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AsstrACT

Extinction coefficients (g) for the transitions 84; —
4A; *E(G) in octahedral'y-coordinated Fe$+ jons in a
number of oxides and s'licates have been collated and
shown to range from ~ 1 to 600. At the lower end of
the g-range minerals are lightly coloured and at the
upper end almost black, the colour being due main-
ly to O2~ —>Fe?+ UV - centred charge - transfer ab-
sorption. The crystal-field transitions borrow intensity
from charge-transfer absorption, the intensity of which
is dependent on the cation composition of the second
nearest neighbour sites, Charge-transfer is particular-
ly intense in materials containing Fely -O-M;y units,
where M = A3+ and Fe8*, It is suggested that g-
values of octahedral-Fes+ crystal-field bands can be
used as indicators of metal ions present in the second-
nearest neighbour sites, Muscovite and orthoclase are
used as examples,

InTRODUCTION

Because crystal-field transitions in Mn2+ and
Fe*t jons are spin-forbidden, extinction coeffi-
cients (g) are expected to be in the range 0.1-1.
While this is generally the case for Mn2+ bands
(Manning 1968a), e-values of Fes* bands vary
considerably from one mineral to another. For
example, g-values for the 8A; = 4A4E(G) transi-
tions in octahedral-Fe3* ions in andradite and
schorlomite are 1.5 and 15 respectively (Man-
ning & Townsend 1970). The large g-value for
schorlomite was attributed to intensity-stealing
from intense O2— —> Fe3+ charge-transfer absorp-
tion, charge-transfer being facilitated by replace-
ment of second-nearest neighbour Si*+ ions by
less-covalent Al3+ and Fe**, A similar mecha-
nism was invoked to explain enhanced Mn3*
crystal-field and charge-transfer absorption in
black tourmalines (Manning 1972a).

In the current work, g-values have been col-
lated for Fe3+ transitions in a number of silicates
and oxides. The principal aim is to establish
whether g-values can be used as probes of local
crystal composition, in particular the cation com-
position of the second-nearest neighbour sites.
Recent crystal-field interpretations of diffuse
interstellar bands have highlighted the need for

an understanding of factors controlling inten-
sities of Fet* bands (Manning 1972b).

Drscusston

A plot of log ¢ against N, the number of
Fe?*-centred-octahedron oxygens not bonded to
Si, for Fe** bands in a variety of oxides and
silicates, is shown in Figure 1. A point for Fes+
in a phosphate glass is also included. Extinction
coefficients are calculated from

e = A/Cl (in litres/mole-cm)

where A = net absorbance, C = cation concen-
tration in moles/litre, and [ = sample thickness
in cm. Where g-values are accurate to = 259,
as, in points a-c, no error bars are included. For
most minerals, however, g-values are difficult to
calculate either because Fe3+ ions are distributed
between two different sites or, as in the case of
hematite, charge-transfer absorption is so intense
that bands marking the 8A; = ¢A;4E(G) transi-
tions, expected at ~22700 em~* (Vernon 1962 ;
Huffman 1970), have not been resolved. Never-
theless, the general shape of the curve in Figure 1
is readily evident. The e-values range over three
orders of magnitude. Since the octahedral sites
in garnets are regular (Abrahams & Geller 1958 ;
‘Weidenborner 1961), it would seem that site dis-
tortions from octahedral symmetry can be ig-
nored. Note that points a-c in Figure 1 pertain
to lightly-coloured materials for which d-d bands
can be resolved for specimens ~0.] cm thick
(Manning 1967b, 1969). In contrast, intense
charge-transfer in schorlomite and gadolinium
iron garnets requires specimens be thinned to
0.0015 em (Manning & Harris 1970) and 0.5 ym
(Levenson & Sawatsky 1969) respectively, to per-
mit resolution of d-d bands., The earlier sug-
gestion that crystal-field bands of Fe?+ borrow
intensity from O2?— — Fe®** charge-transfer ab-
sorption is confirmed.

Calculation of e-values

Andradite. The molecular formula of the
Stanley Peak andradite studied earlier (Man-
ning 1967a) based on electron-probe analysis is
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Frc. 1. A plot of log. g, for the 84; — 4A; 4E(G) tran-
sition. in octahedral Fe$+, against N, the number
of Fe3*.centred-octahedron oxygens not bonded to
Sit+, Also included is a point (a) for Fe8* in a
phosphate glass. b = grossular ; ¢ = andradite ; d =
titanaugite ; e = schorlomite; f = kimzeyite (not
less than 2.0) ; g = gadolinium iron garnet; h =
hematite,

Cag1(Fel hsMn, 05)Sisos The g-value (=15)
was calculated from the total-Fe concentration
(=21%).

Grossular. The spectrum of a grossular con-
taining 3.4% Fe has been reported earlier (Man-
ning 1969). The 8-coordinate Fe?+ concentration
is 1%, based on the absorbance of the 8200
cm~! Fe?* band and assuming that the g-value
is the same as that (¢ = 1) for the corresponding
7800 cm—1 Fe?* band in almandines (Manning
1967b). The octahedral-Fe$* concentration is
therefore 24% and ¢ = 1. Fe?*:Fe®* ratio was
confirmed to within *+ 209, by complete chemi-
cal analysis.

Phosphate glass. The spectrum is typically that
of octahedral-Fes+ (Kurkjian & Sigety 1968).
The e-value was calculated from the total-Fe
concentration.

Titanaugites. Titanaugites have the general for-
mula Ca(Mg, Fe2+, Fe8*, Al8+);(Sia—zAl12) O,
where x ~ 0.3 (Deer, Howie & Zussman 1962).
The ¢A; —>¢A*E(G) tramsition in octahedral-
Fe®* is seen at 22000 cm~* and e.C = A/l = 12
(Manning & Nickel 1969). Chemical analysis
gave a formula close to that of a specimen from
Poland (Deer, Howie & Zussman 1962, analysis
1, p. 123), giving x =0.31 and N = 0.93. Each
Fe?+-centred-octahedron oxygen is bonded to a
tetrahedral ion. Based on 4.5% FezOs and assum-
ing Fe3™ and Al3* are uniformly distributed over
0.17 octahedral and 0.31 tetrahedral sites (out of
2.0}, ¢ = 9. The minimum g-value based on Fes+
having a preference for the octahedral site is 6.
An upper limit of g cannot be calculated be-
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cause there are sufficient tetrahedral positions
to take up all Fe3* ionms.

Schorlomite. Schorlomite contains both octa-
hedral- and tetrahedral-Fe** ions (Manning
1972¢ ; Burns 1972). Several chemical analyses
of the Magnet Cove crystals have been reported,
all in reasonable agreement. Our Fe, Ti and Mn
values agreed well with those of Howie &
Woolley (1968). Assuming that Fe3* and Al3*
distribute uniformly between octahedral and
tetrahedral sites, the molecular formula is

Cag (Fei.:zAIgstii;s) (SiiL Feg;sAlg..;gFei%J s
whence N = 1.5 and, from the spectrum of Man-
ning & Harris (1970), ¢ = 24, Each octahedral
jon in garnet has six second-nearest neighbour
Sitt sites. The extreme values of ¢ based on Fe3*
and Al®* having preference for the octahedral
sites are 17 and 32 respectively.

Strictly, schorlomite should be represented in
Figure 1 by two points corresponding to N = 1
and N = 2, The schorlomite spectra cannot be
resolved into two sets of octahedral-Fes* bands,
hence only average values of N and ¢ are con-
sidered.

Kimzeyite. The formula of the Magnet Cove
kimzeyite (Milton et al. 1961) is

4+ 3 2+ 5+ 12+
Cay.11 (Zr1 2Ty 50Mg)5.0:Nbg.osFeg o

(Alf;e Feg..;s Si;.;et )O12.00°

Although the formula indicates the absence of
octahedral-Fe3+, the spectrum shows octahedral-
Fettbands at 16700 em~! and 22700 em~* of
comparable intensity to tetrahedral-Fe3* bands
(Manning 1972c). The formula suggests that it
would be unreasonable to expect > 10% of the
total-Fe to be octahedral-Fe3*, and because the
g-value for tetrahedral-Fes+ bands is not likely
to be < 10 (see below), a minimum e-value for
octahedral-Fe?+ is 100.

Gadolinium iron garnet. An g-value of ~600
can be calculated from the measured absorbance
of a 0.5 um section (Levenson & Sawatsky 1969).
The ¢A; = 2A*E(G) transition is observed at
22600 em™1, in agreement with the energy of
the same transition in andradite, kimzeyite and
schorlomite. The g-value is good within a factor
of, say, 2.

Hematite. The ¢A; —2A;¢E(G) transition in
hematite has not been resolved. Huffman (1970)
estimates the g-value to be ~320, based on the
assumption that the absorbance of the band is
10 times that of the band marking transitions
to the Fe3+ 4T1(G) levels at 12000 ecm~1. A ratio
of ~10 is valid for octahedral-Fe?* bands in
garnets. A lower limit of ¢ is likely to be 160
(corresponding to 5 times) and the upper limit
possibly around 1000.
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Corundum, kyanite and epidote. The calcu-
lated ¢~ and N- values for Fe®+t jons in corun-
dum (e =5, N = 6; Lehman & Harder 1970),
kyanite (e = 2, N = 1.75; Faye & Nickel 1969)
and epidote (¢ ~5, N = 1 ; Burns & Strens 1967)
do not fit the curve in Figure 1. The common
factor here is that the second-nearest neighbour
ions are Al%*, also octahedrally-bonded. Oxy-
gen-Fed* charge-transfer is not as prominent in
corundum (N =6) as it is in schorlomite
(N =15). It would seem, therefore, that inten-
sity-stealing from oxygen — Fe®* charge-transfer
is suppressed where the second-nearest neighbour
ions are octahedrally-bonded Al3* and tetra-
hedrally-bonded Si*+, hence the relatively low
e-values for Fe*t crystal-field bands. Although
the Fe** bands in andalusite spectra (Faye &
Harris 1969) are weak, the approximate g-values
of 0.5-1 are consistent with all second-nearest
neighbours being Si or octahedrally-bonded Al3+.

Idocrase (vesuvianite). Fe3™ substitutes for
Al3*+, Of the six Fe3*-centred-octahedron oxy-
gens, 5 are bonded tc Si and one to an OH
group (Warren & Modell 1931). Idocrase crystals
containing ~29%, Fes* are a light green, and the
calculated e-value is 1-2 (Manning 1968b). Hy-
droxyl-Fes* charge-transfer is clearly unimpor-
tant. This is consistent with the low g-value of
Fe(OH)2" ions (Burns & Strens 1967).

g-values for tetrahedral-Fes*. Two bands at
~20000 cm~* marking the transitions 6A; —
T(G) and — *T2(G) in tetrahedral-Fe** have
been observed in spectra of an unusual phlogopite
(¢ ~ 15 in unpolarized light, Faye & Hogarth
1969), black tourmaline (¢ > 10; Manning
1972a) and schorlomite (Manning 1972¢). From
the schorlomite spectrum and assuming the mo-
lecular formula calculated above, ¢ ~ 10. Bands
marking transitions to the 4A;*E(G) levels are
stronger, e.g., ~ 30 in the phlogopite referred
to above.

General discussion

It would appear that in minerals where second-
nearest neighbour ions are Si of SiQy tetrahedra,
P of POy, Al of AlOg octahedra and H of OH,
g-values for the octahedral-Fe3* 84; — ¢A#E(G)
transition are not greater than 5. Substitution of
these second-nearest neighbours, in particular Si
by Al3+ or Fe®*, leads to dramatic increases in
g, probably for the reasons that oxygen-Fe3f

charge-transfer intensifies or shifts to lower ener-
gy. Energy overlap with d-d bands in increased.
$i-O, Alvi-O and O-H bonds are highly cova-
lent, electronic charge is then withdrawn from
the oxygens to the cation. Evidently, the bonding
in Si0, tetrahedra is more covalent than in AlOg
octahedra (e-values for Fe®** in corundum and
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epidote are greater than in grossular and andra-
dite), whereas Al-O bonds are more covalent in
AlQg octahedra than in AlQO, tetrahedra (e-
values are greater for Fe3* in schorlomite than
in corundum). It is significant that SiO tetra-
hedra and AlQOg octahedra are the fundamental
building unmits of aluminosilicates, and that
aluminosilicates such as garnets are resistant to
weathering. Schorlomite garnet, in which approxi-
mately 259 of Si sites are occupied by Al3+ or
Fe**, and in which the Al3f content is low,
is more friable than grossular and the pyral-
spites.

The interest in Fet3 g-values lies in their po-
tential use as probes of local crystal composition,
particularly where substitution into SiO, tetra-
hedra leads to My;,-O-Fe*" /A1%Y, units, where
M3+ is an octahedrally-bonded transition-metal
ion. Where the M3+ concentration is low, infor-
mation could be gained on the ordering of metal
ions. In the dioctahedral mica muscovite, Fe3+
substitutes for octahedrally-coordinated Als*.
These Al** jons lie in a plane parallel to the
001 and are sandwiched between Al/SiO, layers.
Four-sixth of the octahedral sites are filled and
the composition of the tetrahedral sites is 0.25
Al, 0.75 Si. Each octahedral-Al3* ion has four
second-nearest neighbour tetrahedral sites, hence
N = 1. The expected g-value based on this aver-
age distribution of Al and Si ions is 8-10 (see
titanaugite), whereas the calculated value is 1
(Faye 1968 ; Manning 1969). All Fe3* ions have
four Si and two protons as second-nearest neigh-
bours. A muscovite studied earlier (Manning
1969) contained 6% Fe, mostly as Fe®*, cor-
responding to a 1/7th occupancy of the octa-
hedral positions. It is probable that, at these and
higher concentrations, Fe** may be clustered in
the octahedral sites, thus sharing Si ions and
protons as second-nearest neighbours.

Orthoclase, (K, Na)(AlSizOg), is a framework
silicate in which (Si, Al)O, tetrahedra are linked
to one another by shared oxygens. Jones & Taylor
(1961) have shown a partial ordering of (Si, Al)
atoms, with (0.30 Al + 0.70 Si) at the Sy site
and (0.19 Al + 0.81 Si) at site Sz. The calculated
g-value for Fe3* in orthoclase is ~2 (Faye
1969), showing that all second-nearest neighbours
are Si. If Fes+ substitutes into Sy sites, further
(8i, Al) ordering in the S sites is indicated,
because an average of 209 of second-nearest
neighbour ions would be Alfy .

CoNcLUSION

In summary, it would appear that e-values of
M3t bands depend largely on intensity-stealing
from O2~ —> M3+ charge-transfer absorption.
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Attributing high e-values to distortions of local
site symmetry alone is therefore suspect. This
has been done, for example, by Burns & Strens
(1967) in explaining site populations of Mn3*
and Fe** jons in epidote. Where second-nearest
neighbour ions are Al of AlOg, e-values are still
considerably larger than for materials in which
all second-nearest neighbours are Si.
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