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P. G. MANNING
Water Science Subdivisbn, Departrnmt of Envbonment,
562 Booth Street, Ottawa, anturio, Canad.a, KIA AE7.

ABsTRACrr

Extinction coefrcients (g) for the transitions oz{, --+
4AL4E(G) in octahedra|y-coordinated Fes+ ions in a
number of oxides and silicates have been collated and
shown to range from - I to 600. At the lower enil of
the g-range minerals are lightly coloured and at the
upper end elm6s1 fl6qlq the colour being due main-
ly' to gz- --+ Fes + [,fZ - centred drarge - transfer ab-
sorption The crystal-field transitions borrow intensiry
from charge-transfer absorptiorq the intensity of whi&
is dependent on the cation composition of tle seond
nearest neighbour sites. Charge-transfer is particular-
ly intense in materials containing Fe.i/i{-Mp units,
wher.e M - Als+ and Feg+. It is suggested that e-
values ol octahedral-Fes+ crystal-fleld bands can be
used as indicators of metal ions present in the second-
nearest neighbour sites. Muscovite and orthoclase are
used as examples.

hrrr.olucrron

Because crystal-field transitions in Mn2+ and
Fe8+ ions are spin-forbidden, extinction coeffi-
cients (e) are q(pected to be in the range 0.1-1.
\44rile this is generally the case for Mnz+ bands
(Maryring 1968a), r-values of Fes+ bands vary
considerably from one mineral to another. For
examplg e-values for tlle aAr--> +7t+g1G) transi-
tions in octahedral-Fes+ ions in andradite and
schorlomite are 1.5 and 15 respectively (Man-
ning & Townsend 1970). The large s-value for
schorlomite was attributed to intensity-stealing
from intense OE- -)Fes+ eJrarge-transfer absorp-
tion, iharge-transfer being facilitated by replace-
ment of second-nearest neighbour Sia+ ions by
less-covalent Als+ and Fd+. A similar mecha-
nism was invoked to srplain enhanced Mns+
crystal-field and charge-transfer absorption in
black tourmalines (Manning 1972a).

ln the current work, e-values have been col-
lated for Fe3+ transitions in a number of silicates
and oxides. The principal aim is to establish
whether s-values can be used as probes of local
crystal composition, in particular the cation com-
position of the second-nearest neighbow sites.
Recent crystal-field intexpretations of diffuse
iuterstellar bands have highlighted the need for

an understanding of factors controlling inten-
sities of Fd+ bands (Manning I972b).

Drscussron

A plot of log e against N, the number of
Fes+-centred-octahedron orygens not bonded to
Si, for Fe3+ bands in a variety of oxides and
silicates, is shown in Figure 1. A point for Fes+
in a phosphate glass is also included. Extinction
coefficients are calculated from

e - A/CJ (in litres/mole-cm)

where A: net absorbance, C: cation concen-
tration in moles/litre and I : sample thickness
in c . Where t-values are accurate to L 25/6,
as, in points a-g no error bars are included. For
most minerals, howevo, e-values are difficult to
calculate either because Fe8+ ions are distributed
between two different sites or, as in the case of
hematite, charge-transfer absorption is so intense
tlrat bands marking the 6.4r -->4Aa4E(G) transi-
tions, expected at *22700 *t-r (Vemon 1962;
Huffman 1970), have not been resolved. Never-
theless, the general shape of the curve in Figure I
is readily evident. The a-values range over three
orders of magnitude. Since the octahedral sites
in garnets are regular (Abrahams & Geller 1958 ;
Weidenborner 1961), it would seem that site dis-
tortions from octahedral symmetry can be ig-
nored. Note that points a-c in Figure 1 pertain
to lightly-coloured materials for which d-d bands
can be resolved for specimens -0.1 cm thick
(Manning 1967b, 1969). In contrast, intense
charge-transfer in schorlomite and gadolinium
iron garnets requires specimens be thinned to
0.0015 cm (Manning & Harris 1970) and 0.5 u:n
(Levenson & Sawatsky 1969) respectively, to per-
mit resolution ol d-d bands. The earlier sug-
gestion that crystal-field bands of Fe8+ borrow
intensity from 02- --t Fe8+ charge-transfer ab-
sorption is confirmed.

Calculatian of e-ualues

" ndradite. The molecular formula of the
Stanley Peak andradite studied earlier (Man-
ning 1967a) based on electron-probe analysis is
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Frc. l. A plot of log. 6, for the 8AL-->aALaE(G) tran-
sition in octahedral Fes+, against lV, tle number
of Fes+-centred-octahedron oriygens not bonc[ed ro
Sia+. Also included is a point (a) for Feg+ in a
phosphate glass. b = grossularl c = andradite; d =
titanaugite; e=s&orlomite; f =kimzsyits (n6g
fss5 than 2.0) : S = gadolinium iron garnet; h =
hematite.

Car.r(Fel.juMno.or)Siu.ru The s-value (:1.5)
was calculated from the total-Fe concentration
( : 21%) .

Grossular. The spectrum of a grossular con-
taining 3.4/e Fe has been reported earlier (Man-
ning 1969). The 8-coordinate FeP+ concentration
is I/s, based on the absorbance of the 8200
crn-1 Fe2+ band and assuming that the s-value
is the same as that (e : 1) for the corresponding
7800 cm-1 Fez+ band in almandines (Manning
1967b). The octahedral-Fe3+ concentration is
therefore 2.4/6 ail E: 1. Fe2+.Fe3+ ratio vras
confirmed to within !. 20% by complete chemi-
cal analysis.

Phosplwte glass. The spectrum is typically that
of octahedral-Fes+ (Kurkjian & Sigety 1968).
The e-value was calculated from the total-Fe
concentration.

Titanaugitu. Titanaugites have the general for-
neula Ca(Mg, Fe2 +, Fes *, Al8 + ) r (Sis-"Alj+)Os,
where r - 0.3 (Deer, Howie & Zussman 1962).
The 6A1 '-> aAfE(G) transition in octahedral-
FeB+ is seen at 22000 cm-1 and e.C : A/I: 12
(Manning & Nickel 1969). Chemical analysis
gave a formula close to that of a specimen from
Poland (Deer, Howie & Zussnan 1962, analysis
1, p. 123), giving r:0.31 and N: 0.93. Each
Fes+-centred-octahedron oxygen is bonded to a
tetrahedral ion. Based on 45% FezOa and assum-
ing FeB+ and Al3+ are uniformly distributed over
0.17 octahedral and 0.31 tetrahedral sites (out of
2.0), e: 9. The minimum E-value based on Fe8+
having a preference for the octahedral site is 6.
An upper limit of r cannot be calculated be-

cause there are sufficient tetrahedral positions
to take up all Fe8+ ions.

Schorlomite. Sdrorlomite contains both octa-
heclral- and tetrahedral-Fe8+ ions (Manning
I97%,; Burns 1972). Several chemical analyses
of the Magnet Cove crystals have been repofredt
ali in reasonable agreement. Ow Fe, Ti and Mn
values agreed well with those of Howie &
Woolley (1968). Assuming that Fes+ and Al8'
distribute uniformly between octahedral and
tetrahedral sites, the molecular formula is
cao (Fei.*rA13 j,ri1.1, ) (sii.L Fe3j5Al3.dgFe:+0.1 ),

whence N: 1.5 and, from the spectrum of Man-
ning & Harris (1970), r: 24. Eaah octahedral
ion in garnet has six second-nearest neighbour
Sia+ sites. The exheme values of e based on Fes+
and Als+ having preference for the octahedral
sites are l7 and 32 respectively.

Strictly, seirorlomite should be represented in
Figure I by two points corresponding to N : I
and N: 2. The schorlomite spectra cannot be
resolved into two sets of octahedral-Fe3+ bands,
hence only average values of N and r are con-
sidered.

Kimzegite. The formula of the Magnet Cove
kimzeyite (Milton et al. L96I) is

ca,.,, (zrlj"Ti 3.1"Mg3.1, Nb 3.1, F"3.T, )
(Ali; Fe3; sioo.l, ) o,,.oo.

Although the formula indicates the absence of
octahedral-Fe'*, the spectrum shows octahedral-
Fes+bands at 16700 cm-l and 22700 cm-t of
comparable intensity to tetrahedral-Fe3+ bands
(Manning 1972c). The formula suggests that it
would be unreasonable to expect > I\/e of the
total-Fe to be octahedral-Fe3+, and because the
e-value for tetrahedral-Fes+ bands is not likely
to be ( 10 (see below), a minimum e-value for
octahedral-Fe3+ is 100.

Gadoliniurn iron garnet. An e-value of -600
can be calculated from the measured absonbance
of a 0.5 u,m section (Levenson & Sawatsky 1969).
The 64r --t 4Aa4E(G) transition is observed at
22600 cm-a, in agreement with the energy of
the same transition in andradite, kimzeyite and
scirorlomite. The e-value is good within a factor
oI, say,2.

Hematite. The 64r '-> aAfE(G) transition in
hematite has not been resolved. Huffrnan (1970)
estimates the s-value to be -320, based on the
assumption that the absorbance of the band is
10 times that of the band marking transitions
to the Fes+ aT{G) levels at 12000 cm-1. A ratio
of -10 is valid for octahedral-Fe3+ bands in
garnets. A lower limit of e is likely to be 160
(corresponding to 5 times) and the upper limit
possibly around 1000.
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Corundum" kganite and epidote. The calcu-
lated e- and N- values for Fe3+ ions in corun-
dum (e : 5, N: 6; Lehman & Harder 1970),
LTanite (e: 2, N : 1.75 ; Faye & Nicl<el 1969)
and epidote (e -5, N : I ; Burns & Strens 1967)
do not fit the curve in Figure l. The common
factor here is that the second-nearest neighbour
ions are A18+, also octahedrally-bonded. Oxy-
gen-Feg+ charge-transfer is not as prominent in
corundum (N: 6) as it is in schorlomite
(N:1.5). It would seem, therefore, that inten-
sity-stealing from oxygen --> Fef + charge-transfer
is suppressed where the second-nearest neighbour
ions are octahedrally-bonded Als+ and tetra-
hedrally-bonded Sia+, hence the relatively low
e-values for Fet+ crystal-field bands. Although
the Fe3+ bands in andalusite spectra (Faye &
Harris 1969) are weak, the approximate r-values
of 0,5-1 are consistent with all second-nearest
neighbows being Si or octahedrally-bonded Al3+.

Idocrose (uauuianite). Fe3+ substitutes for
Ale+. Of the six Fe3+-centred-octahedron oxy-
gens, 5 are bonded to Si and one to an pH
group (Warren & Modell 1931). Idocrase crystals
containing *2% Fe9+ are a light green, and the
calculated e-value is l-2 (Manning 1968b). Hy-
droxyl-Fqs+ charge-transfer is clearly unimpor-
tant. This is consistent with the low s-value of
Fe(OHz)l+ ions (Burns & Strens 1967).

*ualues for tetrahedral-Fe8+. Two bands at
-20000 cm-1 marking the transitions 6Ar +
'Tr(G) and -+ aTz(G) in tetrahedral-Fes+ have
been observed in spectra of an unusual phlogopite
(e - 15 in unpolarized light, Faye & Hogarth
1969), black tourmaline (e > 10; Manning
1972a) and schorlomite (Manning 1972c). From
ther schorlomite spectrum and assuming the mo-
lecular formula calculated above, E - 10. Bands
marking transitions to the aAfE(G) levels are
stronger, €.8.0 - 30 in the phlogopite referred
to above.

General discussion
It would appear tlat in minerals where second-

nearest neighbour ions are Si of SiOa tetrahedra,
P of POa, Al of AlOo octahedra and H of OH,
6-values for the octahedral-Fe3+ 6A1 '->aAfE(G)

transition are not greater than 5. Substitution of
these second-nearest neighbours, in particular Si
by Ala+ or Fe8+, leads to dramatic increases in
e, probably for the reasons tlat oxygen-Fe{d
charge.transfer intensifies or shifts to lower ener-
gy. Energy overlap with d-d bands in inceased.
Si-O, Alvr-O and O-H bonds are highly cova-
lent, electronic charge is then withdrawn from
the oxygens to the cation. Evidently, the bonding
in SiOa tetrahedra is more covalent than in AlOe
octahedra (e-values for Fe8+ in corundum and

epidote are gteater than in grossular and andra-
dite), whereas Al-O bonds are more covalent in
AlOe octahedra than in AlOa tetrahedra (s-
values are greater for Fes + in schorlomite than
in corundum). It is significant that SiOa tetra-
hedra and AlOe octahedra are the fundamental
building units of aluminosilicates, and that
aluminosilicates such as garnets a.re resistant to
weathering. Schorlomite garnet, in which approxi-
mately 25/6 of Si sites are occupied by AIB+ or
Fes+, and in which the Alt'i content is low,
is more friable than grossular and the pyral-
spites.

The interest in Fe+B e-values lies in their po-
tential use as probes ol local crystal composition,
particularly where substitution into SiOa tetra-
hedra leads to iUfrf,r-O-Fet*/atl$, units, where
M3+ is an octahedrally-bonded transition-metal
ion. Where the M8+ concentration is low, infor-
mation could be gained on the ordering of metal
ions. In the dioctahedral mica muscovite, Fes+
substitutes for octahedrally-coordinated AI8+.
These A1'+ ions lie in a plane parallel to the
001 and are sandwiched between Al/SiOa layers.
Four-sixth of the octahedral sites are filled and
the composition of the tetrahedral sites is 0.25
Al, 0.75 Si. Each octahedral-Al3+ ion has four
second-nearest neighbour tetrahedral sites, hence
N: 1. The expected s-value based on this aver-
age distribution of Al and Si ions is 8-10 (see
titanaugite), whereas the calculated value is I
(Faye 1968; Manning 1969). Al1 Fes+ ions have
four Si and two protons as second-nearest neigh-
bows. A muscovite studied earlier (Manning
1969) contained 6/6 Fe, mostly as Fe8+n cor-
responding to a L/7th occupancy of the octa-
hedral positions. It is probable thal at these and
higher concentrations, Fe3+ may be clustered in
the octahedral sites, thus sharing Si ions and
protons as second-nearest neighbours.

Orthoclase, (K,Na)(AlSigOs), is a framework
silicate in which (Si, Al)Oa tetrahedra are linked
to one another by shared orygens. Jones & Taylor
(1961) have shown a partial ordering of (Si,Al)
atoms, with (0.30 Al + 0.70 Si) at the Sr site
and (0.19A1 + 0.81Si) at site Sz. The calculated
s-value for Fe3+ in orthoclase is -2 (Faye
1969), showing that all second-nearest neighbours
are Si. If Fes+ substitutes into Sr sites, further
(Si, Al) ordering in the S z sites is indicated,
because an average of 2fi/s of second-nearest
neighbour ions would be Ali1i.

Cowcr-usrow

hr summary, it would appear that e-values of
M3+ bands depend largely on intensity-stealing
from 02- --> M3+ charge.transfer absorption.
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Attributing high s-values to distortions of local
site symmetry alone is therefore suspect. This
has been dong for example, by Burns & Strens
(1967) in erplaining site populations of Mn3+
and Fd+ ions in epidote. Where second-nearest
neighbour ions are A1 of A106, e-values are still
considerably larger than for materials in which
all second-nearest neighbours are Si.

Acxwowr.rpcsMu.IT
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