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The classification of twins based on the theory
that was elaborated by the French crystallo-
graphers from Bravais and Mallard to Friedel
(1904; Internat. Tables 1959) dates back, of
course, to pre-x-ray days, when twins could only
be studied morphologically by means of gonio-
metry (contact and reflection goniometers).
Nowadays, when we suspect a specimen to be
twinned we must still examine in detail any
available morphological evidence of twinning,
but we then proceed to the x-ray studies, in
particular “precession goniometry” (Donnay et
al. 1955; Donnay & Donnay 1967; Chen & Chao
1973), where we examine precession orientation
and cone-axis photographs for twin information.
What do we observe?

The patterns will show either a single orien-
tation of the reciprocal lattice or two (or more)
distinct orientations having a common origin.
In the first case, there will be no obvious evi-
dence of twinning, such as doubling of spots,
and it may take a high, irreducible residual R
in the attempted crystal-structure determination
to indicate the presence of twinning. (For an
illustration see, for example, the case of har-
motome, Hoffman et al. 1973). If twinning is
indeed present, this case will be called: win-
ning by twin-lattice symmetry, TLS. The alter-
nate case, when more than one orientation of
the reciprocal lattice is observed, becomes
twinning by twin-lattice quasi-symmetry, TLQS.
These two groups represent the primary division
of the twin kingdom because they are instantly
distinguishable on orientation precession films.

The further subdivision rests on the concept
of twin index, n, defined as follows:

n = (vol. per node in twin lattice)/ (vol. per
node in crystal lattice). The twin lattice is the
lattice with the smallest cell that is common to
both individuals of the twin. At the composi-
tion surface it will show perfect continuity for
the case of TLS, but will suffer a slight deviation
for TLQS specimens. For n = 1, the twin lat-
tice coincides with the crystal lattice; for n > 1,

the twin lattice is a superlattice? of the crystal
lattice in direct space and a sublattice in recipro-
cal space.

A sample with TLS and »n equal to unity is
the most difficult to recognize by x-ray diffrac-
tion alone, as mentioned above. Several speci-
mens may have to be measured and their corre-
sponding F(4kl) values compared, in order to
rule out this type of twinning, and even then
the investigator may be fooled, because the rela-
tive volume proportions of the various indivi-
duals in the twin may be constant, thus leading to
comparable but not true F(hkl) values. The
common twins of quartz (Table 1) illustrate the
point; the accepted structure determination by
Young & Post (1962) of low-temperature quartz
must have been based on twin data (R. F.
Stewart, priv. com.).

A twin by TLS with n>>1 usually has n=3 and
almost always shows peculiar “systematic” ab-
sences that are neither space-group nor structural
ones and may well be called “twin absences”.
Their presence, when identified as such, per-
mits recognition of twinning by TLS with n = 3.

For the case of TLQS, the twin law, in reci-
procal space, is usually readily established on
x-ray precession patterns from the lattices of
the individual component crystals. The deter-
mination of the twin index, which may have
any integral value but is usually below six, is
readily accomplished. Table 1 summarizes the
proposed classification and gives at least one
well-known example for each of the four cate-
gories.

In conclusion it may be pointed out that Nig-
gli (1919, 1920, 1941) had already rearranged

T Geometrically the twin lattice could equally well
be a sublattice in direct space, as pointed out by
Friedel (1904, 1926). Wrinch (1952) was the first
to switch from the superlattice to the sublattice —
the only one that has a crystal-structure significance
and led to the concept of “index of restoration”
(Takeda et al, 1967).
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Friedel's classification so that the main subdiv-
isions would be based on the twin obliquity
rather than on the twin index n. As originally
proposed by Friedel, the classification followed
the historical development: Bravais (n = 1,
© = 0), Mallard (n = 1, @ > 0) and Friedel
himself (n > 1, @ = 0 and @ > 0). It is not
clear why Niggli changed the sequence to the
one we advocate here: nowhere does he discuss
the advantages of the new sequence over the
old one from the point of view of the x-ray
crystallographer, nor does he consider the phe-
nomenon of twinning in reciprocal space.

We must take exception to the term of “mero-
hedry of a higher order” (w = 0, n > 1), as
used by Niggli to mean “reticular merohedry”
or “lattice merohedry”, that is, the situation
where the crystal lattice is less symmetrical than
one of its “multiple lattices” or “superlattices”.
The term at issue was proposed by Friedel to
designate the case where a crystal lattice or one
of its superlattices simulates, as quasi-symmetry
with @w ~ 0, the higher symmetry of the lattice
of another crystal system. A nice example of
this phenomenon is found in staurolite (Hurst
et al. 1956), monoclinic quasi-orthorhombic,
with 8 = 90° within limits of error, which dis-
plays twins with » = 1 and w vanishingly small,
even though it cannot be rigorously zero. Such
twins, in Friedel’s terminology, are due to “high-
er order merohedry”; in Niggli’s nomenclature,
they would be called “pseudo-merohedral of the
first order”. It is just as well Niggli’s terminology
has not made much headway outside German-
speaking countries.

The classification taught at the Sorbonne in
the nineteen-fifties (Hocart ca. 1958) retained
Friedel’s two subclasses, “by merchedry” (w =
0, n = 1) and “by reticular merohedry” (w = O,
n > 1), but grouped into a single class, “by
pseudo-symmetry” (@ > 0) the two cases
n=1landn > 1.

The problem of symbolizing twin symmetry,
either to define a twin law or to describe the
symmetry of the complete twin, has been solved
by the application of the black-white or the
colour notation, respectively (Curien & Le Corre
1958; Curien & Donnay 1959).t This solution

T Errata in Curien & Donnay (1959):
p. 1068, line 11 up: “... Brazil law are double-
primed . . .” should read “.
primed . ..”
p. 1068, line 10 up: “... triple primes..
read “... double primes...”
In that paper, as in Curien and LeCorre (1958,
Fig. 1), the Dauphiné twin comprises ecrystals

.. Brazil law are triple-
. should
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is satisfactory in cases of twinning by twin-lat-
tice symmetry (@ = 0), but its adequacy re-
mains limited in the case of twinning by twin-
lattice quasi-symmetry (@ > 0). The example,
given in the Table, of the Albite and Pericline
laws (@ > 0, n = 1) is a case in point. We are
here proposing symbols that contain elements of
both direct and reciprocal spaces. The symbol
2*’/m’ brings out the fact that the twin opera-
tion can be considered a 180° rotation around
the reciprocal-lattice row-line [010]*%, as well
as a reflection in the direct-lattice net-plane
(010). Proof of the equivalence of these two
twin operations rests on their product being
equal to a crystal-symmetry operation — the
inversion through the center 1. In accordance
with the law of Mallard, for nearly one hundred
years now, the twin element has usually been
chosen as the direct-lattice element: m'(010)
for Albite twinning and 2/[010] for Pericline
twinning. Some devotees of twinning “by half-
turn rotation”, however, have kept alive the
“axes of hemitropy” of old, which are still com-
monly used in petrography textbooks. In x-ray-
diffraction work, particularly by the precession
techniques, the twin definition by means of the
reciprocal-lattice element has suddenly acquired
paramount importance: Albite twinning is detect-
ed because the two orientations of the reciprocal
lattice are related by a 180° rotation around
[010]*, whereas in the Pericline twinning they
are reflected in (010)*. Each of the symbols
2*/m' and 2”/m*” describes both the twin law
and the twin symmetry, and each one implies
the presence of 1. The question arises: is it
possible to symbolize the symmetry of the edi-
fice when these two “correspondent twins”
(twins due to the quasi-symmetry of one and
the same cell) co-exist in one specimen? Is it
possible to find here the analogue of the “sym-
metry of the complete twin”, which is usually
defined when @ = 0? We have considered de-

L] "
scribing the complete twin by (f” ”f ), that

K3

is, the juxtaposition of the two symbols that

represent the Albite and Pericline laws, re-

spectively, but a more compact notation would

seem to be preferable. We propose the symbol
1" —

LT
m

elements. The dashed fraction bar is chosen to

It contains only direct-lattice twin

(I-I) or (II-1V); the Brazil twin crystals (I-IV)
or (II-I), and the D-B twin crystals (I-III) or
(I-IV).
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mean “nearly perpendicular to”, by analogy with
the solid fraction bar (now universally accepted),
which stands for “rigorously perpendicular to”.
The co-existence of the Albite twin mirror m’
and the Pericline twin axis 2” does not imply the
center 1, which must therefore be explicitly
stated in the new symbol; it is written after the
dashed bar. Note that the inversion in 1 can be
mentally combined either with the reflection in
m’ to give 2* or with the rotation in 2" to
yield m*”,
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