Crystal chemistry of phlogopite from Vulture-S. Michele Subsynthem volcanic rocks (Mt. Vulture, Italy) and volcanological implications

SILVIA MATARRÈSE,1 EMANUELA SCHINGARO,1 FERNANDO SCORDARI,1,* FRANCESCO STOPPA,2 GIANLUIGI ROSATELLI,2 GIUSEPPE PEDRAZZI,3 AND LUISA OTTOLINI4

1Dipartimento Geomineralogico, Università degli Studi di Bari, via E. Orabona 4, I-70125 Bari, Italy
2Dipartimento di Scienze della Terra, Università G.d’Annunzio, via dei Vestini, 3, I-66100 Chieti, Italy
3Dipartimento di Sanità Pubblica, Sezione di Fisica, Plesso Biotecnologico Integrato, via Volturno 39, I-43100, Parma, Italy
4CNR-Istituto di Geoscienze e Georisorse (IGG), Sezione di Pavia, via Ferrata, 1, I-27100 Pavia, Italy

ABSTRACT

Volcanic activity at Mt. Vulture lasted about 750 ka and produced SiO2-undersaturated volcanic rocks that can be classified as old (~700 ka), intermediate (~600–550 ka), and young (~130 ka). The intermediate deposits consist of pyroclastic falls and flows and lavas with compositions ranging from phonolite to foidite. A recent revision of the stratigraphic setting allowed these deposits to be classified into one synthem (the Barile Synthem) and further subdivided into four subsynthems (Toppo S. Paolo, Rionero, Vulture-S. Michele, and Ventaruolo). In the present investigation, trioctahedral micas from sample VUT191 in the Vulture-S. Michele Subsynthem are considered. The host rock has modal diopside (20.2%), analcime (22.8%), plagioclase (27.8%), haüyne (5%), phlogopite (8.9%), and magnetite (6.3%). The micas were studied using chemical (EPMA, C-H-N, SIMS), structural (SCXRD), and spectroscopic (Mössbauer) methods.

EPMA of 36 crystals from thin sections and 6 discrete crystals selected for the structural analysis showed remarkable compositional variability, as follows (in wt%): SiO2 = 33.14–38.01, Al2O3 = 15.56–20.45, MgO = 13.02–20.81, FeOtot = 6.34–14.08, TiO2 = 2.34–6.02, K2O = 6.03–9.48, Na2O = 0.50–0.78, and BaO = 0.89–4.06; all crystals proved to be phlogopite. Elemental C-H-N analyses yielded H2O = 2.86 ± 0.36 wt%. The water content was also determined by SIMS on two single crystals, labeled VUT191_2 and VUT191_19, which yielded values of 3.81 ± 0.12 and 1.72 ± 0.08 wt% H2O, respectively. Mössbauer investigation showed that all the iron in VUT191 mica is octahedral with Fe2+ = 25.5% and Fe3+ = 74.5%, confirming that Vulture micas are particularly Fe3+-rich, as also found from previous investigations. Structure refinements using anisotropic displacement parameters were performed in space group C2/m and converged at 1.89 ≤ R ≤ 3.17, 2.09 ≤ Rw ≤ 3.43%. All of the analyzed micas belong to the 1M polytype but exhibit remarkable variations in the c parameter from 10.1569(4) to 10.2458(4) Å. The chemical and structural parameters indicate that the studied micas can be divided into two groups: the first encompassing strongly dehydrogenated micas affected mainly by Ti-oxy [\(\text{VIM}^{2+} + 2(\text{OH})^{-} \leftrightarrow \text{VITi}^{4+} + 2\text{O}^{2-} + \frac{1}{2}\text{H}_2\)] and M3+-oxy [\(\text{VIM}^{2+} + (\text{OH})^{-} \leftrightarrow \text{VIM}^{3+} + \text{O}^{2-} + \frac{1}{2}\text{H}_2\), with M3+ = Fe3+, Al3+] substitutions. The second group consist of samples in which vacancy-bearing mechanisms, 2\(\text{VIM}^{2+} \leftrightarrow \text{VITi}^{4+} + 2\) and 3\(\text{VIM}^{2+} \leftrightarrow 2\text{VIM}^{3+} + 3\) occur.

Keywords: Volcanic phlogopite, Mössbauer spectroscopy, structure refinement, CHN, SIMS, crystal chemistry, substitution mechanisms

INTRODUCTION

Phlogopite and biotite are common phases in many volcanic rocks, including andesites, dacites, and rhyolites, as well as potassic and ultrapotassic varieties such as phonolite, foidites, lamprophyres, and lamproites. In principle, these minerals can be used to infer pre-eruptive magmatic conditions, provided that complete chemical analysis, including Fe2+, Fe3+, and H2O contents, are available. In addition, mica is an important scavenger of some lithophile elements (LILE) (such as Ba) and high-field strength elements (HFSE) (Ti) that are particular soluble in high K, OH-, and CO2 melts (Chakmouradian 2006). LILE/HFSE and HFSE concentration/dilution relationships are considered crucial in petrological investigations and magma tectonic assignments. In practice, volcanic micas may undergo complex geologic histories and non-equilibrium conditions. This makes it more difficult to develop activity-composition models for solid solutions in volcanic micas as are needed to determine magmatic intensive variables (Feldstein et al. 1996). In addition, the possibility that the structures and crystal chemistry of micas may preserve a record of the geologic processes they underwent has often been neglected in the past. Only in recent works has the...
crystallographic approach has been systematically adopted in the study of geologically well-characterized volcanic micas (Brigatti et al. 2005; Scordari et al. 2006; Matarrese et al. 2006a, 2006b; Matarrese 2007). In contrast, the relationship between crystal chemistry and petrogenesis for metamorphic biotites has been well assessed (Henry and Guidotti et al. 2002; Henry et al. 2005; Cesare et al. 2003).

It is known that understanding the crystal chemistry and solid solution of natural micas is quite a challenge because these minerals are affected by multiple cationic and anionic substitutions. Not only does the chemical disorder involve the tetrahedral (Si, Al, Fe, Ti), octahedral (Mg, Mn, Fe²⁺, Fe³⁺, Ti, Al, Cr, __), interlayer (K, Ba, Ca, Na, NH₄, __), and anion (OH⁻, O²⁻, Cl⁻, F⁻) sites, but the same chemical constituents may enter the mica structure according to different heterovalent substitutions. For example, the most likely mechanisms of Ti substitution are (1) $2 VIM²⁺ ↔ VITi⁴⁺ + VITi⁴⁺$, known as Ti-vacancy (Forbes and Flower 1974); (2) $VIM²⁺ + 2IVSi⁴⁺ ↔ VITi⁴⁺ + 2IVAl³⁺$, known as Ti-Tschermak (Robert 1976); and (3) $VIM²⁺ + 2(\text{OH}⁻) ↔ VITi⁴⁺ + 2O²⁻ + H₂$, known as Ti-oxy (Bohlen et al. 1980).

Different authors have ascertained that Fe³⁺-oxy $\leftrightarrow VITi⁴⁺ + O²⁻ + \frac{1}{2}H₂$ and Ti-oxy substitutions (mechanism 3 above) play a major role both in metamorphic and igneous phlogopites (Virgo and Popp 2000; Righter et al. 2002; Cesare et al. 2003).

The synergy of several independent analytical techniques is required to correctly assess the substitution mechanisms and correct site populations that form the basis from which reliable activity-composition models may be developed. In the present study, the combination of electron probe micro analysis (EPMA), secondary ion mass spectrometry (SIMS), C-H-N analysis, structural (single-crystal X-ray diffraction, SCXRD), and spectroscopic (Mössbauer) analyses has been used to understand the crystal chemistry of trioctahedral micas from foiditic-phonoilitic pyroclastics of Monte Vulture (Potenza, Italy).

The explosive-effusive activity of Mt. Vulture lasted about 750 ka and produced a large variety of alkaline, SiO₂-undersaturated volcanic rocks ranging from carbonatites and melilitites, to foidite, phonoilitic-foidite, tephritite-phonoilitic, and phonoilites (Stoppa et al. 2006). Based on their ages (Brockinchi et al. 1994), the Vulture products may be classified as old (~700 ka), interme-

500 ka and produced a large variety of alkaline, SiO₂-undersaturated volcanic rocks ranging from carbonatites and melilitites, to foidite, phonoilitic-foidite, tephritite-phonoilitic, and phonoilites (Stoppa et al. 2006). Based on their ages (Brockinchi et al. 1994), the Vulture products may be classified as old (~700 ka), interme-

Major-elements compositions were determined on 36 crystals from polished thin sections and on six discrete crystals selected from the concentrates and embed-

in epoxy resin. The latter crystals were also used for structural analysis.

Chemical compositions of samples in thin sections were measured with a Cameca SX50 in full WDS mode. Analyses were performed at the Natural History Museum (EMMA facilities) of London. Operating conditions were 15 kV, ~20 nA, and 5 μm beam diameter. The standards used were jadeite (Na, Si), periclase (Mg), wollastonite (Ca), rutile (Ti), aluminum oxide (Al), iron oxide (Fe), potassium bromide (K), barium fluoride (Ba), rubidium manganese fluoride (F), halite (Cl), nickel metal (Ni), cromite (Cr), manganese metal (Mn), apatite (P), and celestine (Sr).

The compositions of the six single crystals that were used for structure refinement were measured by wavelength dispersive spectrometry using a Cameca SX-50 electron microprobe at the Istituto di Geologia Ambientale e Geoingegneria, CNR, Rome, with the following operating conditions: 15 kV accelerating voltage, 15 nA specimen beam current, and 10 μm beam diameter. The following standards were employed: jadeite (Na), periclase (Mg), wollastonite (Si and Ca), rutile (Ti), corundum (Al), magnetite (Fe), orthoclase (K), barite (Ba), fluor-phlogopite (F), sylvite (Cl). A conversion from X-ray counts to oxide weight percentages (wt%) was made with the PAP procedure (Pouchou and Pichoir 1985).

The chemical composition of sample VUT191 bulk rock was determined by major element analysis (combination of X-ray Fluorescence, Titration, Atomic Absorption Spectrometry) at the SGS Canada INC Mineral Services, Toronto.

EPMA

Major-elements compositions were determined on 36 crystals from polished thin sections and on six discrete crystals selected from the concentrates and embedded in epoxy resin. The latter crystals were also used for structural analysis.

Chemical compositions of samples in thin sections were measured with a Cameca SX50 in full WDS mode. Analyses were performed at the Natural History Museum (EMMA facilities) of London. Operating conditions were 15 kV, ~20 nA, and 5 μm beam diameter. The standards used were jadeite (Na, Si), periclase (Mg), wollastonite (Ca), rutile (Ti), corundum (Al), magnetite (Fe), orthoclase (K), barite (Ba), fluor-phlogopite (F), sylvite (Cl). A conversion from X-ray counts to oxide weight percentages (wt%) was made with the PAP procedure (Pouchou and Pichoir 1985).

The chemical composition of sample VUT191 bulk rock was determined by major element analysis (combination of X-ray Fluorescence, Titration, Atomic Absorption Spectrometry) at the SGS Canada INC Mineral Services, Toronto.

C-H-N

Bulk C, H, and N analysis of mica concentrates was performed with the EA 1108 elemental analyser of CE Instruments at CNR-IGG, Padova, calibrated with standard Acetanilide (C₈H₇NO). The analysis was carried out on ~30 mg of powdered sample.

SIMS

SIMS measurements were performed with a CAMECA IMS 4f ion microprobe installed at the CNR-IGG at Pavia, Italy. A ~12.5 kV accelerated °O primary ion beam was used having a current intensity of 3–7 nA and a diameter of ~5–10 μm beam, following procedures similar to those adopted by L.O. in the paper by Mesto et al. (2006). Sample mounts and standards were left to de-gas overnight in the ion-microprobe sample chamber. Secondary ion signals of the following isotopes were monitored at the electron multiplier: 1H⁺, ²Li⁺, ³F⁻, and ²⁺Si (the latter was used as an inner reference for the matrix). Acquisition times were 20 s (H), 10 s (Li), 50 s (F), and 15 s (Si) over 5 analytical cycles. Detection of positive secondary ions having kinetic energies in the range of 75–125 eV was obtained under steady-state sputtering conditions after 15 min of pre-sputtering. According to previous SIMS work on light elements in micas, the analysis of “filtered” secondary ions is useful in reducing most chemical matrix effects and in improving the overall measurement reproducibility (Ottolini et al. 1993, 1995 and references therein). Several medium-silica silicate standards were employed for the quantification of the ion signals for H, Li, and F. Finero phlogopite (SiO₂ = 40.04 wt%, 4.20 wt% H₂O, 712 ppm F), kornerupine no.6, schorl no.16, dravite
no.18, and clinopyroxene no.19 (from Ottolini et al. 2002). In particular, we adopted empirical corrections to the ion yield (Y) (H/Si) to consider the variation of the ion signals with increasing Fe* content in the sample, as fully described in Ottolini and Hawthorne (2001) and Ottolini et al. (2002). The sample mounts were then re-polished smoothly, carbon coated, and investigated with the electron microprobe proximal to the SIMS craters. These EMPA data were then used in the final SIMS quantification procedures.

Mössbauer spectroscopy

The sample for Mössbauer investigation was prepared by crushing the mica under acetone to minimize atmospheric oxidation and the powdered material was dispersed in a 0.5 inch diameter holder. Transmission 57Fe Mössbauer spectra were obtained on 20 mg of powdered sample at room temperature (RT) using a 1µCi thick source in a Rh matrix. The transducer was employed in constant acceleration mode over a Doppler velocity range of ±4 mm/s. Data were acquired on 512 channels and folded to give a flat background and a zero velocity position corresponding to the center shift (CS, also called isomer shift) of metallic α-Fe at RT. The spectrum was fitted using the Voigt-based Quadrupole Splitting Distribution (QSD) method developed by Rancourt and Ping (1991) and implemented in the software RECOIL (Lagarec and Rancourt 1997, 1998). This method assumes that the QSD for each generalized site is composed of a number (N) of Gaussian components. The number of Gaussian components is chosen on statistical grounds and has no particular crystal-chemical meaning, but has to ensure that the true QSD of the spectral contribution is well-represented by the sum of Gaussians (Rancourt et al. 1994a, 1994b).

SCXRD

X-ray diffraction (XRD) data were collected from single crystals selected from the mica concentrates, using a Bruker AXS X8 APEX II CCD automated diffractometer equipped with a four-circle Kappa goniometer and graphite-monochromatized MoKα radiation (50 kV and 30 mA operating conditions). Several sets of frames were recorded with a crystal-to-detector distance of 40 mm and a strategy optimized by the APEX suite program (Bruker 2003b). A set of 12 frames was used for initial cell determination, whereas complete data collection was accomplished by several ω and θ scans with 0.5° rotation and 10 s exposure time per frame. The whole Ewald sphere (zH, zK, zL) was recorded in θ ranges up to ~40°. Reflection intensities were extracted and corrected for Lorentz-polarization using the SAINT program (Bruker 2003a). Absorption correction was applied using SADABS (Sheldrick 2003). Least-squares refinements were performed using the program CRYSTALS (Betteridge et al. 2003) in the space group C2/m. Starting atomic coordinates were taken from Mesto et al. (2006). The refined parameters were scale factor, atomic positions, cation occupancy factors, and anisotropic displacement parameters. Ionized X-ray scattering curves were employed for non-tetrahedral cations, whereas ionized vs. neutral species were used for Si and O (Hawthorne et al. 1995). At octahedral sites, the electron density was fitted by varying Fe2+ vs. Mg2+ occupancies with full occupancy constraints, whereas for interlayer and tetrahedral sites, the use of restraints (Watkin 1994) allowed the occupancy to assume values greater than or less than 1. This procedure accounts for interlayer and tetrahedral substitutions and provides a better fit to the electron density, particularly at tetrahedral sites.

RESULTS AND DISCUSSION

Chemical analyses

Bulk-rock analysis. The chemical composition of sample VUT191 bulk rock is (in oxide wt%): 48.07% SiO2, 1.04% TiO2, 18.15% Al2O3, 4.24% FeO, 3.09% Fe2O3, 0.21% MnO, 4.54% MgO, 9.51% CaO, 4.38% Na2O, 1.07% K2O, 0.94% P2O5, and 3.91% loss on ignition (L.O.I.), with a sum of 99.15%. Sample VUT191 is thus an SiO2-undersaturated, CaO-rich, alkaline rock with a sodic character having Na2O > K2O (Irvine and Baragar 1971). Its high XCr [XCr = Mg/(Mg + Fe) ~72] indicates that it is still a primitive rock. High L.O.I. prevents the use of the TAS diagram, but according to the De La Roche diagram (De La Roche et al. 1980), the rock is a “trachy-basalt” that clearly contrasts with its pheno-crystals modal content and associated rocks. Inconsistent chemical classification is explained by the remarkable content of analcime that may replace foids. The associated lava VUT193 is chemically a phonolitic-tephrite (according de La Roche’s R1-R2 diagram). Its modal composition is tephritic-phonolite, and may represent an evolved rock derived from VUT191. Thus, the VUT191 rock sample may be related to a relatively primitive liquid (tephri-foidite) that was able to evolve in composition toward tephritic-phonolite, possibly through clinopyroxene crystal settling in a magma chamber and an increase in feldspar content.

Micas analyses. The results of electron microprobe analysis are reported on Table 1 for micas from thin section and in Tables 2 and 3, for mica single crystals that were used structure refinement. The latter analyses represent averages of 5–10 spots per crystal. Considering the whole data set, VUT191 phlogopite is characterized by remarkable chemical inhomogeneity, as revealed by the generally large ranges in oxide wt%: 33.14–38.01 for SiO2, 15.56–20.45 for Al2O3, 13.02–20.81 for MgO, 6.34–4.08 for FeOtot, 2.34–6.02 for TiO2, 6.03–9.48 for K2O, 0.50–0.78 for Na2O, and 0.89–4.06 for BaO.

The H2O content determined from C-H-N analysis is 2.86 ± 0.36 wt%. This value is the average of two different measurements (that yielded 3.11 and 2.60 wt%) performed on different aliquots of the same mica sample. This result suggests a degree of inhomogeneity of OH concentration, which also has been documented for other Mt. Vulture phlogopites (Mesto et al. 2006). No nitrogen was detected in the analyzed samples, whereas the carbon content was 0.18 ± 0.02 wt% C.

SIMS measurements were performed on two out of the six single crystals used for structure refinement (VUT191_2 and VUT191_19), selected on the basis of their different chemistries and c-parameters (see below). The grain to grain chemical variability noted above extends to light elements (H, Li, F, see Tables 2 and 3).

All considered, the analyzed samples are solid solutions between phlogopite [K[(Mg,Fe)3AlSi3O10(OH)2]] and annite [KFe3+[(Si,Al)3O10(OH)2]] with Ti 0.10–0.38 apfu, Ba 0.03–0.12 apfu, and a variable degree of dehydrogenation. The atomic ratios for data from single crystals, as listed in Table 3, were calculated on the basis on 12(O, OH, Cl, F), assuming all Ti as Ti4+ and using the Fe2+/Fe3+ ratios provided by the Mössbauer investigation (see below). Final crystal-chemical formulae and a critical discussion of data in Table 3 are postponed to the section on crystal chemistry below.

Figure 1 is a plot of the annite component [Fe2+/Fe3+ + Mg], vs. the Ti content (apfu) for the samples of the present study. For comparison, data from other well-characterized micas from Mt. Vulture, all from the Barile Synthem but from different subsynthems, are also shown. Unlike micas belonging to other subsynthems (such as SA sample, from Rionero Subsynthem as discussed in Scordari et al. 2006) and the VUT187 sample from the Ventarulo Subsynthem, the VUT191 phlogopite has an annite component that spans almost the whole interval of variation (0.15–0.40) found so far for Monte Vulture micas (Matarrese et al. 2006, 2007).

Mössbauer spectroscopy

The results of the Mössbauer investigation are reported in Table 4 and typical Mössbauer spectra of the micas are displayed in Figure 2. Three absorption bands occur at approximately –0.2,
1.0, and 2.3 mm/s that correspond respectively to (1) the sum of low-energy lines of 57Fe$^{2+}$ and 57Fe$^{3+}$ doublets; (2) the high-energy line of the 57Fe$^{2+}$; and (3) the high-energy component of the 57Fe$^{2+}$ doublet. No shoulder at ~0.5 mm/s (which would be evidence for the occurrence of tetrahedral Fe$^{2+}$; see Redhammer et al. 2005) was observed. In Table 4, the results of n_2-n_2 fittings are compiled, where n_2 and n_2 are the numbers of assumed OSD Gaussian components for 57Fe$^{2+}$ 57Fe$^{3+}$ sites, respectively. For the sample analyzed here, $n_2 = n_2 = 1$. A/A' ratios were allowed to vary during fitting (see Table 4) to account for the possibility that the orientation of crystallites in the analyzed powder is not completely random (Rancourt et al. 1994b).

The fitting parameters are consistent with those reported in the literature for synthetic and natural triocahedral micas (Redhammer 1998; Rancourt et al. 1993, 1994a; Shahani 1999; Dyar 2002, Redhammer et al. 2005). The sample is Fe$^{3+}$-rich, having Fe$^{3+} = 25\%$ and Fe$^{3+} = 75\%$.

Previous investigations have shown that Mt. Vulture micas are characterized by a variable but nevertheless high ratio of Fe$^{3+}$/Fe$^{2+}$, ranging from 42 to 88% (Matarrese et al. 2005, 2006, 2007; Scordari et al. 2006; Schingaro et al. 2006; Matarrese 2007). Focusing only on micas from intermediate Vulture volcanics, Scordari et al. (2006) have found 44% Fe$^{2+}$ and 56% Fe$^{3+}$ in their SA sample (Rionero Subsynth), whereas Schingaro et al. (in review) studied a phlogopite from the Ventaruro Subsynth that has 13% Fe$^{3+}$ and 87% Fe$^{2+}$. However, the typical Fe$^{3+}$/Fe$^{2+}$ ratio for Mt. Vulture micas is ~50% (Matarrese 2007), and in all cases where an Fe$^{3+}$/Fe$^{2+}$ ratio $> 50\%$ has been found, late- and/or post-magmatic events can be invoked, which affected the original Fe$^{3+}$ contents.

Table 1. Electron probe microanalysis (wt%) for VUT191 phlogopites in thin sections

<table>
<thead>
<tr>
<th>Sample</th>
<th>191_1</th>
<th>191_3</th>
<th>191_4</th>
<th>191_5</th>
<th>191_6</th>
<th>191_7</th>
<th>191_8</th>
<th>191_9</th>
<th>191_10</th>
<th>191_12</th>
<th>191_14</th>
<th>191_15</th>
<th>191_16</th>
<th>191_17</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>37.416</td>
<td>36.616</td>
<td>35.596</td>
<td>33.848</td>
<td>33.574</td>
<td>34.105</td>
<td>33.805</td>
<td>36.706</td>
<td>36.868</td>
<td>37.459</td>
<td>34.291</td>
<td>33.257</td>
<td>33.138</td>
<td>36.293</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>2.344</td>
<td>3.022</td>
<td>3.876</td>
<td>5.721</td>
<td>5.339</td>
<td>5.464</td>
<td>5.816</td>
<td>2.891</td>
<td>2.585</td>
<td>2.539</td>
<td>5.503</td>
<td>6.022</td>
<td>5.706</td>
<td>2.951</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>0.140</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.092</td>
<td>0.023</td>
<td>0.067</td>
<td>0.026</td>
<td>0.007</td>
<td>0.018</td>
<td>0.094</td>
</tr>
<tr>
<td>MnO</td>
<td>0.017</td>
<td>0.035</td>
<td>0.179</td>
<td>0.231</td>
<td>0.245</td>
<td>0.192</td>
<td>0.152</td>
<td>0.037</td>
<td>0.022</td>
<td>0.045</td>
<td>0.205</td>
<td>0.178</td>
<td>0.209</td>
<td>0.070</td>
</tr>
<tr>
<td>BaO</td>
<td>0.909</td>
<td>1.278</td>
<td>1.278</td>
<td>3.800</td>
<td>3.520</td>
<td>3.506</td>
<td>3.616</td>
<td>1.106</td>
<td>0.933</td>
<td>0.972</td>
<td>1.459</td>
<td>4.058</td>
<td>3.472</td>
<td>1.282</td>
</tr>
<tr>
<td>CaO</td>
<td>0.190</td>
<td>0.115</td>
<td>0.115</td>
<td>0.050</td>
<td>0.038</td>
<td>0.057</td>
<td>0.069</td>
<td>0.510</td>
<td>0.127</td>
<td>0.206</td>
<td>0.173</td>
<td>0.137</td>
<td>0.153</td>
<td>0.554</td>
</tr>
<tr>
<td>Cl</td>
<td>0.039</td>
<td>0.016</td>
<td>0.072</td>
<td>0.136</td>
<td>0.112</td>
<td>0.076</td>
<td>0.098</td>
<td>0.017</td>
<td>0.023</td>
<td>0.027</td>
<td>0.095</td>
<td>0.103</td>
<td>0.094</td>
<td>0.040</td>
</tr>
<tr>
<td>Sum</td>
<td>94.30</td>
<td>94.96</td>
<td>96.367</td>
<td>96.745</td>
<td>95.86</td>
<td>96.77</td>
<td>96.616</td>
<td>96.106</td>
<td>94.893</td>
<td>95.19</td>
<td>95.764</td>
<td>96.151</td>
<td>94.844</td>
<td>95.018</td>
</tr>
</tbody>
</table>

Note: n.d. = not determined.
* From Mössbauer spectroscopy.
Structural features

Details on data collection, lattice parameters, results of structure refinements, fractional atomic coordinates, partial occupancies, anisotropic, and equivalent isotropic refinements are given in Tables 5 and 6. Tables 7 and 8 contain selected bond lengths and distortion parameters describing the polyhedral and layer geometry for the studied samples. Atomic labeling is the same as in Hazen and Burnham (1973). The refinements performed in space group $C2/m$ converged at $1.89 \leq R \leq 3.17, 2.09 \leq R_{\text{p}} \leq 3.43\%$. The difference Fourier maps revealed hydrogen in the expected position for all samples, but extra peaks were observed for samples VUT191_10 and VUT191_11. In particular for sample VUT191_10, the initial structure refinement converged at $R = 7.49, R_{\text{p}} = 7.88\%$ and the residual electron density gave $\rho_{\text{min}} = -0.75$, and $\rho_{\text{max}} = 7.24 \text{ e/Å}^3$. The same parameters for sample VUT191_11 were $R = 4.30, R_{\text{p}} = 4.75\%, \rho_{\text{min}} = -0.45$, and $\rho_{\text{max}} = 2.68 \text{ e/Å}^3$. Extra peaks in difference Fourier syntheses apparently pointed to $\pm h/3$ shifts of the T and K atomic positions (Schingaro et al. 2001). It turned out that these samples were affected by the Durovich effect (Nespolo and Ferraris 2001), so that the large residues in electron density maps could be ascribed to systematic wrong measurements of non-family reflections. In subsequent refinements, different scales were allowed to vary for reflections hkl with $k = 3n$ and hkl with $k \neq 3n$, which refined to 0.563(1), 0.437(1) and 0.533(1), 0.467(1) for VUT191_10, and VUT191_11, respectively.
In the final step of the anisotropic refinements, the hydrogen atom was added to the model. Its coordinates and occupancy were refined (see Table 6), whereas the displacement parameters were made to ride those of the O4 atom. The final O–H distances were in the range 0.74(6)–0.87(5) Å.

The variation of the c-parameter, which ranges from 10.1569(4) Å (sample VUT191_19) to 10.2458(4) Å (sample VUT191_1), see Table 5 is notable. This behavior is peculiar for micas of the Vulture-S. Michele Subsynthem, in other subsynthems so far investigated, the relevant phlogopites have much smaller ranges of variation (Matarrrese et al. 2006; Schingaro et al. 2006; Matarrrese 2007). This feature seems to reflect the grain-to-grain variability of chemical composition already highlighted above. However, the c parameters observed for the micas of this study are small when compared with those of close-to-end-member annite [10.3235(4) Å, Redhammer and Roth (2002)] and close-to-end-member phlogopite [10.291(4) Å, Alietti et al. (1995); 10.3100(5) Å, synthetic sample Phl no. 2...

In the final step of the anisotropic refinements, the hydrogen atom was added to the model. Its coordinates and occupancy were refined (see Table 6), whereas the displacement parameters were made to ride those of the O4 atom. The final O–H distances were in the range 0.74(6)–0.87(5) Å.

The variation of the c-parameter, which ranges from 10.1569(4) Å (sample VUT191_19) to 10.2458(4) Å (sample VUT191_1), see Table 5 is notable. This behavior is peculiar for micas of the Vulture-S. Michele Subsynthem, because in all other subsynthems so far investigated, the relevant phlogopites have much smaller ranges of variation (Matarrrese et al. 2006; Schingaro et al. 2006; Matarrrese 2007). This feature seems to reflect the grain-to-grain variability of chemical composition already highlighted above. However, the c parameters observed for the micas of this study are small when compared with those of close-to-end-member annite [10.3235(4) Å, Redhammer and Roth (2002)] and close-to-end-member phlogopite [10.291(4) Å, Alietti et al. (1995); 10.3100(5) Å, synthetic sample Phl no. 2...

In the final step of the anisotropic refinements, the hydrogen atom was added to the model. Its coordinates and occupancy were refined (see Table 6), whereas the displacement parameters were made to ride those of the O4 atom. The final O–H distances were in the range 0.74(6)–0.87(5) Å.

The variation of the c-parameter, which ranges from 10.1569(4) Å (sample VUT191_19) to 10.2458(4) Å (sample VUT191_1), see Table 5 is notable. This behavior is peculiar for micas of the Vulture-S. Michele Subsynthem, because in all other subsynthems so far investigated, the relevant phlogopites have much smaller ranges of variation (Matarrrese et al. 2006; Schingaro et al. 2006; Matarrrese 2007). This feature seems to reflect the grain-to-grain variability of chemical composition already highlighted above. However, the c parameters observed for the micas of this study are small when compared with those of close-to-end-member annite [10.3235(4) Å, Redhammer and Roth (2002)] and close-to-end-member phlogopite [10.291(4) Å, Alietti et al. (1995); 10.3100(5) Å, synthetic sample Phl no. 2...
in Redhammer and Roth (2002). This indicates that substitution occurs at the O4 hydroxyl site. The shortening of the c parameter is partly due to OH ↔ F substitution (Bouklí et al. 2001), but it has been shown that substitutions involving a deprotonation mechanism generally play a major role (Cesare et al. 2003; Scordari et al. 2006 and references therein). In particular, it is recognized that Ti-oxygen substitutions lead to diagnostic values for some structural features, such as (1) shortening of the c parameter as well as of the K-O4 distance; (2) high values of bond length distortions (BLD) for M2, see Table 8; (3) high values of the shift of the M2 cation from the geometric center of the octahedron toward the O4 oxygen; and (4) low values for \(\Delta c_{oc4}\) and \(\Delta a_{4}\) (Cruciani and Zanazzi 1994; Cesare et al. 2003; Schingaro et al. 2005a; Scordari et al. 2006). In addition, the occurrence of M\(^{3+}\)-oxy-type substitutions, with M\(^{3+}\) = Al\(^{3+}\), Fe\(^{3+}\), Ti\(^{4+}\), has been assessed in other Vulture micas (Scordari et al. 2006; Matarrese et al. 2006). In the case of the VUT191 phlogopites, however, not all samples follow the trends typical of oxy-substituted micas (see below).

Individual tetrahedra are regular and slightly elongated in the direction of the T-O\(_{\text{apical}}\) bond. The tetrahedral mean bond lengths and parameters describing geometrical features of the tetrahedron (Tables 7, 8, and 10) do not vary much from sample to sample, consistent with the limited compositional variation of the T sites (see Table 9). The examined crystals exhibit an inverse dependence of the \(\alpha\)-values relative to their Fe contents, as expected.
from comparison to literature data (Cruciani and Zanazzi 1994; Brigatti and Guggenheim 2002; Brigatti et al. 2005). Variations of octahedral bond distances, with \(<M1-O> \) in the range 2.074–2.082 Å, and \(<M2-O> \) in the range 2.064–2.072 Å (Table 7), and of the octahedral mean atomic numbers (m.a.n.), 14.13 \(\leq \) m.a.n. (M1) \(\leq \) 16.77 e–, 14.35 \(\leq \) m.a.n. (M2) \(\leq \) 17.04 e– (Table 10), reflect the variations of the annite component and of the Ti content (see Fig. 1 and accompanying discussion).

The analyzed micas are meso-octahedral from a geometrical viewpoint (Table 7), with the exception of VUT191_1 and VUT191_2 single crystals, which are homo-octahedral (Weiss et al. 1992). From a chemical viewpoint (i.e., considering the mean atomic numbers at the M1 and M2 sites; Table 10), the samples are homo-octahedral (Ďurovič 1994). Indeed, the average error associated with the refined site-scattering power (here referred to as mean atomic number) is 0.5 e–, whereas the differences between M1 and M2 mean atomic numbers are within 1 e– (see Table 10). Systematic differences in structural parameters between samples VUT191_1 and VUT191_2 on the one hand and the remaining single crystals on the other, are apparent from comparison to literature data (Cruciani and Zanazzi 1994; Cesare et al. 2003), also taking into account the contribution of F to the shortening of the c-parameter as well

Crystal chemistry

Figure 3 illustrates the variation of the c-parameter of the micas as a function of the water content as determined by SIMS. It is apparent that micas with the shortest c-parameter are more dehydrogenated. However, micas with intermediate c values may have remarkably different degrees of dehydrogenation. Inspection of Figures 4 and 5, which plot the out-of-center-shift parameters and the \(<K-O> \) outer distances, respectively, vs. Ti content, show clearly that the samples can be divided into two distinct groups (see section Structural features) that are expected to be affected by different substitution mechanisms. This was confirmed by the comparison of the relevant crystal chemical formulae (Table 9), whose calculation is detailed below.

The crystal-chemical formulae reported on Table 3 were obtained by combining electron microprobe, SIMS, and Mössbauer investigations, using the 12(O, OH, Cl, F) basis. When SIMS analyses were not available, the C-H-N value was used. However, the latter is an average value (see section Micas analyses) and proved not to be suitable for every single crystal, in particular for those characterized by low c-values. In the latter cases, indeed, micas should be more strongly dehydrogenated, and the average C-H-N value invariably leads to an overestimation of octahedral vacancies, providing unacceptable discrepancies (in the range 3–5 e–) between EPMA- and SCXRD-derived mean atomic numbers. In those cases, the OH contents were estimated from structural parameters (c, \(<K-O> \) outer, see Cruciani and Zanazzi 1994; Cesare et al. 2003), taking into account the contribution of F to the shortening of the c-parameter as well

Table 7. Results of structure refinement in space group C2/m: selected bond distances (Å)

<table>
<thead>
<tr>
<th>Samples</th>
<th>VUT191_1</th>
<th>VUT191_2</th>
<th>VUT191_10</th>
<th>VUT191_11</th>
<th>VUT191_13</th>
<th>VUT191_19</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-O(1)</td>
<td>1.662(3)</td>
<td>1.663(3)</td>
<td>1.660(2)</td>
<td>1.661(2)</td>
<td>1.661(2)</td>
<td>1.657(2)</td>
</tr>
<tr>
<td>T-O(1')</td>
<td>1.664(3)</td>
<td>1.664(3)</td>
<td>1.665(2)</td>
<td>1.662(2)</td>
<td>1.662(2)</td>
<td>1.662(2)</td>
</tr>
<tr>
<td>T-O(2)</td>
<td>1.661(2)</td>
<td>1.663(2)</td>
<td>1.663(1)</td>
<td>1.666(2)</td>
<td>1.660(1)</td>
<td>1.661(2)</td>
</tr>
<tr>
<td>T-O(3)</td>
<td>1.656(3)</td>
<td>1.664(3)</td>
<td>1.675(1)</td>
<td>1.679(2)</td>
<td>1.677(2)</td>
<td>1.677(3)</td>
</tr>
<tr>
<td>T-O(4)</td>
<td>1.661</td>
<td>1.664</td>
<td>1.666</td>
<td>1.667</td>
<td>1.665</td>
<td>1.664</td>
</tr>
<tr>
<td>M1-O(4)(x2)</td>
<td>2.050(4)</td>
<td>2.037(5)</td>
<td>2.047(2)</td>
<td>2.042(3)</td>
<td>2.043(3)</td>
<td>2.038(4)</td>
</tr>
<tr>
<td>M1-O(3)(x4)</td>
<td>2.094(3)</td>
<td>2.092(3)</td>
<td>2.098(2)</td>
<td>2.097(2)</td>
<td>2.102(2)</td>
<td>2.097(2)</td>
</tr>
<tr>
<td>M1-O</td>
<td>2.079</td>
<td>2.074</td>
<td>2.081</td>
<td>2.079</td>
<td>2.082</td>
<td>2.077</td>
</tr>
<tr>
<td>M2-O(4)(x2)</td>
<td>2.034(3)</td>
<td>2.021(4)</td>
<td>2.010(2)</td>
<td>1.999(3)</td>
<td>1.986(2)</td>
<td>1.983(3)</td>
</tr>
<tr>
<td>M2-O(3)(x2)</td>
<td>2.088(3)</td>
<td>2.087(3)</td>
<td>2.086(1)</td>
<td>2.084(2)</td>
<td>2.085(2)</td>
<td>2.086(2)</td>
</tr>
<tr>
<td>M2-O(3)(x2)</td>
<td>2.084(3)</td>
<td>2.098(3)</td>
<td>2.110(2)</td>
<td>2.116(3)</td>
<td>2.127(2)</td>
<td>2.123(3)</td>
</tr>
<tr>
<td>M2-O</td>
<td>2.072</td>
<td>2.069</td>
<td>2.069</td>
<td>2.066</td>
<td>2.064</td>
<td>2.064</td>
</tr>
<tr>
<td>M-O</td>
<td>2.074</td>
<td>2.071</td>
<td>2.073</td>
<td>2.070</td>
<td>2.070</td>
<td>2.068</td>
</tr>
<tr>
<td>K-O(1)(x4)</td>
<td>2.947(3)</td>
<td>2.939(3)</td>
<td>2.944(2)</td>
<td>2.942(2)</td>
<td>2.945(2)</td>
<td>2.943(3)</td>
</tr>
<tr>
<td>K-O(1')(x4)</td>
<td>3.386(3)</td>
<td>3.392(3)</td>
<td>3.364(2)</td>
<td>3.355(2)</td>
<td>3.343(2)</td>
<td>3.346(3)</td>
</tr>
<tr>
<td>K-O(2)(x2)</td>
<td>2.948(5)</td>
<td>2.939(5)</td>
<td>2.948(2)</td>
<td>2.941(3)</td>
<td>2.949(3)</td>
<td>2.943(4)</td>
</tr>
<tr>
<td>K-O(2')(x2)</td>
<td>3.396(4)</td>
<td>3.398(5)</td>
<td>3.374(2)</td>
<td>3.368(3)</td>
<td>3.361(3)</td>
<td>3.362(4)</td>
</tr>
</tbody>
</table>
as charge-balance considerations. The final crystal-chemical formulae are compiled in Table 9.

For sample VUT191-1, the average water content provided by C-H-N analysis was initially used for the formula recalculation (see Table 3). This value gave a sum of octahedral cations greater than 3 apfu. Considering the close similarity of this sample to sample VUT191_2, both with respect to chemistry (Fe/Mg, Ti content) and structural features (Tables 7 and 8 and Figs. 4 and 5), it was concluded that the water contents of these two samples should also be similar. As a result, the final formula listed in Table 9 for VUT191_1 was calculated using the same water content as sample VUT191_2. For VUT191_2 and VUT191_19 (i.e., for samples for which SIMS data were available), the formulae in Tables 3 and 9 coincide.
For samples from VUT191_10 to VUT191_19 in Table 9, apart from the M^{3+}-Tschermak substitutions ($\text{VIM}^{2+} + \text{IVSi}^{4+} \leftrightarrow \text{VIM}^{3+} + \text{IVAl}^{3+}$), the remaining M^{3+} cations and the Ti^{4+} cations are involved in M^{3+}-oxy ($\text{VIM}^{2+} + (\text{OH})^{-} \leftrightarrow \text{VIM}^{3+} + \text{IVAl}^{3+}$), with $\text{M}^{3+} = \text{Al}, \text{Fe}^{3+}$), the remaining M^{3+} cations apart from the M^{3+}-Tschermak substitutions ($\text{VIM}^{2+} + \text{IVSi}^{4+} \leftrightarrow \text{VIM}^{3+} + \text{IVAl}^{3+}$), the remaining M^{3+} cations and the Ti^{4+} cations are involved in M^{3+}-oxy ($\text{VIM}^{2+} + (\text{OH})^{-} \leftrightarrow \text{VIM}^{3+} + \text{IVAl}^{3+}$) and Ti-oxy substitutions ($\text{VIM}^{2+} + 2(\text{OH})^{-} \leftrightarrow \text{VITi}^{4+} + 2\text{O}^{2-} + \text{H}_{2}$), respectively. Low concentrations of octahedral vacancies are present and are charge-balanced through the Ti-vacancy substitution ($2\text{VIM}^{2+} \leftrightarrow \text{VITi}^{4+} + \text{VI}$).

Samples VUT191_1 and VUT191_2 instead have negligible or no oxy component. Sample VUT191_1 contains a high concentration of octahedral vacancies that are balanced through the Ti-vacancy mechanism. In sample VUT191_2, both Ti-vacancy and the dioctahedral-trioctahedral ($3\text{VIM}^{3+} \leftrightarrow 2\text{VIM}^{3+} + \text{VI}$) mechanism seem to be active.

The formulae in Table 9 generally demonstrate good agreement between observed and calculated mean atomic numbers, as well as between observed octahedral average bond distances and those calculated from the chemical molar fraction and atomic radii in Shannon (1976). In all the Fe- and Ti-rich samples (see Table 10, from sample VUT191_10 to VUT191_19), a tendency toward a systematic underestimation of the average octahedral bond distances is apparent. Such systematic variations of the observed bond lengths with respect to the radii of Shannon (1976) are already known (Bailey 1984; Gibbs et al. 1997; Mercier et al. 2006). In particular, Mercier et al. (2006) observed that for non end-member single-crystal biotite-1M structure, bond lengths calculated from Shannon’s radii tend to overestimate octahedral mean bond lengths between the Fe^{2+} and Mg^{2+} end-member, whereas the opposite is true when substitution by smaller $+3$, $+4$ cations occurs. Our data are consistent with those findings. Unfortunately, the new cation and coordination-specific bond lengths that these authors provided, apart from not being complete, are more suitable for trioctahedral micas with simpler compositions close to the M^{3+}-end members.

Another explanation for the discrepancies in observed vs. calculated average octahedral bond lengths in our samples is that the $\text{Fe}^{2+}/\text{Fe}^{3+}$ ratio provided by Mössbauer spectroscopy could be an “average” value, so that single crystals might depart from this value to different extents.

Further remarks

Petrographic and chemical evidence for VUT191 phlogopite shows a complete range of composition originating close to mantle micas and progressing up to high-$\text{T}/\text{low-}P$ subvolcanic micas. This variation indicates that micas can be passed through different stages of magmatic evolution, starting from a foiditic (nephelinitic) and/or melilititic primary magma, to a tephri-foiditic, and then to a thephi-foolithic term.

Chemical and structural data revealed that VUT191 phlogopite clusters into two groups, each characterized by different H contents and different Ti substitutions, in particular $\text{VIM}^{2+} + 2(\text{OH})^{-} \leftrightarrow \text{VITi}^{4+} + 2\text{O}^{2-} + \text{H}_{2}$ and $\text{VIM}^{2+} \leftrightarrow \text{VITi}^{4+} + \text{VI}$ (Ti-vacancy). This is a crucial point because the assessment of correct substitution mechanisms in biotite not only clarifies the behavior of petrologically interesting species (such as Fe, Ti) when they are incorporated into the mica structure, but also affects the choice of the amosite activity model from which several petrogenetic parameters may be derived (see for instance Fabbrizio et al. 2006).

Finally, Mössbauer results of the phlogopite analyzed here, as well as those analyzed in previous works (Matarrese et al. 2005; Scordari et al. 2006; Matarrese 2007) suggest variable f_{0}, and $f_{0,\text{H}}$ during the crystallization of micas of intermediate Monte Vulture pyroclastics. Thus, crystal settling of mafic minerals cannot account entirely for magma differentiation. Variable phreatomagmatic phenomena could help to explain not only such broad variations but also slightly different evolution patterns for the primary foiditic, melilititic melt.

Mica chemistry and structure can be used to predict bulk-rock chemistry, with the latter being modified by abundant analcime (plus cancrinite) formation during late-magmatic stages (Stoppa et al. 2006). The evolutionary stages experienced by the micas (see above) could parallel a possible polybaric/polythermal evolution from melilititic, nephelinitic, and phonolitic-foidite
to phonolite, which is more commonly observed at Mt. Vulture. According to a previous hypothesis, all rock types of the Vulture may derive from two rock series, one melilite-bearing and one melilite-free (Melluso et al. 1996). However, melilite-bearing series share the same geological setting as melilite-free series and occur together, with melilite-bearing and melilite-free rocks being persistently similar in petrochemistry and geochemistry (e.g., isotopes). Trace-element distributions in carbonatites/melilitites may derive from two rock series, one melilite-bearing and one to phonolite, which is more commonly observed at Mt. Vulture.

Bohlen, S.R., Peacor, D.R., and Essene, E.J. (1980) Crystal chemistry of a meta-igneous rock to phonolite, which is more commonly observed at Mt. Vulture.

Alietti, E., Brigatti, M.F., and Poppi, L. (1995) The crystal structure and chemistry of carbonatite may derive from two rock series, one melilite-bearing and one

Detailed reviews by G. Redhammer and an anonymous reviewer greatly improved the final manuscript. This work was supported by the COFIN-MIUR.

ACKNOWLEDGMENTS

The authors are grateful to Marcello Serracino for assistance during electron probe microanalyses at the Istituto di Geologia Ambientale e Geoingegneria, CNR, Rome. Antonio Giaretta is thanked for C-H-N measurements at CNR-IGC, Padova. Detailed reviews by G. Redhammer and an anonymous reviewer greatly improved the final manuscript. This work was supported by the COFIN-MIUR.

REFERENCES CITED

MATARESE ET AL.: PHLOGOPITE FROM VULTURE—S. MICHELE SUBSYNTEH VOLCANICS

Redhammer, G.J. and Roth, G. (2002) Single-crystal structure refinements and crystal chemistry of synthetic trioctahedral micas KM3(Al3+, Si4+)4O10(OH)2, where M = Ni2+, Mg2+, Co2+, Fe2+, or Al3+. American Mineralogist, 87, 1464–1476.

Manuscript received February 1, 2007
Manuscript accepted July 20, 2007
Manuscript handled by Francesco Sassi