THE AHLFELDITE-COBALTOMENITE SERIES

B. D. STURMAN AND J. A. MANDARINO

Department of Mineralogy, Royal Ontario Museum, Toronto, Canada M5S 2C6

ABSTRACT

Study of synthetic ahlfeldite (NiSeO3.2H2O) and synthetic cobaltomenite (CoSeO3•2H2O) gave the following data:

Ahlfeldite: Colour green, density (calc.) 3.51. Crystals long, prismatic elongated parallel to [001] with forms $\{110\}$ and $\{\overline{1}01\}$. Unit cell dimensions calculated from x-ray powder diffraction data: $\alpha =$ 7.519, b = 8.751, c = 6.448Å, $\beta = 99^{\circ}00'$. The six strongest lines in the x-ray powder diffraction pattern: 5.66(100) (110), 3.415(70) (210), 2.989 (65) (012), 3.77(50) (120), 2.715(50) (130), 2.188 (45) (040). Optical data: $\alpha = 1.703$, $\beta = 1.744$, $\gamma = 1.786$, optically negative, $2V = 87^{\circ}$, $c\Lambda\gamma = -12^{\circ}$. Weak pleochroism, $\gamma =$ green, $\beta =$ pale green, $\alpha =$ very pale green with absorption $\gamma > \beta > \alpha$.

Cobaltomenite: Colour red, density (calc.) 3.42. Crystals either long prismatic elongated parallel to [001] or tabular flattened parallel to {101}. Unit cell dimensions calculated from x-ray powder diffraction data: a=7.615, b=8.814, c=6.499Å, $\beta=$ 98°51'. The six strongest lines in the x-ray powder diffraction pattern: 5.72(100) (110), 3.46(70) (210), 3.017(55) (012), 3.80(50) (120), 2.738(45) (130), 2.378(40) (311). Optical data: $\alpha = 1.681$, $\beta =$ 1.728, $\gamma = 1.769$. Optically negative, $2V = 83^{\circ}$, $c\Lambda\gamma = -13^{\circ}$. Weak pleochroism, $\gamma = \text{red}, \beta = \text{pink},$ a=pale pink, absorption $\gamma > \beta > a$.

The composition of intermediate members of the series can be estimated by measurement of selected d-spacings.

INTRODUCTION

An excellent review of the historical background of ahlfeldite and cobaltomenite was given by Aristarain & Hurlbut (1969). A very brief summary is as follows. Ahlfeldite (NiSeO3 •2H₂O) and cobaltomenite (CoSeO₃•2H₂O) are isostructural (space group $P2_1/n$), and apparently form an isomorphous series. The x-ray powder patterns are considered essentially identical and the only practical means of distinguishing members in the series is by chemical analysis.

The present study was undertaken to determine the practicality of other techniques for identification. Through the kindness of Prof. Dr. G. Gattow of the Universtät Göttingen, samples of synthetic ahlfeldite and synthetic cobaltomenite were made available. From these samples, optical, crystallographic, and chemical data were obtained. These data were applied to the identification of two natural specimens.

COLOUR AND DENSITY

The colour of synthetic ahlfeldite is pale green and the streak is very pale green. Synthetic cobaltomenite is pink with a pale pink streak. In natural specimens, only a small amount of cobalt need be present to give a dominant pink colour.

The densities of the synthetic material used in this study were not measured because of the very small sample size and grain size. All known densities (calculated and measured) for the two compounds are given in Table 1.

TABLE 1. CELL F	PARAMETERS	AND I	DENSITIES	OF AHL	FELDITE AND	COBAL TOM	ENITE
Substance	аÅ	ЪÅ	аÅ	β	ρ(meas)	p(calc)	Ref.
Ahlfeldite (synthetic)	7.55	8.75	6.46	99 ⁰	3.416	3.493	ĩ
Ahlfeldite Pacajake, Boliv (Ni _{0.90} Co _{0.10})S	7.53 ria GeO ₃ .2H ₂ O	8.76	6.43	99°05'	3.37±0.02	3.51	2
Ahlfeldite Pacajake, Boliv	ia				3.4		3
Ahlfeldite (synthetic)	7.519	8.751	6.448	99°00'		3.51	4
Cobaltomenite (synthetic)	7.640	8.825	6.515	98°36'	3.410	3.402	1
Cobaltomenite (synthetic)	7.615	8.814	6.499	98°51 '		3.42	4

Lieder & Gattow (1967), with a and o reversed from original data. The cell data of Lieder & Gattow for ahlfeldite and cobaltomenite listed by Strunz (1970) are in error. Those listed for ahlfeldite are really for cobaltomenite and vice versa.
 Aristarain & Hurlbut (1969).

3. Goni & Guillemin (1953). 4. This study (cell dimensions calculated from *w*-ray powder data).

CRYSTALLOGRAPHIC DATA

Crystals of both synthetic selenites were very small, averaging 0.002 mm by 0.005 mm. Typical crystals of either synthetic cobaltomenite or synthetic allfeldite have only the forms {110} and $\{\overline{1}01\}$. Most of the crystals are elongated parallel to [001] although an occasional crystal of synthetic cobaltomenite is found as a tabular crystal flattened parallel to {101}.

X-ray powder diffraction patterns of the two materials were obtained using Debye-Scherrer cameras (114.6mm diameter) and Mn-filtered Fe radiation. The programme written by Evans et al. (1963) was used to index the patterns and to calculate the unit cell parameters from the measured *d*-spacings. These data are compared to those obtained by Lieder & Gattow (1967) and Aristarain & Hurlbut (1969) in Table 1. The present writers have followed the orientation of Aristarain & Hurlbut (1969) where c is taken as the axis of elongation.

Superficially, the powder patterns of synthetic ahlfeldite and synthetic cobaltomenite are identical with respect to *d*-spacings and intensities. Measurements, however, show that there are slight differences in *d*-spacings due to the slightly different unit cell parameters. The *x*ray powder diffraction data for synthetic ahlfeldite and for synthetic cobaltomenite are listed in Table 2.

TABLE 2. X-RAY DIFFRACTION DATA FOR SYNTHETIC AHLFELDITE AND SYNTHETIC COBALTOMENITE (Camera diameter 114.6 mm, FeXa).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ahl feldi te		cob al tomeni te						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	a _{meas} Å	^d calc ^Å	hkl		I	d _{meas} Å	^d calc ^Å	hkl		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100 15	5.66 5.25	5.662 5.257	100 To1		100 10	5.70 5.30	5.722 5.304	110 101		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	4.49	4.507	ni		15	4.55	4.551	101		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	4.38	-4.499 4.375	101		20	4.40	-4.546 4.407	020		
	30	4.00	4.001	111		30	4.04	4.044	111		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 70	3.//	3.418	210		50 70	3.80	3.803	210		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	iõ	3.214	3.211	211		io	3.246	3.244	211		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	3.137	3.137	121		55	3.162	3.166	121		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	2.927	2.929	T12		10	2.951	2.951	112		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50 10	2.651	2.652	031		45 515	2.738	2.737	031		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	2.630	2.629	202		10	0 650	0 550	200		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	2.534	2.533	221		30	2.502	2.553	221		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	2.440	2.440	301		7	2.469	2.468	301		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2.290	2.294	230		40	2.314	2.315	230		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2.247	2.253	222		2	2.273	2.276	202		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2.228	2.228	231		5	2.246	2.247	231		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	2 180	2 188	040		5 20	2.222	2.223	301		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2.151	2.151	032		20	21200	21200	040		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	2.127	${2.128}{2.127}$	311 132		5	2.158	2.156 2.154	311 321		
5 2.062 2 2.096 5 2.017 5 2.006 10 2.000 5 2.19960 10 1.9618 2 1.9960 5 5.19105 5 1.9280 10 1.7669 2 1.7859 10 1.7669 2 1.7859 10 1.7669 2 1.7859 10 1.7669 2 1.7859 10 1.7663 5 1.7760 15 1.66285 15 1.6435 15 1.6285 15 1.6435 10 1.5826 15 1.6435 10 1.5826 15 1.5440 10 1.5826 15 1.4950 10 1.5826 10 1.4980 2 1.4472 5 1.5148 2 1.4872 5 1.5210 5 1.4583 7 1.3300 10 1.2363 5 1.2953 2 1.4872 5	_					1	2.144	2.143	132		
5 1.2197 5 1.2330 5 1.1749 7 1.2230 5 1.1380 10 1.1500 15 1.1380 10 1.1500 15 1.126 b10 1.244 10 1.0280 5 1.0394 7 1.0093 7 1.0184 5 1.0200 7 1.0110 10 0.9865 2 0.9940 10 0.9865 10 0.9839	5 5 5 10 10 5 5 15 15 10 7 10 7 10 7 10	2.062 2.017 2.006 2.000 1.9618 1.9105 1.77669 1.77669 1.77041 1.6962 1.68285 1.5825 1.5480 1.5326 1.4576 1.4576 1.4587 1.4576 1.4587 1.2586 1.2787 1.2786 1.2787 1.2786 1.2787 1.2786 1.2787 1.2787 1.2786 1.2787 1.				L2 52512555011555 15507011525	2.094 2.096 1.9960 1.9280 1.7894 1.7894 1.7730 1.7730 1.6950 1.6950 1.6435 1.5957 1.5650 1.51450 1.5210 1.51450 1.4684 1.4340 1.3880 1.3880 1.3880 1.3880 1.3880 1.3880 1.2953	2.143	132		
b 1.1749 15 1.1380 10 1.1500 b 15 1.1380 10 1.1244 10 1.0280 5 1.0394 7 1.0093 7 1.0184 5 1.0200 7 1.0116 10 0.9865 2 0.9940 10 0.9756 10 0.9839	5	1.2197				5 7	1.2330 1.2230				
	5 15 16 10 7 5 10 10	1.1749 1.1380 1.1126 1.0280 1.0093 1.0020 0.9865 0.9756				10 b 10 5 7 7 2 10	1.1500 1.1244 1.0394 1.0184 J.0110 0.9940 0.9839				

FIG. 1. Stereogram (upper hemisphere) of synthetic ahlfeldite and synthetic cobaltomenite showing crystallographic and optical elements.

OPTICAL DATA

The orientation of the principal vibration directions, optic axes, and crystal faces of both synthetic compounds were determined with a four-axis universal stage. The average grain size of the samples was 0.002mm by 0.005mm with an occasional grain reaching a length of 0.02mm. This small grain size coupled with the tendency of the crystals to lie on prism faces hampered the determination of the optical constants. The orientation of the indicatrix is shown in Figure 1, which serves equally well for both compounds.

The principal indices γ and α were determined from grains which were supported or tilted by other grains so that they were not lying on crystal faces. The principal index β was calculated from γ , α and 2V. On several crystals of cobaltomenite flattened on (101) it was possible to measure β directly. Such flattened crystals were not found in synthetic ahlfeldite.

Finally, on crystals lying on (110), indices γ' and α' were determined. It was then possible to calculate β from these values by the method outlined by Sturman (1973). For synthetic cobaltomenite the measured value of β is 1.727; the value calculated from γ , α , and 2V is 1.728; and the value calculated from γ' and α' is 1.728. For synthetic ahlfeldite, where β could not be measured directly, the two calculated values are, respectively, 1.745 and 1.743.

Table 3 lists all the optical data obtained in this study.

TABLE 3. OPTICAL DATA FOR SYNTHETIC ANLFELDITE AND SYNTHETIC

	ahlfeldite d	cobal tomeni te	ahlfeldite cobaltomenite
α β $2V_{\alpha}$ (meas. $2V_{\alpha}$ (calc. Dispersion $\sigma_{A}\gamma$ $\beta_{A}(110)$ $\sigma_{A}(T01)$	$ \begin{array}{c} 1.703 \\ 1.744 \\ 1.786 \\ 87^{\circ} \\ 88^{\circ} \\ 1.74v \\ -12^{\circ} \\ 47^{\circ} \\ 33^{\circ} \end{array} $	1.681 1.728 1.769 83° not observed -13° 51° 35°	Crystals lying on (110) Y' 1.784 1.766 α' 1.725 1.710 σ _A Y' 10° 12° Crystals lying on (101) β 1.728 α' 1.728 1.768 α' 1.693 symmetrical extinction
Pleochrois β α absorption	m (weak) green pale green very pale gre	red pink een pale pink γ>β>α	

DETERMINATION OF INTERMEDIATE MEMBERS

In any isomorphous series it is desirable to have a physical method for determination of the chemical composition of intermediate members. In the series ahlfeldite-cobaltomenite, because of the difficulties of analysis due to the small grain size, several possibilities present themselves, namely, refractive indices, density, unit cell parameters, colour and d-spacings.

Of these, colour is most unreliable, as illustrated by the ahlfeldite of Pacajake, Bolivia. Although Aristarain & Hurlbut (1969) found that the formula for this mineral is $(Ni_{0.00}CO_{0.10})$ SeO₃•2H₂O, the mineral is brownish-pink to red rather than the expected green.

The use of density and refractive indices is ruled out by the grain size of most specimens. For the same reason (plus the time involved) determination of unit cell parameters by x-ray single-crystal methods does not provide a practical means of identification. Directly related to the unit cell parameters are the d-spacings of the powder diffraction data.

Unit cell parameters can be calculated most accurately from the back reflections. Unfortunately, the back reflections are very weak for cobaltomenite and ahlfeldite and cannot be indexed because of the monoclinic symmetry and relatively large cell dimensions of the crystals. Thus, 9 lines were chosen with as small *d*spacings as possible but where corresponding lines can still be easily recognized in powder

patterns of cobaltomenite and ahlfeldite. The differences in *d*-spacings for these particular lines range from 0.020 to 0.011 Å (Table 4). Any intermediate member of the series should have *d*-spacings within this range. The composition of such an intermediate member is determined by a simple proportion assuming a linear relationship between d-spacings and composition. For example using Line 4, on Table 4, synthetic cobaltomenite has a d-spacing of 1.6436 and synthetic allfeldite has a d-spacing of 1.6285. This difference is 0.0151. An intermediate member with a *d*-spacing of 1.6416 for this line would have a composition of (Ni_{0.13} $Co_{0.87}$)SeO₃•2H₂O. The value of 0.13 is determined from the ratio 0.0020/0.0151 where 0.0020 is the difference between the *d*-spacing of the intermediate member and that of cobaltomenite.

Ideally, all nine *d*-spacings should give the same composition for an intermediate member, but because of the error in measurement of 2θ , the results will be different. Using a large diameter camera (114.6mm) and FeK α radiation, an error of $\pm 0.05^{\circ} 2\theta$ will result in an error of $\pm 5\%$ in the composition.

To indicate the accuracy which can be obtained, two sets of measurements were made on a specimen of cobaltomenite (ROM No. M280-49). These are given in Table 4. The % of the nickel end-member calculated from the individual measurements ranges from 8% to 26%. The mean is 16% with a standard deviation of 5%. Table 4 also includes data for another cobaltomenite specimen (ROM No. M27654) which results in a % of the Ni end-member of 16%. Using the data of Aristarain & Hurlbut (1969) for ahlfeldite, the method gives a composition of (Ni_{0.89}Co_{0.11})SeO₃•2H₂O which agrees favorably with their empirical formula (Ni_{0.90} Co_{0.10})SeO₃•2H₂O.

X-ray fluorescence analyses were carried out in an attempt to check the calculated compositions of specimens M28049 and M27654. Both specimens consisted of very small grains of cobaltomenite scattered on fracture surfaces in candstone. Sections could not be prepared for

TABLE 4. DETERMINATION OF THE N1-CONTENT OF THE AHLFELDITE-COBALTOMENITE SERIES BY MEASUREMENT OF SELECTED d-SPACINGS (see text)

-7				Cobalt	omenite	M28049,	Yello	w Cat Dist	rict, Gr	and Co.,	Utah	I. I. I.					
	Cobal tomenite	Ahlfeldite	5		I Readin	ig		I	I Readin	g		Cobal to	menite M	27654	Ahlfe	ldite (Aristarain
I	(Synthetic)	(Synthetic	2)	28Fe			% N1	20Fe			2 Ni	Temple	Mt., Eme	ry Co., Utah	8	lurlbut	1969)
_	d	d	52	Ka	đ	Δđ	comp	Κα	d	Δđ	comp	d	Δ^{\prime}	% Ni comp	d	Δđ	% Ni comp
35	1.7340	1.7141	0.0.99	68.05	1.7311	0.0029	15	68.10	1.7300	0.0040	20	1.7309	0.0031	16	1.718	0.0150	81
5	1.7160	1.6962	8610.0	68.95	1.7112	0.0048	24	63.90	1.7123	0.0037	19	1.7121	0.0039	20	l		
10	1.6950	1.6908	0.0142	09.78	1.6934	0.0016	11	69.80	1.6930	0.0020	14	1.6941	0.0009	6	1.682	0.0130	92
15	1.6436	1.6285	0.0151	72.32	1.6416	0.0020	13	72.34	1.6413	0.0023	15	1.6413	0.0023	15	1.629	0.0146	97
10	1.5957	1.5825	0.0132	74.81	1.5943	0.0011	8	74.82	1.5944	0.0013	10	1.5939	0.0018	14	1.524	0.0117	89
5	1.5050	1.5480	0.0170	76.59	1.5631	0.0019	11	76.71	1.5610	0.0040	24	1.5624	0.0026	15	1.549	0.0141	83
15	1.5440	1.5326	0.0114	77.81	1.5423	0.0017	15	77.89	1.5410	0.0030	26	1.5418	0.0022	19	1.533	0.0110	95
15	1.4950	1.4776	0.0174	80.91	1.4929	0.0021	12	81.00	1.4915	0.0035	20	1.4913	0.0037	21	1.479	0.0160	92
10	1.4340	1.4196	0.0144	85.18	1.4317	0.0023	16	85.20	1.4310	0.0020	14	1.4316	0.0024	17	1.422	0.0120	83
						<u>s</u> =	14			ž =	18		x =	16	-	æ =	89
						× ۵	5			d ₩	5		Q =	4		α =	6

electron probe analysis because of the planar arrangement and scattered distribution of the very small grains of weakly-adhering cobaltomenite. A microscopically pure sample of cobaltomenite was obtained from M28049, but the only sample obtainable from M27654 contained other (unidentified) phases. X-ray fluorescence analysis on M28049 gave 17% of the Ni endmember compared to the calculated figure of 16%. Analysis of three impure fractions from M27654 gave 28%, 30%, and 38% Ni endmember compared to the calculated figure of 16%. The writers feel that the discrepancy in M27654 is due to admixed impurities in the analyzed samples rather than any real difference in composition.

In conclusion, it is proposed that careful measurement of the powder diffraction pattern provides the most practical means of identification of intermediate members. In the case of larger crystals, optical constants could be used but the accuracy would be no greater.

It is important to point out that linear variation of the optical and crystallographic constants with respect to composition is assumed. This is supported by the data for the two endmembers and the cobaltomenite (M28049) with 17% of the Ni end-member and the ahlfeldite with 90% of the Ni end-member. However, it cannot be proved until data from other intermediate members are available.

ACKNOWLEDGEMENTS

The writers are grateful to Prof. Dr. G. Gattow for providing the samples of synthetic ahlfeldite and cobaltomenite. Dr. Michael Fleischer kindly supplied references to papers on this series.

REFERENCES

- ARISTARAIN, L. F. & HURLBUT, C. S., JR. (1969): Ahlfeldite from Pacajake, Bolivia; a restudy. Amer. Mineral. 54, 449-456.
- EVANS, H. T. JR., APPLEMAN, D. E. & HANDWERKER, D. S. (1963): The least-square refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method. *Amer. Cryst. Assoc. Ann. Mtg.*, Cambridge, Mass., Program Abstr., 42-43.
- GONI, J. & GUILLEMIN, C. (1953): Données nouvelles sur les sélénites et séléniates naturels. Bulll. Soc. franc. Mineral. 76, 422-429.
- LIEDER, O. J. & GATTOW, G. (1967): Zur structurchemie von Verbindungen des cobaltmenit-Types. Naturwiss. 54, 443.
- STRUNZ, H. (1970): Mineralogische Tabellen, 5 Auflage.
- STURMAN, B. D. (1973): Determination of the principal refractive indices of biaxial minerals from any randomly oriented grain. *Can. Mineral.* 12, 147-148 (Abstr.).
- Manuscript received February 1974.