS5 are alkaline, whereas the other studied...
samples are subalkaline (Fig. 3). Following TAS classification (Le Bas et al. 1992), the MS1 ignimbrite is an andesite lying at the boundary with the trachyandesite field. The other two ignimbrites (MS2 and MS4) and lava samples are trachydacites. Type I xenolith MS12 is an andesite, and, in terms of total alkali and SiO2 content, it is very similar to ignimbrites MS2 and MS4. Type II xenolith MS5 is a basalt lying at the boundary with basaltic-andesite, whereas MS11 is a basaltic-trachyandesite. MS7 and MS8 are basaltic-trachyandesites lying next to the boundary with the trachyandesite field and, finally, MS3 is a trachyandesite. Whole-rock data from De Rita et al. (1997), reported in Figure 3 for comparison, are consistent with the data presented here.

Type II xenoliths MS7 and MS8 contain the highest amounts of the light rare-earth elements (LREE) and Y. The LREE and Y contents of other Type II xenoliths, Type I xenoliths, ignimbrites, and lavas are much lower and not significantly variable. Samples MS7 and MS8 are also the highest in Zr and Sr. Type II xenolith MS3 is the richest in Ba. Type II xenoliths MS11, MS3, and MS5 show significant S, Ni, Cr, Zn, and Cu contents, thus suggesting the occurrence of trace mineral phases such as sulfides and/or heavy metal hydroxides.

Mica chemistry

The mica crystals from Mt. Sassetto range in composition from ferroan phlogopite to magnesian annite (Fig. 4a, Table 3'). The mean value of Mg/(Mg + Fetot, Xtot) is nearly constant in micas from tuffs, lava domes, and ignimbrites. Variable Mg/(Mg + Feot) values characterize micas from Type I and

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Ignimbrite</th>
<th>Lavas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>MS1</td>
<td>MS4</td>
</tr>
<tr>
<td>Tetrahedron (T1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-O11</td>
<td>1.652(2)</td>
<td>1.651(2)</td>
</tr>
<tr>
<td>T1-O21</td>
<td>1.651(2)</td>
<td>1.652(2)</td>
</tr>
<tr>
<td>T1-O22</td>
<td>1.649(2)</td>
<td>1.656(2)</td>
</tr>
<tr>
<td>T1-O31</td>
<td>1.668(2)</td>
<td>1.669(2)</td>
</tr>
<tr>
<td>(T1-O)</td>
<td>1.655</td>
<td>1.657</td>
</tr>
<tr>
<td>Tetrahedron (T2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-O11</td>
<td>1.649(2)</td>
<td>1.654(2)</td>
</tr>
<tr>
<td>T2-O21</td>
<td>1.649(2)</td>
<td>1.650(2)</td>
</tr>
<tr>
<td>T2-O22</td>
<td>1.650(2)</td>
<td>1.647(2)</td>
</tr>
<tr>
<td>T2-O32</td>
<td>1.665(2)</td>
<td>1.662(2)</td>
</tr>
<tr>
<td>(T2-O)</td>
<td>1.653</td>
<td>1.653</td>
</tr>
<tr>
<td>Octahedron (M1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1-O11</td>
<td>2.109(2)</td>
<td>2.110(2)</td>
</tr>
<tr>
<td>M1-O21</td>
<td>2.109(2)</td>
<td>2.115(2)</td>
</tr>
<tr>
<td>M1-O4(+)</td>
<td>2.051(2)</td>
<td>2.046(2)</td>
</tr>
<tr>
<td>(M1-O)</td>
<td>2.090</td>
<td>2.090</td>
</tr>
<tr>
<td>Octahedron (M2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2-O11</td>
<td>2.081(2)</td>
<td>2.078(2)</td>
</tr>
<tr>
<td>M2-O11'</td>
<td>2.116(2)</td>
<td>2.120(2)</td>
</tr>
<tr>
<td>M2-O12</td>
<td>2.081(2)</td>
<td>2.082(2)</td>
</tr>
<tr>
<td>M2-O12'</td>
<td>2.117(2)</td>
<td>2.121(2)</td>
</tr>
<tr>
<td>M2-O24</td>
<td>1.995(2)</td>
<td>1.992(2)</td>
</tr>
<tr>
<td>M2-O4(+)</td>
<td>1.995(2)</td>
<td>1.993(2)</td>
</tr>
<tr>
<td>(M2-O)</td>
<td>2.065</td>
<td>2.064</td>
</tr>
</tbody>
</table>

Type II xenoliths

Tetrahedral Al content ranges from 1.165 to 1.320 apfu. The total Al content (\(^{IV}\)Al + \(^{VI}\)Al) mean is the highest in micas from Type I and Type II xenoliths. The Ti content ranges from 0.121 to 0.321 apfu; it is highly variable in micas from xenoliths, where it covers the full range.

Potassium content ranges from 0.860 to 0.933 apfu, and the Na content is restricted in range and low (values similar in all

TABLE 7. Selected geometrical parameters obtained from structure refinements of Mt. Sassetto micas

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Ignimbrite</th>
<th>Type I xenoliths</th>
<th>Type II xenoliths</th>
<th>Tuff</th>
<th>Lavas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polytype</td>
<td>2M1, 1M</td>
<td>2M2, 1M</td>
<td>2M3(1) MS4</td>
<td>1M</td>
<td>1M10</td>
</tr>
<tr>
<td>Sample</td>
<td>MS1, MS2</td>
<td>MS12</td>
<td>MS3(1)</td>
<td>MS8(1)</td>
<td>MS11</td>
</tr>
<tr>
<td>Parameters describing the tetrahedron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α (°)</td>
<td>5.75</td>
<td>5.57</td>
<td>5.65</td>
<td>5.60</td>
<td>5.79</td>
</tr>
<tr>
<td>Δα (Å)</td>
<td>0.028</td>
<td>0.018</td>
<td>0.028</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td>(O–O)₅₆₇₈, (T1) (Å)</td>
<td>2.688</td>
<td>2.681</td>
<td>2.683</td>
<td>2.693</td>
<td>2.685</td>
</tr>
<tr>
<td>(O–O)₅₆₇₈, (T2) (Å)</td>
<td>2.678</td>
<td>2.678</td>
<td>2.678</td>
<td>2.677</td>
<td>2.678</td>
</tr>
<tr>
<td>t(T1) (°)</td>
<td>110.27</td>
<td>110.32</td>
<td>110.40</td>
<td>110.09</td>
<td>110.19</td>
</tr>
<tr>
<td>t(T2) (°)</td>
<td>110.35</td>
<td>110.44</td>
<td>110.44</td>
<td>110.23</td>
<td>110.38</td>
</tr>
<tr>
<td>TH(A)</td>
<td>36.83</td>
<td>36.88</td>
<td>36.85</td>
<td>36.63</td>
<td>36.92</td>
</tr>
<tr>
<td>Parameters describing the octahedra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψM1 (°)</td>
<td>59.38</td>
<td>59.34</td>
<td>59.39</td>
<td>59.22</td>
<td>59.22</td>
</tr>
<tr>
<td>ψM2 (°)</td>
<td>58.97</td>
<td>58.94</td>
<td>58.97</td>
<td>58.99</td>
<td>58.99</td>
</tr>
<tr>
<td>Off center shift M2</td>
<td>0.059</td>
<td>0.052</td>
<td>0.062</td>
<td>0.053</td>
<td>0.059</td>
</tr>
<tr>
<td>ΔM (Å)</td>
<td>0.025</td>
<td>0.024</td>
<td>0.026</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>Octahedral-interlayer parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-O₄</td>
<td>3.990(2)</td>
<td>3.992(1)</td>
<td>3.999(2)</td>
<td>4.000(2)</td>
<td>3.994(2)</td>
</tr>
<tr>
<td>A-O₄(φ)</td>
<td>0.351(2)</td>
<td>0.698(1)</td>
<td>0.351(2)</td>
<td>0.711(2)</td>
<td>0.703(2)</td>
</tr>
<tr>
<td>Sheet thickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahedral (Å)</td>
<td>2.268</td>
<td>2.260</td>
<td>2.273</td>
<td>2.259</td>
<td>2.262</td>
</tr>
<tr>
<td>Octahedral (Å)</td>
<td>2.128</td>
<td>2.132</td>
<td>2.129</td>
<td>2.130</td>
<td>2.123</td>
</tr>
<tr>
<td>τ (Å)</td>
<td>3.368</td>
<td>3.368</td>
<td>3.368</td>
<td>3.379</td>
<td>3.307</td>
</tr>
<tr>
<td>TH(A)</td>
<td>3.315</td>
<td>3.310</td>
<td>3.342</td>
<td>3.340</td>
<td>3.351</td>
</tr>
<tr>
<td>Notes: α (tetrahedral rotation angle) = Σ₂⁻⁶; where φ₀ =</td>
<td>120° – θ</td>
<td>/2 and where θ is the angle between basal edges of neighboring tetrahedra articulated in the ring: Δα = (μ₀ + μ₁ + μ₂)/3;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ (tetrahedral flattening angle) = (μ₀ + μ₁ + μ₂)/3;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH(A) (Tetrahedral Hexagon Area) = area of the hexagon defined by tetrahedral basal oxygen edges; ψ (octahedral flattening angle) = cos⁻¹[(octahedral thickness]/2;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-O₄(φ) = √((A-O₄)² – (A-O₄)²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2 off-center shift is the distance between M2 cation and (X1, Y1, Z1).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where: Xₖₑₐₜ = 1/6 (Σ x₁ + Yₖₑₐₜ) + Z₁, Yₖₑₐₜ = 1/6 (Σ y₁ + Yₖₑₐₜ) + Z₁, and the terms X₁, Y₁, Z₁ are a generic O atom defining M2 coordination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| *Tetrahedral Hexagon Area.*

Figure 3. Classification of volcanic rocks from Mt. Sassetto after Irvine and Baragar (1971) and Le Bas et al. (1992). Rock samples from Mt. Sassetto analyzed by De Rita et al. (1997) are reported for comparison (dashed gray field). F = Foibite; U₁ = Basanite and Tephrite; U₂ = Phonolite; U₃ = Tephriphonolite; Ph = Phonolite; Pc = Picrote; B = Basalt; O₁ = Basaltic-andesite; O₂ = Andesite; O₃ = Dacite; R = Rhyolite; T = Trachyte and Trachydacite; S₁ = Basaltic-trachyanandesite; S₂ = Trachyanandesite.
the samples, around 0.06 apfu), but always present as a substituent for K in the interlayer site. Euhedral crystals from Type II xenoliths show the highest Ba content. Fluorine content ranges from 0.147 to 0.469 apfu. The greatest fluorine variability occurs in micas from Type I xenoliths, where the full variation range for this element is covered. Finally, micas from Type I xenolith MS9 are peculiar in that they show a significant compositional variability (0.121 ≤ Ti ≤ 0.175 apfu; 0.532 ≤ Mg/(Mg + Fe_{tot}) ≤ 0.638; 0.128 ≤ Al_{tot} ≤ 0.187 apfu).

Crystal structure and crystal chemistry of micas

MS1, MS4, and MS14 mica samples present a 2M₁ sequence, whereas all the other belong to 1M polytype. This latter polytype dominates in Type I, Type II xenoliths, and in cinerites (tuff matrix), whereas the 1M and 2M₁ polytypes coexist in ignimbrites and lavas. Some authors (e.g., Baronnet 1980; Kogure 2002) relate different polytypic sequences in micas either to genetic conditions or to secondary crystallization effects. However, the absence of adequate data on the polytypes from the Mt. Sassetto area prevents a firm conclusion on this point.

1M mica samples MS7, MS8(1), and MS8(2) have unit-cell parameters (Fig. 5) that are significantly smaller than other samples from Mt. Sassetto, and among the lowest refined for the phlogopite–annite join micas (Brigatti and Guggenheim 2002; Cruciani and Zanazzi 1994). These micas can also show an appreciable M1 and M2 site inequality. This feature is common, and also evident, in other micas from Mt. Sassetto, where it is always associated with an increase in Ti content (Table 4). These crystalchemical features, together with the high Fe-total content and the low Ti content, if compared with samples reported by Cruciani

FIGURE 4. Micas from Mt. Sassetto: (a) classification diagram after Guidotti (1984); (b) Mg/(Mg + Fe_{tot}) vs. Ti (wt%) plot. Symbols: circle = micas from ignimbrites; triangle up = micas from Type I xenoliths; square = micas from Type II xenoliths; triangle down = micas from tuffs; diamond = micas from lavas; filled symbols = 1M polytype crystals; open symbols = 2M₁ polytype crystals.
anionic site displacement from the interlayer cation along (001) the interlayer cation-O4 bond distance (A-O4), the octahedral Ti-Tschermak substitution. Several geometric parameters such as than symbol dimensions.

21, 22, and 23 of Cruciani and Zanazzi (1994). Error bars are minor (Ohta et al. 1982). Circled samples from the literature refer to samples Zanazzi 1994; Schingaro et al. 2001); gray star = Pines Peak “oxybiotite” samples as in Figure 4; crosses = igneous micas from literature (Baschieri 2001; Redhammer et al. 2005), qualitatively conrmations are provided, for samples under analysis, by cruciani et al. 1994), the out-of-center shift of the M2 cation, usually significantly different from the Fe3+-free 1M polytype samples. The average Ti content is greater in 2M, micas than in the 1M ones, and thus structural variations associated with Ti-oxy substitution are also enhanced (Figs. 6a–6d). To quote an example, interlayer separation is, on average, smaller in 2M, micas than in the 1M ones (Fig. 6b).

The three Fe3+-rich samples mentioned above show the smallest unit-cell parameters. In particular, their c cell parameters are significantly smaller than in other micas (Table 5). Like in oxybiotite (Ohta et al. 1982) and in some Ti-rich micas (Cruciani and Zanazzi 1994), the out-of-center shift of the M2 cation, usually negatively correlated to c, is the greatest (Table 7). This effect, which may be related to a decrease in interlayer separation and octahedral thickness, is usually associated with Ti substitution (Cruciani and Zanazzi 1994). Our data qualitatively confirm these crystal-chemical trends also for Fe3+ substitution, even if with a much greater intensity, as also testi

The three Fe3+-rich samples mentioned above show the smallest unit-cell parameters. In particular, their c cell parameters are significantly smaller than in other micas (Table 5). Like in oxybiotite (Ohta et al. 1982) and in some Ti-rich micas (Cruciani and Zanazzi 1994), the out-of-center shift of the M2 cation, usually negatively correlated to c, is the greatest (Table 7). This effect, which may be related to a decrease in interlayer separation and octahedral thickness, is usually associated with Ti substitution (Cruciani and Zanazzi 1994). Our data qualitatively confirm these crystal-chemical trends also for Fe3+ substitution, even if with a much greater intensity, as also testi

FIGURE 5. Micas from Mt. Sassetto: a vs. c plot. Symbols for studied samples as in Figure 4; crosses = igneous micas from literature (Baschieri 2005; Brigatti and Guggenheim 2002; Brigatti et al. 2005; Cruciani and Zanazzi 1994; Schingaro et al. 2001); gray star = Pines Peak “oxybiotite” (Ohta et al. 1982). Circled samples from the literature refer to samples 21, 22, and 23 of Cruciani and Zanazzi (1994). Error bars are minor than symbol dimensions.

and Zanazzi (1994) (i.e., samples no. 21, 22, and 23 showing c unit-cell parameter values of 10.089, 10.079, and 10.096 Å, respectively, and Ti contents of 0.607, 0.650, and 0.592, respectively; circled in Fig. 5), suggest that, at least in part, Fe is in the oxidized form. A further confirmation comes from the refined mean electron counts and mean octahedral bond lengths, which suggest Fe3+/Feo values of 0.529, 0.511, and 0.516 for MS7, MS8(1), and MS8(2) mica samples, respectively. These values are compatible with Fe3+ being dominant in the M2 sites and Fe2+, Mg, or vacancies in the M1 sites (Tables 6a and 91). Due to the small size of the samples and to the limited material available, a cross-check with other experimental techniques was not possible.

An evaluation, based on data from the literature (Rancourt et al. 2001; Redhammer et al. 2005), qualitatively confirms the Fe3+ values indicated by crystal chemistry. Further crystal-chemical confirrmations are provided, for samples under analysis, by oxy-substitution, where interlayer separation decreases both as a function of Ti and of Fe3+, and by a remarkable number of octahedral vacancies (0.208–0.243 positions per formula unit) in Fe3+-rich samples.

All other samples from Mt. Sassetto, both the 1M and 2M polytypes, are significantly affected by the octahedral Ti substitution. In particular, an increase in Ti is accompanied by a decrease in Fe2+ and octahedral Al3+ (Table 4). Furthermore, the overall octahedral charge increases with Ti together with the anionic charge, thus suggesting a Ti-oxy substitution mechanism. Some crystals present octahedral vacancies, hence the two main vectors regulating Ti entry into the mica structure appear to be the Ti-oxy [\(\text{VTi}^{4+}[(\text{Mg,Fe})_2f(\text{OH})_3\text{O}_2]\)] and Ti-vacancy [\(\text{VTi}^{4+}[(\text{Mg,Fe})_2]\)]. The positive Si vs. Ti correlation negates Ti-Tschermak substitution. Several geometric parameters such as the interlayer cation-O4 bond distance (A-O4), the octahedral anionic site displacement from the interlayer cation along (001) [A-O4, correlation coefficient \(R = 0.925\)], and the interlayer separation (\(R = 0.928\)) decrease with Ti increasing (Figs. 6a and 6b; Tables 4 and 7). This trend is consistent with the deprotonation of the O4 anionic position, and thus with a lower repulsion between the O4 anion and A cation in the interlayer. The increase of the monoclinic angle \(\beta\) with Ti (\(R = 0.931\)) and the related decrease in overall shift (\(R = 0.902\)) further confirm the influence of Ti content on interlayer topology. Also, the decrease of tetrahedral rotation angle \(\alpha\) with Ti (\(R = 0.911\)) can be related to Ti-oxy substitution mechanism (Fig. 6c). \(\alpha\) is linked to an increase in the area delimited by the six tetrahedral basal oxygen atoms, i.e., the Tetrahedral Hexagon Area (THA, Table 7) (Ti vs. THA, \(R = 0.955\)), which also defines the cavity hosting the interlayer cation. This feature is related to the impinging of the interlayer cation inside this latter cavity, which in turn needs to enlarge laterally. The tetrahedral flattening angle \(\tau\) (Table 7) also increases with Ti (\(R = 0.900\)). This effect can also be related to interlayer interactions (Brigatti and Guggenheim 2002).

Titanium content significantly affects most octahedral parameters as well. In particular, the O3-O4 edge of the M1 octahedron (\(R = 0.964\)) and (M1-O) (\(R = 0.936\)) increase with Ti (Fig. 6d; Tables 4 and 6a). The topology of the M2 site is less markedly affected by Ti substitution, despite the fact that Ti is usually assumed to be located in M2, in line with the basic principle according to which, in trioctahedral micas, the topology of M1 is more sensitive to octahedral substitutions than the topology of M2 (Brigatti et al. 2003).

The micas showing the 2M, polytype present crystal-chemical features not significantly different from the Fe3+-free 1M polytype samples. The average Ti content is greater in 2M, micas than in the 1M ones, and thus structural variations associated with Ti-oxy substitution are also enhanced (Figs. 6a–6d). To quote an example, interlayer separation is, on average, smaller in 2M, micas than in the 1M ones (Fig. 6b).

The three Fe3+-rich samples mentioned above show the smallest unit-cell parameters. In particular, their c cell parameters are significantly smaller than in other micas (Table 5). Like in oxybiotite (Ohta et al. 1982) and in some Ti-rich micas (Cruciani and Zanazzi 1994), the out-of-center shift of the M2 cation, usually negatively correlated to c, is the greatest (Table 7). This effect, which may be related to a decrease in interlayer separation and octahedral thickness, is usually associated with Ti substitution (Cruciani and Zanazzi 1994). Our data qualitatively confirm these crystal-chemical trends also for Fe3+ substitution, even if with a much greater intensity, as also testified by the extreme values of these structural parameters in Fe3+-rich samples, also including oxy-biotite (Ohta et al. 1982). These features agree well with an octahedral charge that is the highest in the considered data set, and with a tetrahedral charge that is among the lowest, following an increased Al for Si tetrahedral substitution and thus, unlike Ti-rich samples, suggesting a Tschermak substitution. Those samples also show a greater number of octahedral vacancies (up to 0.24 apfu) and, unlike most trioctahedral micas, mean electron counts for M2 greater than for M1, probably due to the presence of the octahedral vacancies themselves. Vacancies also account for a greater distortion of the octahedral sites. The \(\psi\) angle values for M1 and M2 (Table 7) are the largest in the considered data set. The distortion is also evidenced by the great
differences existing in the octahedral distances: thus, M2-O3 distances are among the greatest, whereas M1-O4 and M2-O4 distances are among the smallest. The displacement of the O4 anion from the interlayer cation on the (001) plane is also the greatest in Fe³⁺-rich samples, confirming that these crystals are also affected by oxy-substitution, as evidenced by their low interlayer separation. Thus, it appears that their Fe³⁺ contents can be compensated combining the following exchange mechanisms: VIFe²⁺ – 3VIFe³⁺VI, VIFe²⁺ – 1VIFe³⁺(OH)– and, VIFe²⁺ – 1VIFe³⁺IVSi–1IVAl³⁺ (Rancourt et al. 2001; Redhammer et al. 2005). The “oxybiotite” from Ruiz Peak (Ohta et al. 1982) is the trioctahedral mica with the greatest octahedral Fe³⁺ content described so far, where the Fe³⁺-oxy-substitution is predominant. Actually, this mica is richer in Fe³⁺ than all samples from Mt. Sassetto, and thus its interlayer separation is smaller. The Ruiz Peak “oxybiotite” shows no evidence of octahedral vacancies, and its tetrahedral charge is appreciably greater than in Fe³⁺-rich samples from Mt. Sassetto.

A detailed description of the crystal-chemical mechanisms associated with Fe oxidation in annite was provided by Rancourt et al. (2001) and by Virgo and Popp (2000). In particular, when a synthetic annite is progressively heated in air, two distinct oxidation mechanisms are observed: (1) Fe³⁺-oxy substitution, which occurs at T ≤ 350 °C, and (2) Fe³⁺-vacancy substitution, which occurs at T > 350 °C. However, both oxidation mechanisms are subjected to crystal-chemical constraints. The Fe³⁺-vacancy mechanism induces a variation in the lateral dimensions of the mica layer introducing octahedral vacancies and thus increasing the size difference between the two octahedral M1 and M2 sites. The Fe³⁺-oxy mechanism can be of limited extent when F atoms are present in the O4 anionic positions. Moreover, both mechanisms are also controlled by fH₂. An increase in fH₂ shifts the
equilibrium of Fe$^{3+}$-oxy reaction toward the left side. In contrast,
a decrease in f_0_2 promotes a greater Fe oxidation, thus shifting
the reaction to the right side. The Fe$^{3+}$-Tschermak substitution
can point out complex ion-exchange reactions, implying either a
diffusion of chemical elements inward to the mica layer or a li-
quid-to-solid interface reaction. Results suggest that the presence
of different exchange mechanisms introducing Fe$^{3+}$ in the Mt.
Sassetto micas reflect a complex petrogenetic environment.

PETROLOGIC IMPLICATIONS

The previously reported mica data may contribute to the
description of magma evolution processes operating during the
emplacement of the eruptive sequence in Mt. Sassetto.

In the Ti vs. Mg/(Mg + Fe$_{tot}$) diagram plotted in Figure 4b,
ferroan phlogopites from xenoliths MS9 (Type I), MS7, and
MS8 (Type II) define a negative correlation extending from
the most restitic micas MS9(4), ideally in equilibrium with a
more-primitive magma composition, to micas MS7, ideally in
equilibrium with a more-evolved melt enriched in Fe and Ti. Such
a differentiation trend could result from small-scale, fractional
crystallization processes taking place in the magma chamber (or
in a more-complex feeding system beneath the eruptive apparatus).
Fractionation of mica itself, among the other femic phases,
could have contributed to this chemical differentiation.

A progressive deviation from this trend characterizes micas
from MS5, MS3 (Type II), and all the other micas from Type I,
Type II xenoliths, ignimbrites, tuffs, and lavas. These samples
show Mg/(Mg + Fe$_{tot}$) ratios around 0.56 and high Ti contents.
This deviation can be ascribed neither to fractional crystallization
nor to mixing mechanisms, but rather to a variation in intensive
parameters (T, P, f_0_2, f_0_2, f_0_1). At a given melt composition,
this variation can promote Ti re-partitioning in micas either to
accomplish charge balance and topologic constraints, or because
of the disappearance of a Ti-competiting phase.

Compositional variations, similar to the ones observed for
micas from Mt. Sasatteto, are widely described in the literature
for amphiboles from igneous environments. Experimental data
on these latter phases can contribute toward explaining some re-
lationships between crystal-chemical and environmental factors.
Increasing pressure results in higher $^{4}_A_l$ and lower $^{4}_T_i$ contents
in amphiboles, as derived from sub- and super-solids experi-
ments (Oba et al. 1986; Ernst and Liu 1998; Adam and Green
1994; Fujinawa and Green 1997), whereas high temperatures
($>950 \, ^{\circ}C$) favor $^{4}_A_l$-Ti rich compositions (Allen and Boettcher
1978; Wallace and Green 1991). Thus, if experimental results
concerning natural and synthetic amphiboles can be applied to
micas, then high Ti contents in these micas are predictive of
low-pressure, high-temperature, low f_0_2, and moderate to low f_0_2
conditions (Aoki 1963; King et al. 1999; Miyagi et al. 1998).

The prevailing mechanism introducing Ti in Mt. Sassetto
Fe$^{3+}$-free micas is the Ti-oxy substitution. As suggested by Feeley
and Sharp (1996), the H_2 released from the mica structure can
react with the O_2 present in the melt, thus increasing its volatile
content. This mechanism could represent a further feature con-
trolling the explosivity of eruptions (Virgo and Popp 2000) and
could be triggered by the temperature increase observed in the
magmatic chamber before an eruption, due to the influx of a new
batch of mafic magma (Sparks et al. 1977; Pallister et al. 1992).

However, many other environmental factors, such as ascent rate,
cooling rate, and grain attributes (inclusions and fracture density),
can play a central role.

Indications about the high f_0_2, conditions of crystallization
for MS7 and MS8 (type II xenoliths) can be hypothesized from
experimental studies on micas synthesized under controlled
water fugacity conditions (Wones and Eugster 1965, Redham-
mer et al. 1995). In the ternary diagram annite (Fe$^{3+}$)-phlogopite
(Mg)-“oxyannite” (Fe$^{2+}$) in which “buffered” mica compositions
are reported (Fig. 7), micas MS7, MS8(1), and MS8(2) fall well
above the HM (Hematite-Magnetite) buffer, which represents the
highest f_0_2 values found in the crystallization of magsmas
(Kleiman et al. 1992). Following these indications, if relevant
Fe$^{3+}$ contents and consequent structural features of these micas
are of primary origin (i.e., acquired during crystallization in the
magmatic chamber), then an abrupt variation in f_0_2 conditions
ocurred during the evolution of Mt. Sassetto magnatism. Sev-
eral mechanisms can promote an increase in f_0_2 in the magma
chamber prior to, during, or just after crystallization: (1) ring
fractures associated with high-level intrusions may provide a
pathway through which magmas are contaminated with atmos-
spheric oxygen (Rowins et al. 1991); (2) dissociation of water
into H_2 and O_2, followed by the preferential escape of H_2 gas
(Sato and Wright 1966), although this mechanism would be ef-
fective only for magmas with H_2O/FeO ≥ 10 (Candela 1986);
(3) hydrothermal events, as in the case of Ruiz Peak fumaroles,
that promoted high-temperature oxidation of the emplaced
ryholitic lavas (Takeda and Ross 1975; Kogure and Nespolo
2001); or (4) assimilation of hydrothermally altered wall-rocks
(Hildreth et al. 1984; Grunder 1987; Bacon et al. 1989).

However, our favorite hypothesis about micas from Type II
xenoliths MS7 and MS8 is that their oxidation must be ascribed
to a post-eruptive hydrothermal event, namely to the high f_0_2

![Figure 7](image-url)
and $f_{\text{H}_2\text{O}}$ values and the moderately high temperatures ($\leq 400^\circ \text{C}$, Knight 1977) characterizing an acid-sulfate alteration fluid. Temperature conditions and high Fe mobility in this type of hydrothermal agent are in agreement with the Fe$^{3+}$-vacancy and Fe$^{3+}$-Tschermak substitution mechanisms. On the other hand, an Fe-oxy mechanism could provide available H$^+$ ions, thus regenerating an acid metasomatic agent that is partially neutralized by the interaction with the wall rock. The fact that only micas from MS7 and MS8 xenoliths are highly oxidized could suggest that these latter materials (for which a hypabyssal origin is suggested; cf., Negretti et al. 1966) were collected from deeper regions, more affected by the metasomatic agent, which is expected to decrease in intensity outward. This interpretation is also consistent with crystal-chemical evidence, clearly showing the existence of all the above-mentioned exchange mechanisms. In particular, in Fe$^{3+}$-rich micas, the M2 site, which shows a greater mean electron count than $<$M1-O$>$ bond distances and a shorter mean distance, appears to be more affected by oxidation processes and to drive the chemical substitutions affecting the layer, as well as layer topology, since requesting a lower M1 and tetrahedral charge, as well as an increase in anionic negative charge. Unlike Fe$^{3+}$, Ti substitutions (mostly Ti-oxy) are mostly compensated inside the octahedral sheet, thus hinting to more-limited cation diffusion. Volcanic rocks from Mt. Sassette include secondary minerals, such as smectite and Fe hydroxides. Their presence is indicative of meteoric alteration processes, which could have affected mica crystal chemistry as well. Atmospheric weathering phenomena can produce non-expanded oxidized biotites with 10 Å periodicity in XRD patterns (Rebertus et al. 1986; Murphy et al. 1998) and with almost all Fe in the trivalent form, not only under tropical wet conditions (Dong et al. 1998), but also under humid-temperate conditions. Jeong and Kim (2003) suggested that, during the saprolitic weathering, the precursor of the transformation “interlaminar biotite-vermiculite → vermiculite → kaolinite + oxides/oxides-hydroxides,” is an oxidized and chemically modified biotite, rather than a “fresh” sample. However, it should be noted that altered biotites are characterized by 1M polytype and not by regular 1M sequences. Thus, even if weathering phenomena cannot be excluded, they did not produce the structural modifications usually observed in trioctahedral micas (Baronnet 1980).

The age of Mt. Sassetto volcanic rocks is consistent with an incipient pedogenetic process, and the ubiquitous presence of secondary smectite and Fe hydroxides possibly accounts for it. Nevertheless, it is unlikely that the oxidation of biotites from samples MS7 and MS8 can be related to atmospheric weathering. In fact, temperature conditions associated with this type of alteration process do not match those expected for the observed substitution mechanisms. Moreover, oxidation should affect not only micas from some xenoliths enclosed in pyroclasitases, but also micas from the entire wall rock exposed to atmospheric action.

ACKNOWLEDGMENTS

We acknowledge precious comments from the two referees P.F. Zanazzi and G. Redhammer and the support from the Associate Editor D. Gatta. Our research on micas enjoys the joint support of Italy’s Ministero dell’Istruzione Università e Ricerca (MIUR) and of Università degli Studi di Modena e Reggio Emilia under COFIN 2004 project “Effect of petrological variables on mica crystal chemistry.”

REFERENCES CITED

Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.

MANUSCRIPT RECEIVED JUNE 6, 2006
MANUSCRIPT ACCEPTED NOVEMBER 16, 2006
MANUSCRIPT HANDLED BY G. DIEGO GAITA