EXTINCTION COEFFICIENTS OF Fe³⁺ SPECTRAL BANDS IN OXIDES AND SILICATES AS INDICATORS OF LOCAL CRYSTAL COMPOSITION

P. G. MANNING

Water Science Subdivision, Department of Environment, 562 Booth Street, Ottawa, Ontario, Canada, K1A 0E7.

Abstract

Extinction coefficients (e) for the transitions ${}^6A_1 \rightarrow$ ${}^{4}A_{1} {}^{4}E(G)$ in octahedral'y-coordinated Fe³⁺ ions in a number of oxides and silicates have been collated and shown to range from ~ 1 to 600. At the lower end of the *e*-range minerals are lightly coloured and at the upper end almost black, the colour being due mainly to $O^{2-} \rightarrow Fe^{3+}$ UV - centred charge - transfer absorption. The crystal-field transitions borrow intensity from charge-transfer absorption, the intensity of which is dependent on the cation composition of the second nearest neighbour sites. Charge-transfer is particularly intense in materials containing Fe_{VI}^{3+} -O- M_{IV} units, where $M = Al^{3+}$ and Fe^{3+} . It is suggested that e^{-1} values of octahedral-Fe³⁺ crystal-field bands can be used as indicators of metal ions present in the secondnearest neighbour sites. Muscovite and orthoclase are used as examples.

INTRODUCTION

Because crystal-field transitions in Mn²⁺ and Fe³⁺ ions are spin-forbidden, extinction coefficients (ε) are expected to be in the range 0.1-1. While this is generally the case for Mn²⁺ bands (Manning 1968a), ε -values of Fe³⁺ bands vary considerably from one mineral to another. For example, ε -values for the ${}^{\circ}A_1 \rightarrow {}^{4}A_1 {}^{4}E(G)$ transitions in octahedral-Fe³⁺ ions in andradite and schorlomite are 1.5 and 15 respectively (Manning & Townsend 1970). The large e-value for schorlomite was attributed to intensity-stealing from intense $O^{2-} \rightarrow Fe^{3+}$ charge-transfer absorption, charge-transfer being facilitated by replacement of second-nearest neighbour Si4+ ions by less-covalent Al³⁺ and Fe³⁺. A similar mechanism was invoked to explain enhanced Mn³⁺ crystal-field and charge-transfer absorption in black tourmalines (Manning 1972a).

In the current work, ε -values have been collated for Fe³⁺ transitions in a number of silicates and oxides. The principal aim is to establish whether ε -values can be used as probes of local crystal composition, in particular the cation composition of the second-nearest neighbour sites. Recent crystal-field interpretations of diffuse interstellar bands have highlighted the need for an understanding of factors controlling intensities of Fe^{3+} bands (Manning 1972b).

DISCUSSION

A plot of log ε against N, the number of Fe³⁺-centred-octahedron oxygens not bonded to Si, for Fe³⁺ bands in a variety of oxides and silicates, is shown in Figure 1. A point for Fe³⁺ in a phosphate glass is also included. Extinction coefficients are calculated from

$$\epsilon = A/C.l$$
 (in litres/mole-cm)

where A = net absorbance, C = cation concentration in moles/litre, and l = sample thickness in cm. Where ε -values are accurate to $\pm 25\%$, as, in points a-c, no error bars are included. For most minerals, however, ε -values are difficult to calculate either because Fe3+ ions are distributed between two different sites or, as in the case of hematite, charge-transfer absorption is so intense that bands marking the ${}^{6}A_{1} \rightarrow {}^{4}A_{1}{}^{4}E(G)$ transitions, expected at ~22700 cm⁻¹ (Vernon 1962; Huffman 1970), have not been resolved. Nevertheless, the general shape of the curve in Figure 1 is readily evident. The *ɛ*-values range over three orders of magnitude. Since the octahedral sites in garnets are regular (Abrahams & Geller 1958 ; Weidenborner 1961), it would seem that site distortions from octahedral symmetry can be ignored. Note that points a-c in Figure 1 pertain to lightly-coloured materials for which d-d bands can be resolved for specimens ~ 0.1 cm thick (Manning 1967b, 1969). In contrast, intense charge-transfer in schorlomite and gadolinium iron garnets requires specimens be thinned to 0.0015 cm (Manning & Harris 1970) and 0.5 μ m (Levenson & Sawatsky 1969) respectively, to permit resolution of d-d bands. The earlier suggestion that crystal-field bands of Fe³⁺ borrow intensity from $O^{2-} \rightarrow Fe^{3+}$ charge-transfer absorption is confirmed.

Calculation of ε -values

Andradite. The molecular formula of the Stanley Peak andradite studied earlier (Manning 1967a) based on electron-probe analysis is

Fig. 1. A plot of log. e_r for the ${}^6A_1 \rightarrow {}^4A_1 {}^4E(G)$ transition in octahedral Fe³⁺, against N, the number of Fe³⁺-centred-octahedron oxygens not bonded to Si⁴⁺. Also included is a point (a) for Fe³⁺ in a phosphate glass. b = grossular; c = andradite; d = titanaugite; e = schorlomite; f = kimzeyite (not less than 2.0); g = gadolinium iron garnet; h = hematite.

 $Ca_{6.1}(Fe_{3.95}^{3+}Mn_{0.03})Si_{5.95}$ The ε -value (=1.5) was calculated from the total-Fe concentration (=21%).

Grossular. The spectrum of a grossular containing 3.4% Fe has been reported earlier (Manning 1969). The 8-coordinate Fe²⁺ concentration is 1%, based on the absorbance of the 8200 cm⁻¹ Fe²⁺ band and assuming that the ε -value is the same as that ($\varepsilon = 1$) for the corresponding 7800 cm⁻¹ Fe²⁺ band in almandines (Manning 1967b). The octahedral-Fe³⁺ concentration is therefore 2.4% and $\varepsilon = 1$. Fe²⁺:Fe³⁺ ratio was confirmed to within \pm 20% by complete chemical analysis.

Phosphate glass. The spectrum is typically that of octahedral-Fe³⁺ (Kurkjian & Sigety 1968). The ε -value was calculated from the total-Fe concentration.

Titanaugites. Titanaugites have the general formula Ca(Mg, Fe²⁺, Fe³⁺, Al³⁺)₁(Si_{2-x}Al³⁺_x)O₆, where $x \sim 0.3$ (Deer, Howie & Zussman 1962). The ${}^{6}A_{1} \rightarrow {}^{4}A_{1}{}^{4}E(G)$ transition in octahedral-Fe³⁺ is seen at 22000 cm⁻¹ and $\epsilon C = A/l = 12$ (Manning & Nickel 1969). Chemical analysis gave a formula close to that of a specimen from Poland (Deer, Howie & Zussman 1962, analysis 1, p. 123), giving x = 0.31 and N = 0.93. Each Fe³⁺-centred-octahedron oxygen is bonded to a tetrahedral ion. Based on 4.5% Fe₂O₃ and assuming Fe³⁺ and Al³⁺ are uniformly distributed over 0.17 octahedral and 0.31 tetrahedral sites (out of 2.0), $\varepsilon = 9$. The minimum ε -value based on Fe³⁺ having a preference for the octahedral site is 6. An upper limit of ε cannot be calculated because there are sufficient tetrahedral positions to take up all Fe^{3+} ions.

Schorlomite. Schorlomite contains both octahedral- and tetrahedral-Fe³⁺ ions (Manning 1972c; Burns 1972). Several chemical analyses of the Magnet Cove crystals have been reported, all in reasonable agreement. Our Fe, Ti and Mn values agreed well with those of Howie & Woolley (1968). Assuming that Fe³⁺ and Al⁸⁺ distribute uniformly between octahedral and tetrahedral sites, the molecular formula is Ca₆(Fe³⁺_{1.52}Al³⁺_{0.65}Ti⁴⁺_{1.88}) (Si⁴⁺_{4.51}Fe³⁺_{0.39}Fe²⁺_{-0.1}), whence N = 1.5 and, from the spectrum of Manning & Harris (1970), $\varepsilon = 24$. Each octahedral ion in garnet has six second-nearest neighbour Si⁴⁺ sites. The extreme values of ε based on Fe³⁺ and Al³⁺ having preference for the octahedral sites are 17 and 32 respectively.

Strictly, schorlomite should be represented in Figure 1 by two points corresponding to N = 1 and N = 2. The schorlomite spectra cannot be resolved into two sets of octahedral-Fe³⁺ bands, hence only average values of N and ε are considered.

Kimzeyite. The formula of the Magnet Cove kimzeyite (Milton *et al.* 1961) is

$$Ca_{3.11}(Zr_{1.42}^{4+}Ti_{0.40}^{3+}Mg_{0.07}^{2+}Nb_{0.05}^{5+}Fe_{0.07}^{2+})$$

$$(\text{Al}_{1.26}^{3+}\text{Fe}_{0.98}^{3+}\text{Si}_{0.94}^{4+})\text{O}_{12.00}$$
.

Although the formula indicates the absence of octahedral-Fe³⁺, the spectrum shows octahedral-Fe³⁺bands at 16700 cm⁻¹ and 22700 cm⁻¹ of comparable intensity to tetrahedral-Fe³⁺ bands (Manning 1972c). The formula suggests that it would be unreasonable to expect > 10% of the total-Fe to be octahedral-Fe³⁺, and because the ε -value for tetrahedral-Fe³⁺ bands is not likely to be < 10 (see below), a minimum ε -value for octahedral-Fe³⁺ is 100.

Gadolinium iron garnet. An ε -value of ~600 can be calculated from the measured absorbance of a 0.5 µm section (Levenson & Sawatsky 1969). The ${}^{6}A_{1} \rightarrow {}^{4}A_{1}{}^{4}E(G)$ transition is observed at 22600 cm⁻¹, in agreement with the energy of the same transition in andradite, kimzeyite and schorlomite. The ε -value is good within a factor of, say, 2.

Hematite. The ${}^{6}A_{1} \rightarrow {}^{4}A_{1}{}^{4}E(G)$ transition in hematite has not been resolved. Huffman (1970) estimates the ε -value to be ~320, based on the assumption that the absorbance of the band is 10 times that of the band marking transitions to the Fe³⁺ ${}^{4}T_{1}(G)$ levels at 12000 cm⁻¹. A ratio of ~10 is valid for octahedral-Fe³⁺ bands in garnets. A lower limit of ε is likely to be 160 (corresponding to 5 times) and the upper limit possibly around 1000.

Corundum, kyanite and epidote. The calculated ε - and N- values for Fe³⁺ ions in corundum ($\varepsilon = 5$, N = 6; Lehman & Harder 1970), kyanite ($\epsilon = 2, N = 1.75$; Faye & Nickel 1969) and epidote ($\epsilon \sim 5$, N = 1; Burns & Strens 1967) do not fit the curve in Figure 1. The common factor here is that the second-nearest neighbour ions are Al³⁺, also octahedrally-bonded. Oxygen-Fe⁸⁺ charge-transfer is not as prominent in corundum (N = 6) as it is in schorlomite (N = 1.5). It would seem, therefore, that intensity-stealing from oxygen \rightarrow Fe³⁺ charge-transfer is suppressed where the second-nearest neighbour ions are octahedrally-bonded Al³⁺ and tetrahedrally-bonded Si⁴⁺, hence the relatively low ε-values for Fe³⁺ crystal-field bands. Although the Fe³⁺ bands in andalusite spectra (Faye & Harris 1969) are weak, the approximate ε -values of 0.5-1 are consistent with all second-nearest neighbours being Si or octahedrally-bonded Al³⁺.

Idocrase (vesuvianite). Fe³⁺ substitutes for Al³⁺. Of the six Fe³⁺-centred-octahedron oxygens, 5 are bonded to Si and one to an OH group (Warren & Modell 1931). Idocrase crystals containing ~2% Fe³⁺ are a light green, and the calculated ε -value is 1-2 (Manning 1968b). Hydroxyl-Fe³⁺ charge-transfer is clearly unimportant. This is consistent with the low ε -value of Fe(OH₂)⁸⁺ ions (Burns & Strens 1967).

 ε -values for tetrahedral-Fe^{s+}. Two bands at ~20000 cm⁻¹ marking the transitions ${}^{6}A_{1} \rightarrow {}^{4}T_{1}(G)$ and $\rightarrow {}^{4}T_{2}(G)$ in tetrahedral-Fe^{s+} have been observed in spectra of an unusual phlogopite ($\varepsilon \sim 15$ in unpolarized light, Faye & Hogarth 1969), black tourmaline ($\varepsilon > 10$; Manning 1972a) and schorlomite (Manning 1972c). From the schorlomite spectrum and assuming the molecular formula calculated above, $\varepsilon \sim 10$. Bands marking transitions to the ${}^{4}A_{1}{}^{4}E(G)$ levels are stronger, e.g., ~ 30 in the phlogopite referred to above.

General discussion

It would appear that in minerals where secondnearest neighbour ions are Si of SiO₄ tetrahedra, P of PO₄, Al of AlO₆ octahedra and H of OH, ε -values for the octahedral-Fe³⁺ ${}^{e}A_1 \rightarrow {}^{4}A_1{}^{4}E(G)$ transition are not greater than 5. Substitution of these second-nearest neighbours, in particular Si by Al³⁺ or Fe³⁺, leads to dramatic increases in ε , probably for the reasons that oxygen-Fe³⁺_{VI} charge-transfer intensifies or shifts to lower energy. Energy overlap with *d*-*d* bands in increased. Si-O, Alvi-O and O-H bonds are highly covalent, electronic charge is then withdrawn from the oxygens to the cation. Evidently, the bonding in SiO₄ tetrahedra is more covalent than in AlO₆ octahedra (ε -values for Fe⁸⁺ in corundum and epidote are greater than in grossular and andradite), whereas Al-O bonds are more covalent in AlO₆ octahedra than in AlO₄ tetrahedra (ε values are greater for Fe³⁺ in schorlomite than in corundum). It is significant that SiO₄ tetrahedra and AlO₆ octahedra are the fundamental building units of aluminosilicates, and that aluminosilicates such as garnets are resistant to weathering. Schorlomite garnet, in which approximately 25% of Si sites are occupied by Al³⁺ or Fe³⁺, and in which the Al³⁺_{VI} content is low, is more friable than grossular and the pyralspites.

The interest in Fe⁺³ ε-values lies in their potential use as probes of local crystal composition, particularly where substitution into SiO₄ tetrahedra leads to $M_{(VI)}^{3+}$ -O-Fe³⁺/Al_(IV) units, where M^{3+} is an octahedrally-bonded transition-metal ion. Where the M^{3+} concentration is low, information could be gained on the ordering of metal ions. In the dioctahedral mica muscovite, Fe³⁺ substitutes for octahedrally-coordinated Al³⁺. These Al³⁺ ions lie in a plane parallel to the 001 and are sandwiched between Al/SiO₄ layers. Four-sixth of the octahedral sites are filled and the composition of the tetrahedral sites is 0.25 Al, 0.75 Si. Each octahedral-Al³⁺ ion has four second-nearest neighbour tetrahedral sites, hence N = 1. The expected ε -value based on this average distribution of Al and Si ions is 8-10 (see titanaugite), whereas the calculated value is 1 (Faye 1968; Manning 1969). All Fe³⁺ ions have four Si and two protons as second-nearest neighbours. A muscovite studied earlier (Manning 1969) contained 6% Fe, mostly as Fe⁸⁺, corresponding to a 1/7th occupancy of the octahedral positions. It is probable that, at these and higher concentrations, Fe³⁺ may be clustered in the octahedral sites, thus sharing Si ions and protons as second-nearest neighbours.

Orthoclase, (K, Na) (AlSi₃O₈), is a framework silicate in which (Si, Al)O₄ tetrahedra are linked to one another by shared oxygens. Jones & Taylor (1961) have shown a partial ordering of (Si, Al) atoms, with (0.30 Al + 0.70 Si) at the S₁ site and (0.19 Al + 0.81 Si) at site S₂. The calculated ϵ -value for Fe³⁺ in orthoclase is ~2 (Faye 1969), showing that all second-nearest neighbours are Si. If Fe³⁺ substitutes into S₁ sites, further (Si, Al) ordering in the S₂ sites is indicated, because an average of 20% of second-nearest neighbour ions would be Al⁹⁺_{IV}.

CONCLUSION

In summary, it would appear that ε -values of M^{3+} bands depend largely on intensity-stealing from $O^{2-} \rightarrow M^{3+}$ charge-transfer absorption.

Attributing high ε -values to distortions of local site symmetry alone is therefore suspect. This has been done, for example, by Burns & Strens (1967) in explaining site populations of Mn³⁺ and Fe³⁺ ions in epidote. Where second-nearest neighbour ions are Al of AlO₆, ε -values are still considerably larger than for materials in which all second-nearest neighbours are Si.

ACKNOWLEDGEMENT

I thank G. H. Fay for his many suggestions.

References

- ABRAHAMS, S.C. & GELLER, S. (1958) : Refinement of the structure of grossularite. Acta Cryst. 11, 437-441.
- BURNS, R.G. (1972) : Mixed valencies and site occupancies of iron in silicate minerals from Mössbauer spectroscopy. Can. J. Spec. 17, 51-59.
- DEER, W.A., HOWIE, R.A. & ZUSSMAN, J. (1962) : Rock-Forming Minerals. 2, Longman's, London.
- FAYE, G.H. (1969) : The optical absorption spectrum of tetrahedrally-bonded Fe^{3+} in orthoclase. *Can. Mineral.* **10**, 112-117.
- & HARRIS, D.C. (1969) : On the origin of colour and pleochroism in andalusite from Brazil. *Can. Mineral.* **10**, 47-56.
- & NICKEL, E.H. (1969) : On the origin of co'our and pleochroism of kyanite. *Can. Mineral.* **10**, 35-46.
- HARDER, G. & LEHMANN, H. (1970) : Optical spectra of di- and trivalent iron in corundum. Amer. Mineral. 55, 98-105.
- HOWIE, R.A. & WOOLLEY, A.R. (1968): The role of titanium and the effect of TiO_2 on the cell-size, refractive index and specific gravity in the andradite-schorlomite series. *Mineral. Mag.* **36**, 775-790.
- HUFFMAN, D.R. (1970) : A possible cause of some unidentified interstellar absorption bands : crystalfields bands of Fe³⁺. Astroph. J. **161**, 1157-1159.
- JONNES, J.B. & TAYLOR, W.H. (1961) : The structure of orthoclase. Acta Cryst. 14, 443-456.

- KURKIJIAN, C.R. & SIGETY, E.A. (1968) : Coordination of ferric iron in glass. Phys. Chem. Glasses. 9, 73-83.
- LEVENSON, M. & SAWATSKY, E. (1969) : Optical absorption in gadolinium iron garnet in the region 2000-5000Å. J. Appl. Phys. 40, 2672-2673.
- MANNING, P.G. (1967a): The optical absorption spectra of some andradites and the identification of the ${}^{6}A_{1} \rightarrow {}^{4}A_{1} {}^{4}E(G)$ transition in Fe³⁺. Can. J. Earth Sci. 4, 1039-1047.
 - (1967b): The optical absorption spectra of the garnets almandine-pyrope, pyrope, and spessartine. Can. Mineral. 9, 237-251.
 - (1968a) : Optical absorption of the Mnbearing chain silicates. Can. Mineral. 9, 348-357.
 - (1968b) : Optical absorption spectra of octahedrally-bonded Fe³⁺ in vesuvianite. Can. J. Earth Sci. **5**, 89-92.
 - (1969): Optical absorption studies of grossular, andradite and uvarovite. *Can. Mineral.* **9**, 723-729.
 - (1972a) : Optical absorption spectra of Mn³⁺ in pink and black tourmalines. *Can. Mineral.* **11**, 971-977.
 - (1972b) : Trivalent transition metal ions in interstellar dust. *Nature*, *Phys. Sci.* **239**, 87-88.
 - ----- (1972c) : Optical absorption spectra of Fe^{3+} in octahedral and tetrahedral sites in natural garnets. *Can. Mineral.* **11**, 826-839.
 - & HARRIS, D.C. (1970): Optical- absorption and electron-microprobe studies of some high-Ti andradites. Can. Mineral. 10, 260-271.
- and pleochroism of a titanaugite from Kaiserstuhl and of a riebeckite. *Can. Mineral.* **10**, 71-83.
- & TOWNSEND, M.G. (1970): Effect of second-nearest neighbour interaction on oscillator strengths in garnets. J. Phys. C. 3, L14-50.
- MILTON, C., INGRAM, B.L. & BLADE, L.V. (1961) : Kimzeyite, a Zr garnet from Magnet Cove. Amer. Mineral. 46, 533-548.
- VERNON, R.C. (1962) : Extinction coefficient of singlecrystal hematite in the region 3600-7000Å. J. Appl. Phys. 33, 2140-2141.
- WARREN, B.E. & MODELL, D.I. (1931): The structure of vesuvianite. Zeits. Krist. 78, 422-432.
- WEIDENBORNER, J.E. (1961): Least-squares refinement of the structure of gadolinium-iron garnet. Acta Cryst. 14, 1051-1056.

Manuscript received Feburary 1973, emended April 1973.